branching geodesics in metric spaces with ricci curvature...

66
Optimal mass transportation CD(K , )-spaces RCD(K , )-spaces Branching geodesics in metric spaces with Ricci curvature lower bounds Tapio Rajala University of Jyv¨ askyl¨ a [email protected] Interactions Between Analysis and Geometry: Analysis on Metric Spaces IPAM, UCLA, Mar 18th, 2013 Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Upload: others

Post on 07-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

Branching geodesics in metric spaces with Ricci

curvature lower bounds

Tapio Rajala

University of [email protected]

Interactions Between Analysis and Geometry:

Analysis on Metric Spaces

IPAM, UCLA, Mar 18th, 2013

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 2: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

The space (P(X ),W2)

For µ, ν ∈ P(X ) define

W2(µ, ν) =

(

inf

{∫

X×X

d(x , y)2 dσ(x , y)

(p1)#σ = µ(p2)#σ = ν

})1/2

.

X

X

ν

µ

σ

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 3: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

The space (P(X ),W2)

For µ, ν ∈ P(X ) define

W2(µ, ν) =

(

inf

{∫

X×X

d(x , y)2 dσ(x , y)

(p1)#σ = µ(p2)#σ = ν

})1/2

.

X

X

ν

µ

σ

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 4: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

The space (P(X ),W2)

For µ, ν ∈ P(X ) define

W2(µ, ν) =

(

inf

{∫

X×X

d(x , y)2 dσ(x , y)

(p1)#σ = µ(p2)#σ = ν

})1/2

.

X

X

ν

µ

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 5: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

The space (P(X ),W2)

Question (Existence of optimal maps)

When is the/an optimal plan induced by a map? (σ = (id ,T )#µfor some map T : X → X)

The usual steps in the proof are (given two measuresµ, ν ∈ P(X )):

1 Prove that any optimal plan from µ to ν is induced by a map.

2 Linear combinations of optimal plans are optimal.

3 The combination of two different optimal maps is not a map.Hence there is only one optimal map.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 6: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

Existence of optimal maps

The existence of optimal maps for the quadratic cost has beenobtained for example by

Brenier (1991) in Rn with µ ≪ Ln. (Earlier steps by Brenier

1987 and Knott & Smith 1984)

McCann (1995) in Rn with µ(E ) = 0 for n − 1-rectifiable E .

Gangbo & McCann (1996) in Rn with µ(E ) = 0 for all

c − c-hypersurfaces E .

McCann (2001) for Riemannian manifolds M with µ ≪ vol.

Gigli (2011) for Riemannian manifolds M there exists anoptimal map from µ to every µ if and only if µ(E ) = 0 for allc − c-hypersurfaces E .

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 7: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

Existence of optimal maps

and . . .

Bertrand (2008) for finite dimensional Alexandrov spaces withµ ≪ Hd .

Gigli (2012) for non-braching CD(K ,N)-spaces, N < ∞, withµ ≪ m. For non-branching CD(K ,∞)-spaces withµ, ν ∈ D(Entm).

Rajala & Sturm (2012) for RCD(K ,∞)-spaces with µ, ν ≪ m.

Cavalletti & Huesmann (2013) for non-branchingMCP(K ,N)-spaces with µ ≪ m.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 8: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

The space (P(X ),W2) for (X , d) geodesic

(All the geodesics in this talk are constant speed geodesicsparametrized by [0, 1].)

If (X , d) is geodesic, then (P(X ),W2) is geodesic.

A geodesic (µt) ⊂ Geo(P(X )) can be realized as a probabilitymeasure π ∈ P(Geo(X )) in the sense that for all t ∈ [0, 1] wehave (et)#π = (µt).

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 9: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

From Geo(P(X )) to P(Geo(X ))

Optimal plan between µ0 and µ1 as a geodesic in P(X ).

µ0

µ1

µ 12

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 10: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

From Geo(P(X )) to P(Geo(X ))

Optimal plan between µ0 and µ1 as a measure in P(Geo(X )).

µ0

µ1

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 11: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

in metric spacesin geodesic metric spaces

Optimal plans σ vs. Geo(P(X )) vs. P(Geo(X ))

Denote by OptGeo(µ0, µ1) ⊂ P(Geo(X )) the set of all π forwhich (et)#π is a geodesic connecting µ0 and µ1. The spaceOptGeo(µ0, µ1) has the most information on transports betweenµ0 and µ1: Usually neither of the maps

OptGeo(µ0, µ1) → Geo(P(X )) : π 7→ (t 7→ (et)#π),

OptGeo(µ0, µ1) → P(X × X )) : π 7→ (e0, e1)#π

is injective.Moreover, a geodesic (µt)

1t=0 does not (in general) define an

optimal plan σ, nor does σ define (µt)1t=0.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 12: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Optimal transport on Riemannian manifolds

Curvature changes the size of thesupport of the transported mass.

zero curvature

positive curvaturenegative curvature

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 13: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Theorem (Otto & Villani 2000, Cordero-Erausquin, McCann &Schmuckenschlager 2001, von Renesse & Sturm 2005)

For any smooth connected Riemannian manifold M and anyK ∈ R the following properties are equivalent:

1 Ric(M) ≥ K in the sense that Ricx(v , v) ≥ K |v |2 for allx ∈ M and v ∈ TxM.

2 Entvol is K-convex on P2(M).

Here Entvol(ρvol) =∫

Mρ log ρdvol and K -convexity of Entvol on

P2(M) means that along every geodesic (µt)1t=0 ⊂ P2(M) we have

Entvol(µs) ≤ (1− s)Entvol(µ0) + sEntvol(µ1)

−K

2s(1− s)W 2

2 (µ0, µ1)

for all s ∈ [0, 1].

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 14: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Ricci-curvature bounds in metric spaces

Definition (Sturm (2006))

(X , d,m) is a CD(K ,∞)-space (K ∈ R) if between any twoabsolutely continuous measures there exists a geodesic(µt) ∈ Geo(P(X )) along which the entropyEntm(ρm) =

ρ log ρ dm is K -convex:

Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)

−K

2s(1− s)W 2

2 (µ0, µ1)

for all s ∈ [0, 1].

There is also a slightly stronger definition by Lott and Villani.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 15: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 16: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Branching geodesics

One problematic feature of the definition is that CD(K ,∞)-spacesinclude also spaces with branching geodesics; like (R2, || · ||∞,L2).We say that two geodesics γ1 6= γ2, branch if there existst0 ∈ (0, 1) so that γ1t = γ2t for all t ∈ [0, t0].

γ10 = γ20 γ1t0 = γ2t0γ1

γ2

A space where there are no branching geodesics is callednon-branching.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 17: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

CD(K ,∞) + non-branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 18: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization without branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 19: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization without branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 20: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization without branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 21: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization without branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 22: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization with branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 23: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization with branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 24: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization with branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 25: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization with branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 26: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µs

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 27: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µsµt1µt2

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 28: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µsµt1µt2

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 29: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 30: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µ 12

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 31: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µ 12

µ 14

µ 34

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 32: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µ 12

µ 14

µ 34

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 33: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

µ0 µ1µ 12

µ 14

µ 34

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 34: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Localization in time with branching

Not only does the new geodesic satisfy the K -convexity inequalitybetween any three times 0 < t1 < s < t2 < 1, but also themeasures along the geodesic have bounded densities (under someassumptions on the initial and final measures). This is true forinstance if we start with two measures µ0 and µ1 having boundeddensities and bounded supports.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 35: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Iterating minimization fails for CD(K ,N)

In CD(K ,N)-spaces, minimizing the (Renyi) entropy∫

Xρ1−1/N dm

does not always produce a geodesic along which the inequalitiesrequired by CD(K ,N)-condition hold.

µ0 µ1µ 12

µ 14

µt

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 36: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Iterating minimization fails for CD(K ,N)

In CD(K ,N)-spaces, minimizing the (Renyi) entropy∫

Xρ1−1/N dm

does not always produce a geodesic along which the inequalitiesrequired by CD(K ,N)-condition hold.However, if one of the measures is singular with respect to m, weget the correct CD(K ,N)-bounds when taking intermediate pointstowards this measure.Combining this observation with the density bounds gives

Theorem

CD(K ,N) ⇒ MCP(K ,N) (by Ohta).

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 37: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Definition

A space (X , d ,m) is said to satisfy the measure contractionproperty MCP(K ,N) (in the sense of Ohta) if for every x ∈ X andA ⊂ X (and A ⊂ B(x , π

(N − 1)/K ) if K > 0) with0 < m(A) < ∞ there exists

π ∈ GeoOpt

(

δx ,1

m(A)m|A

)

so thatdm ≥ (et)#

(

tNβt(γ0, γ1)m(A)dπ(γ))

.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 38: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

local Poincare inequality in non-branching MCP(K ,N)

Theorem (Lott & Villani, von Renesse, Sturm, Hinde & Petersen,Cheeger & Colding)

Suppose that (X , d,m) is a nonbranching MCP(K ,N)-space withK ∈ R. Then the weak local Poincare inequality

B(x ,r)|u − 〈u〉B(x ,r)|dm ≤ C (N,K , r)r−

B(x ,2r)g dm

holds for any measurable function u defined on X , any uppergradient g of u and for each point x ∈ X and radius r > 0.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 39: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

local Poincare inequality in CD(K ,∞)

Theorem

Suppose that (X , d,m) is a CD(K ,∞)-space (in the sense ofSturm) with K ∈ R. Then the weak local Poincare inequality

B(x ,r)|u − 〈u〉B(x ,r)|dm ≤ 4reK

−r2

B(x ,2r)g dm

holds for any measurable function u defined on X , any uppergradient g of u and for each point x ∈ X and radius r > 0.

Observe that we do not have average integrals in this theorem.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 40: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Proof of the local Poincare inequality

Let us prove the CD(0,∞) case for simplicity. We have to showthat

B(x ,r)|u − 〈u〉B(x ,r)|dm ≤ 4r

B(x ,2r)g dm.

Abbreviate B = B(x , r) and denote

M = inf

{

a ∈ R : m({u > a}) ≤m(B)

2

}

.

Split the ball B into two Borel sets B+ and B− so thatB = B+ ∪ B−, B+ ∩ B− = ∅, m(B+) = m(B−) and

u(x) ≤ M ≤ u(y) for all x ∈ B−, y ∈ B+.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 41: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Proof of the local Poincare inequality

Let (µt)1t=0 be a geodesic between 1

m(B+)m|B+ and 1m(B−)

m|B−

along which we have the density bound (writing µt = ρtm)

ρt(y) ≤2

m(B)

for all t ∈ [0, 1] at m-almost every y ∈ X . Let π be acorresponding measure on the set of geodesics.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 42: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Proof of the local Poincare inequality

From u(z) ≤ M ≤ u(y) for all (z , y) ∈ B− × B+ we get

|u(γ(0)) − u(γ(1))| = |u(γ(0)) −M|+ |M − u(γ(1))|

for π-almost every γ ∈ Geo(X ). Therefore

Geo(X )|u(γ(0)) − u(γ(1))|dπ(γ)

=

Geo(X )|u(γ(0)) −M|dπ(γ) +

Geo(X )|M − u(γ(1))|dπ(γ)

=2

m(B)

B+

|u(z)−M|dm(z) +2

m(B)

B−

|M − u(z)|dm(z)

=2

m(B)

B

|u(z)−M|dm(z).

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 43: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionbranching vs. non-branchinglocal Poincare inequalities

Proof of the local Poincare inequality

B(x ,r)|u − 〈u〉B(x ,r)|dm ≤

1

m(B)

∫∫

B×B

|u(z)− u(y)|dm(z)dm(y)

≤1

m(B)

∫∫

B×B

(|u(z)−M|+ |M − u(y)|)dm(z)dm(y)

= 2

B

|u(z)−M|dm(z) = m(B)

Geo(X )|u(γ(0)) − u(γ(1))|dπ(γ)

≤ 2rm(B)

Geo(X )

∫ 1

0g(γ(t)) dt dπ(γ)

= 2rm(B)

∫ 1

0

X

g(z)ρt(z)dm(z)dt

≤ 4r

∫ 1

0

B(x ,2r)g(z)dm(z)dt = 4r

B(x ,2r)g dm.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 44: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

CD(K ,∞) + non-branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 45: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Question

Does there exist a stable definition of Ricci curvature lower boundsthat excludes branching?

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 46: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

RCD(K ,∞)

Definition (Ambrosio, Gigli & Savare, 2011 (preprint))

A metric measure space (X , d,m) has Riemannian Ricci curvaturebounded below by K ∈ R, or RCD(K ,∞) for short, if one of thefollowing equivalent conditions hold:

1 (X , d,m) is a CD(K ,∞) space and the Cheeger-energyCh(f ) = 1

2

|Df |2w is a quadratic form on L2(X ,m).

2 (X , d,m) is a CD(K ,∞) space and the W2 gradient flow ofEntm is additive on P2(X ).

3 Any µ ∈ P2(X ) is the starting point of an EVIK gradient flowof Entm.

Theorem (Daneri & Savare, 2008)

EVIK implies strong displacement K-convexity.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 47: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

RCD(K ,∞) ⇒ essential non-branching

Theorem (R. & Sturm, 2012 (preprint))

Strong CD(K ,∞)-spaces are essentially non-branching. Inparticular RCD(K ,∞)-spaces are essentially non-branching.

Corollary (of essential non-branching and Gigli’s result)

There exist optimal transport maps in strong CD(K ,∞)-spacesbetween µ0, µ1 ≪ m.

Definition

A space (X , d,m) is called essentially non-branching if for everyµ0, µ1 ∈ P2(X ) that are absolutely continuous with respect to m

we have that any π ∈ OptGeo(µ0, µ1) is concentrated on a set ofnon-branching geodesics. (Meaning that π(Γ) = 1 for someΓ ⊂ Geo(X ) so that there are no two branching geodesics in Γ.)

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 48: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Riemannian manifolds with Ric ≥ K

Ricci limit spaces

CD(K ,∞) of Sturm

CD(K ,∞) of Lott-Villani

RCD(K ,∞)

CD(K ,∞) + essential non-branching

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 49: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

“Proof” Suppose that the claim is not true so that there exists ameasure π that is not concentrated on non-branching geodesics.By restricting the measure π we may assume that there are0 < t1 < t2 < 1 with |t1 − t2| small and two sets of geodesicsΓ1, Γ2 so that

(et)#π|Γ1 = (et)#π|Γ2 for all t ∈ [0, t1]

and(et)#π|Γ1 ⊥ (et)#π|Γ2 for all t ∈ [t2, 1]

for all t ∈ [t2, 1].

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 50: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

0 1t1 t2

Γ1

Γ2

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 51: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

0 1t1 t2

Γ1

Γ2

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 52: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

0 1t1 t2

Γ1

Γ2

Entm

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 53: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

0 1t1 t2

Γ1

Γ2

Entm

log 2

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 54: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Ricci-limits

RCD(K ,N)

CD(K ,N)CD(K ,N)

MCP(K ,N)MCP(K ,N)

∃ maps

Local Poincare

non-branching

ess. nb.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 55: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Why is ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞} =: M?.

ρ0 ρ 12

ρ1

XXX

MMM

A

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 56: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Consider the curve Γ ∈ P(Geo(X )) between the marginalscorresponding to the part of the measure which we want toredistribute along which Entm is displacement convex. We have

Entm(Γ 12) ≤

1

2Entm(Γ0) +

1

2Entm(Γ1) ≤ logM.

On the other hand, by Jensen’s inequality we always have

Entm(Γ 12) =

E

ρ 12log ρ 1

2dm

≥ m(E )

(

E

ρ 12dm

)

log

(

E

ρ 12dm

)

≥ log1

m(E ),

where E = {x ∈ X : ρ 12(x) > 0} and Γt = ρtm. Thus

m(E ) ≥1

M.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 57: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

The CD(K ,∞) condition gives a new well spread midpoint for thehigh-density part of the old midpoint.

ρ0 ρ 12

ρ1

XXX

MMM

A

E

E

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 58: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

Taking a weighted combination of this new midpoint measure andthe old one lowers the entropy.

ρ0 ρ 12

ρ1

XXX

MMM

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 59: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

This is why ||ρ1/2||∞ ≤ max{||ρ0||∞, ||ρ1||∞}.

Therefore at the minimum of the entropy among the midpoints wehave the density bound.

ρ0 ρ 12

ρ1

XXX

MMM

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 60: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

The rest of the geodesic.

When we continue taking minimizers in the next level midpointsthe bound is preserved.

ρ0 ρ 12

ρ1ρ 14

ρ 34

XX XXX

MM MMM

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 61: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

The rest of the geodesic.

Finally we end up with a complete geodesic with the density bound.

ρ0 ρ1

XX

M

t

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 62: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Question

MCP(K ,N) ⇒ Local Poincare?

Question

Does there exist optimal maps in CD(K ,N)-spaces from everyµ ≪ m? (not all plans are given by maps)

Question

Local-to-global for CD(K ,∞)?

Question

Are RCD(K ,∞)-spaces non-branching?

Question

Are RCD(K ,∞)-spaces Ricci-limits?

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 63: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

J. Lott and C. Villani, Ricci curvature for metric-measurespaces via optimal transport, Ann. of Math. 169 (2009), no. 3,903–991.

K.-T. Sturm, On the geometry of metric measure spaces. I,Acta Math. 196 (2006), no. 1, 65–131.

K.-T. Sturm, On the geometry of metric measure spaces. II,Acta Math. 196 (2006), no. 1, 133–177.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 64: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

T. R., Local Poincare inequalities from stable curvatureconditions on metric spaces, Calc. Var. Partial DifferentialEquations, 44 (2012), 477–494.

T. R., Interpolated measures with bounded density in metricspaces satisfying the curvature-dimension conditions of Sturm,J. Funct. Anal., 263 (2012), no. 4, 896–924.

T. R., Improved geodesics for the reduced curvature-dimensioncondition in branching metric spaces, Discrete Contin. Dyn.Syst., 33 (2013), 3043–3056.

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 65: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

L. Ambrosio, N.Gigli and G. Savare, Metric measure spaceswith Riemannian Ricci curvature bounded from below, preprint(2011).

L. Ambrosio, N.Gigli, A. Mondino and T.R., Riemannian Riccicurvature lower bounds in metric spaces with σ-finite measure,Trans. Amer. Math. Soc., to appear.

N. Gigli, Optimal maps in non branching spaces with Riccicurvature bounded from below, Geom. Funct. Anal. 22 (2012),no. 4, 990–999.

T. R. and K.-Th. Sturm, Non-branching geodesics and optimalmaps in strong CD(K ,∞)-spaces, preprint (2012).

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds

Page 66: Branching geodesics in metric spaces with Ricci curvature ...helper.ipam.ucla.edu/publications/iagws1/iagws1_11202.pdfpositive curvature negative curvature ... (K,∞)-spaces definition

Optimal mass transportationCD(K ,∞)-spaces

RCD(K ,∞)-spaces

definitionessential non-branching

Thank you!

Tapio Rajala Branching geodesics in spaces with Ricci curvature lower bounds