brechas ppt

46
Outline Describing breccias Overview of genetic classes for breccias Emphasis on breccias from epithermal and porphyry deposits Magmatic- hydrothermal Volcanic- hydrothermal Hydrothermal (phreatic)

Upload: reiner-balcazar-rojas

Post on 20-Oct-2015

37 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Brechas PPT

Outline

• Describing breccias

• Overview of genetic classes for breccias

• Emphasis on breccias from epithermal and porphyry deposits

Magmatic-hydrothermal

Volcanic-hydrothermal

Hydrothermal (phreatic)

Page 2: Brechas PPT

Definitions

• Hydrothermal breccia:

Clastic, coarse-grained aggregate generated by the

interaction of hydrothermal fluid with magma and/or

wallrocks

• Infill:

Material that has filled the space between clasts in

breccias

Breccias can have two infill components – crystalline

cement or clastic matrix

2 cm

Page 3: Brechas PPT

Breccia Description and Interpretation

• First breccias should be described in

terms of their components, texture,

morphology and contact relationships

• The next step is genetic interpretation, which can be difficult and often leads to problems

Page 4: Brechas PPT

Ideal combination: 5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

Minimum Combination: 4 + 3 + 2

Breccia Description

Bat Cave breccia pipe, Northern Arizona. (Wenrich, 1985)

1) Geometry

• pipe, cone, dyke, vein, bed, irregular, tabular...

Contact relationships:

• sharp, gradational, faulted, irregular, planar, concordant, discordant

Page 5: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

2) Grainsize

• breccia (> 2mm), sandstone (1/16 – 2 mm) or mudstone (< 1/16 mm)

The term ‘breccia’ is derived from sedimentology, where it refers to clastic rocks composed of large angular clasts (granules, cobbles and boulders) with or without a sandy or muddy matrix

Monomictic sericite-altered diorite clast breccia with roscoelite-quartz cement, Porgera, PNG

Breccia Description

Page 6: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

3) Components

A: clasts

• monomict or polymict

Composition: lithic, vein, breccia, juvenile magmatic, accretionary lapilli, mineralised, altered

Morphology: angular, subangular, subround, round, faceted, tabular, equant

Polymictic trachyandesite clast-rich sand matrix breccia, Cowal, NSW

Breccia Description

Page 7: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

3) Components: INFILL

B: matrix

• Mud to sand to breccia-sized particles

• Crystal fragments, lithic fragments, vein fragments

Textures:

• bedded

• laminated

• banded

• foliated

• massive Polymictic diorite clast breccia with pyrite-quartz-roscoelite cement and roscoelite-altered mud matrix, Porgera, PNG

Breccia Description

Page 8: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

3) Components: INFILL

C: cement

• Ore & gangue mineralogy

• Grainsize

• Alteration

textures:

• cockade, massive, drusy, etc.

D: open space (vugs)

Rhodochrosite-kaolinite cemented mudstone-clast breccia Kelian, Indonesia

Breccia Description

Page 9: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

4) Internal Organisation

• Clast, matrix or cement-supported

• Clast, matrix and cement abundances

• Massive, bedded, laminated or graded

Clast distribution:

• In-situ (jigsaw-fit)

• Rotated

• Chaotic

Sericite-altered polymictic sand-matrix breccia, Braden Pipe, El Teniente, Chile

Breccia Description

Page 10: Brechas PPT

5 + 4 + 3 + 2 +1 Alteration Internal Components Grainsize Geometry organisation A + B + C + D

5) Alteration

• Clasts, matrix or cement

• Alteration paragenesis (pre-, syn- and post-brecciation)

Sericite-altered polymictic sand matrix breccia, Braden Pipe, El Teniente, Chile

Breccia Description

Page 11: Brechas PPT

Hydrothermal Breccias

Volcanic Breccias

Magmatic-hydrothermal

breccias

Tectonic Breccias

Magmatic Breccias

Magma intrusion into hydrothermal

system

Fault breccias & brecciated veins

Sto

ck

wo

rk v

ein

s

Structural control on breccia location

Breccia Genesis

• More than one process can be involved in breccia formation

• This overlap means that genetic terminology is generally applied inconsistently

Phreatic breccias

Igneous- cemented breccias

Page 12: Brechas PPT

Volatile-saturated intrusion undergoes

catastrophic brittle failure due to hydrostatic

pressure exceeding lithostatic load and the tensile strength of the

wallrocks

1: Magmatic-hydrothermal breccias

• Containment and focussing of volatiles magmatic-hydrothermal ore formation

Breccias in Hydrothermal Systems

• Permeability enhancement through the formation of a subsurface breccia body allows for focussed fluid flow

Page 13: Brechas PPT

Polymict tourmaline breccia, Sierra Gorda, Chile

• Angular clasts -implies limited clast transport & abrasion

• Juvenile clasts (?)

• Variable amounts of clastic matrix

• High temperature alteration rinds (clasts) and altered matrix

• Open space fill textures

Characteristic Features

Tourmaline-chalcopyrite cement, Rio Blanco

Page 14: Brechas PPT

Chalcopyrite-cemented monzonite clast breccia, Mt Polley, British Columbia

Characteristic Features

• Locally abundant hydrothermal cement (biotite, tourmaline, quartz, sulfides, etc)

Page 15: Brechas PPT

Magmatic-hydrothermal breccia

Tourmaline-quartz cemented, sericite-altered, diorite clast breccia

Page 16: Brechas PPT

Sulfide Mineralisation Styles

Altered clasts

vein cement

Tourmaline breccia, Río Blanco, Chile

• Hydrothermal cement

• Alteration of rock flour

• Alteration of clasts

• Cross-cutting veins

Page 17: Brechas PPT

Magmatic-hydrothermal breccia

Page 18: Brechas PPT

tm bx

tm vein halo

Sierra Gorda tourmaline breccia, Chile

Vein Halo

Page 19: Brechas PPT

tm vein halo

tourmaline breccia, Peru

Vein Halo

Page 20: Brechas PPT

• Aspect ratios of clasts can attain 1:30

• In many cases, tabular shape does not relate to closely spaced jointing or bedding

• Orientations change from sub-vertical on pipe margins to sub-horizontal in the central region

Tabular clasts

Providencia cp-tourmaline breccia, Inca de Oro, Chile

Tourmaline-quartz breccia, La Zanja, Peru

Page 21: Brechas PPT

Volcanic-hydrothermal

breccia complex

Late intrusion into active

hydrothermal system

2 - 5

km

p

ale

od

ep

th

2: Volcanic-hydrothermal breccias

• Clastic matrix & milled clasts abundant

• Surficial and subsurface breccia deposits

• Bedded and massive breccia facies

• Venting of volatiles to the surface

death of a porphyry deposit

shortcut to the epithermal environment

Breccias in Hydrothermal Systems

Page 22: Brechas PPT

Modified after Lorenz, 1973

0 m

> 2500 m

Water Table

depressed

Increasing eruption

depth

‘wet’ pyroclastic eruptions

Diatremes

Common association of ‘diatremes’ with magmatic-hydrothermal ore deposits

(e.g., Kelian, Martabe, Cripple Creek)

Page 23: Brechas PPT

• Abundant fine grained altered clastic matrix (massive to stratified)

• Rounded to angular heterolithic clasts, typically matrix-supported

• Generally significant clast abrasion & transport (mixing of wallrock clasts – transport upwards and downwards)

• Surficial pyroclastic base surge deposits

Subsurface polymictic sand-matrix breccia, Braden Pipe, El Teniente

Characteristics of Volcanic-Hydrothermal Breccias

Braden Pipe – surficial? bedded facies (courtesy Francisco Camus)

Page 24: Brechas PPT

• Juvenile clasts

• Mineralised and altered clasts

• Surficial-derived clasts (e.g., logs, charcoal, etc.)

• Complex facies relationships

• Limited open space little or no hydrothermal cement

Characteristic features

0.5 cm Chalcopyrite clasts, Balatoc diatreme, Acupan Au mine, Philippines

Phreatomagmatic breccia – juvenile quartz-phyric rhyolite

clasts, Kelian, Indonesia

Page 25: Brechas PPT

Volcaniclastic sst / slt

150 m

QFP intrusion Diatreme breccia

Base surge deposits

Kelian, Indonesia

Page 26: Brechas PPT

• Phreatic steam explosions caused by

decompression of hydrothermal fluid

• No direct magmatic involvement

epithermal gold deposition

3: Hydrothermal breccias – phreatic

• Phreatic breccias: in-situ subsurface and surficial brecciation – matrix can be abundant (jig-saw fit to rotated to chaotic textures)

Breccias in Hydrothermal Systems

Page 27: Brechas PPT

Eruption of Waimungu Geyser, 1904 (Sillitoe, 1985)

• Hydrothermal steam explosions that breach the surface will generate pyroclastic ejecta, but lack a juvenile magmatic component

• The resultant hydrothermal eruption deposits are bedded and have low aspect ratios • The deposits have a poor preservation potential

Phreatic Breccias

Page 28: Brechas PPT

Porkchop Geyser, post-eruption, 1992, Yellowstone

Phreatic Breccias

Page 29: Brechas PPT

Waiotapu Geothermal Area, New Zealand

Page 30: Brechas PPT

Phreatic Eruption Breccias

Champagne pool, Waiotapu, New Zealand

Page 31: Brechas PPT

Altered & mineralised andesite clasts, with sulfide and sulfosalt cockade banding, Mt Muro, Indonesia

Hydrothermal Breccias: Mineralised

• High to low temperature hydrothermal fluids

• Structural complexity

• Open space fill

• Multiple generations

• Gangue and ore minerals

Page 32: Brechas PPT

Hydrothermal Breccias Hydrothermal breccia, Peru

Page 33: Brechas PPT

Hydrothermal Breccias

20 cm

2 cm

Lihir, Papua New Guinea Kelian, Indonesia

Page 34: Brechas PPT

Hydrothermal Breccias

, Peru

Page 35: Brechas PPT

• Structural opening and hydrothermal

fluid pressure

• No direct magmatic involvement

epithermal deposition

3: Vein breccias

• Vein breccias: clasts within veins, from wallrocks or existing parts of vein

Breccias in Hydrothermal Systems

Page 36: Brechas PPT

Hydrothermal Breccias Vein breccia,, Peru

Page 37: Brechas PPT

Kencana, Indonesia

Page 38: Brechas PPT

Vein Breccias

What do these

textures mean?

Why are they

important?

Page 39: Brechas PPT

(Gemmell et al., 1988)

Stage I breccia – cockade texture

Stage 1b

ore

30 cm

FW

HW

Stage Ia

ore Stage Ib

ore

Page 40: Brechas PPT

(Gemmell et al., 1988)

Stage II breccia – cockade texture

Stage II

non-ore Stage IV

non-ore

30 cm

20 cm

20 cm

FW

HW

Stage II

non-ore Stage II

non-ore

Page 41: Brechas PPT

(Gemmell et al., 1988)

Stage III

ore FW

HW

Stage III

ore

Stage III banding – crustiform texture

Page 42: Brechas PPT

(Gemmell et al., 1988)

Stage IV

non-ore

5 cm 10 cm

FW

HW

Stage IV

non-ore

Stage IV – massive infill with vugs

Page 43: Brechas PPT

Santo Nino vein

(Gemmell,1986 & Gemmell et al., 1988)

Stage I ore

Stage II non-ore

Stage III ore

Stage IV non-ore

30 cm 20 cm 20 cm

Long Section

Page 44: Brechas PPT

Anhydrite-cemented vein breccia, Acupan gold mine, Philippines

Conclusions

• Magmatic-hydrothermal breccias have high temperature cements and alteration minerals

• Volcanic-hydrothermal breccia complexes have bedded facies and juvenile magmatic clasts

• Phreatic breccia complexes may contain bedded facies, but will always lack juvenile clasts

• Vein breccias result from structural opening and hydrothermal fluid pressure

Page 45: Brechas PPT

Pyrite-roscoelite-gold cemented heterolithic breccia, Porgera Gold Mine, Papua New Guinea (Sample courtesy of Standing, 2005)

Conclusions

• Facies and structure control fluid flow and are the keys to understanding grade distribution in

hydrothermal breccias

• Hydrothermal brecciation typically involves several fragmentation processes

• Genetic pigeonholing of breccias can be difficult, and may not be particularly helpful

Page 46: Brechas PPT

Fragmentation Processes

Non-explosive Explosive

Magma • Magma intrusion

Stoping

• Autoclastic Autobrecciation

• Gravitational collapse Dissolution

Magma withdrawal

Magma + External Water • Autoclastic

Quench fragmentation

Hydraulic fracture

Tectonic comminution, wear, abrasion,

dilation, implosion

Magma + Internal Water • magmatic

magma exsolves steam ± CO2

• magmatic-hydrothermal

magma exsolves steam + brine

Magma + External Water • phreatomagmatic

magma encounters external water

Water + External Heat • Hydrothermal (phreatic)

Flashing of water to steam due to seal failure, seismic rupture, heat input and/or mass wasting