brian mcfarland - lnec

50
Carbonation, Chlorides & Electrochemical Repair Brian M c Farland B.Eng (Hons) C.Eng M.ICE M.IEI M.ICorr MCS M c Farland Associates Limited 2 nd Transnational Workshop duratiNET The Queens University of Belfast The Queen s University of Belfast 22 nd June 2009

Upload: others

Post on 10-May-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brian McFarland - LNEC

Carbonation, Chlorides & Electrochemical Repair

Brian McFarlandB.Eng (Hons) C.Eng M.ICE M.IEI M.ICorr MCS

McFarland Associates Limited

2nd Transnational WorkshopduratiNET

The Queen’s University of BelfastThe Queen s University of Belfast22nd June 2009

Page 2: Brian McFarland - LNEC

Overview

Carbonation, Chlorides& Electrochemical Repair& Electrochemical Repair

Carbonation

Chloride Attack

Inspection & Testing

Traditional RepairTraditional Repair

Electrochemical Repair

Case HistoriesCase Histories

Page 3: Brian McFarland - LNEC

The Problem

Millions of pounds are spent every year dealing with the symptoms of corrosion

Expense Disruption Danger

Page 4: Brian McFarland - LNEC

The Cause of the Problem

Poor design Chloride attackCarbonation Freeze thawCarbonation Freeze thawASR Low coverSulphate attack Poor site practiceImpact damage ErosionCh i l tt kChemical attack

Page 5: Brian McFarland - LNEC

Carbonation

Loss o f passivated

layer

C b

y

Carbon Dioxide

Rust

Carbon Dioxide

Page 6: Brian McFarland - LNEC

Chloride attack

P a s s iv e la y e r d e s t ro y e d , fo rm a t io n o f a n a n o d e a n d s u b s e q u e n t e le c t ro c h e m ic a l p ite le c t ro c h e m ic a l p it c o r ro s io n

C h lo r id e io n s p e n e t ra tep e n e t ra te c o n c re te

C h lo r id e c o n ta m in a te d c o n c re te

Page 7: Brian McFarland - LNEC

Chloride induced corrosion pits

Page 8: Brian McFarland - LNEC

Inspection & Testing

Page 9: Brian McFarland - LNEC

Chloride threshold values

Chloride content Risk of

(% cement) corrosion

< 0 4 Negligible< 0.4 Negligible

0.4 – 1.0 Possible

1.0 – 2.0 Probable

> 2.0 Certain

Ref: Browne (1982)( )

Page 10: Brian McFarland - LNEC

Half cell potential threshold values

CSE Corrosion Condition

> -200 mV Low – 10% risk of i

0 100 200 300 500400 600 200 mV corrosion

200 to 350 mV Intermediate corrosion

0 100 200 300 400 500 600

-200 to –350 mV risk

High <90% risk of

1

2< -350 mV High - <90% risk of

corrosion2

3

< -500 mV Severe corrosionA B C D E

Page 11: Brian McFarland - LNEC

Traditional repair methods

Page 12: Brian McFarland - LNEC

BUT traditional patch repair alone does not . . . . .

Stop ongoing corrosion

Prevent further spalling

Break the repair cycle

Page 13: Brian McFarland - LNEC

Chasing the corrosion

Page 14: Brian McFarland - LNEC

BRE Digest 444

The problem … “the newly established cathodic area within the repair will drive the new anode site in the contaminated region”

How does this mechanism work? …………….

Page 15: Brian McFarland - LNEC

Chloride contaminated concrete prior to patch repair

Steel

Chloride Chloride Chloride0.8% 4.0% 0.8%

Concrete

Page 16: Brian McFarland - LNEC

Chloride contaminated concrete prior to patch repair

Chloride Chloride Chloride0.8% 4.0% 0.8%

cathode anode cathode

Page 17: Brian McFarland - LNEC

Patch repair

i i i t d ff tincipient anode effect

Chloride Repair ChlorideChloride Repair Chloride0.8% 0.8%

anode cathode anodeanode cathode anode

Page 18: Brian McFarland - LNEC

Downsides of Traditional Repair

Break out all contaminated concrete

Expensive

Noisy

Dusty

DisruptiveDisruptive

Page 19: Brian McFarland - LNEC

Electrochemical Repair

Electrochemical Repair“Fighting Fire with Fire”

Cathodic Protection

Realkalisation

Chloride Extraction

Sacrificial Anodes

Next Generation Hybrid Systems

Page 20: Brian McFarland - LNEC

Cathodic Protection

Page 21: Brian McFarland - LNEC

Realkalisation

+ve

Anode Elec tro lyte

ve

- ve

ConcreteK 2 C O 3 .K H C O 3

ConcreteO H - N a +

N a +

Reinfo rcem ent

K +

Page 22: Brian McFarland - LNEC

Chloride Extraction

Current

+ve

Anode Elec tro lyteCurrentpaths

Cl-

Cl-

+ve

- veCl-

Cl- Cl-Cl-

Cl-

O H -

Cl-

Cl-

Cl

Cl-

Conc reteCl-Cl-

Re info rcem ent

Page 23: Brian McFarland - LNEC

Hydroxide Precipitation

Proc. 7th Int. Conf. Concrete in Hot and Aggressive Environments, Vol. 2, p.477, 2003

Page 24: Brian McFarland - LNEC

Sacrificial Systems

XP for patch repairs

CC for blanket protectionfor blanket protection

LJ for jetty piles

Page 25: Brian McFarland - LNEC

All the Galvashield systems work on the same principle …

Page 26: Brian McFarland - LNEC

Oil Rig Example

Photo Courtesy of Wilson Walton

Page 27: Brian McFarland - LNEC

Hybrid Systems

• Chloride extraction type process

• Cathodic prevention type process (low maintenance)( )

• Single electrode system

Page 28: Brian McFarland - LNEC

Hybrid Application

• Install discrete alloy electrodes

• Apply specialised electrochemical treatment for 1 week

• Connect activated sacrificial anode to steel

Page 29: Brian McFarland - LNEC

Hybrid Application

Duoguard AnodesIn Drilled Holes

Temporary DC p yPower Supply

(present for ~ 1 week)

Page 30: Brian McFarland - LNEC

Monitoring options

Measure …….

CurrentCurrent

Temperature

Steel potentialSteel potential

Residual life

Manual monitoring boxg

Automated monitoring box

Page 31: Brian McFarland - LNEC

Current output can be easily monitored

Eaton Park Pavillions, Norwich: CC anodes installed April 2001:Current Density results

6 30

5

6

25

30Current Density (mAm2) Temperature (degC)

July 01

June 02 June 03

3

4

sity

(mA

/m2)

15

20

ure

(deg

C)

June 03

2

3

Cur

rent

Den

5

10

Tem

pera

t

0

1

-5

0

Dec 01Feb 03

0 100 200 300 400 500 600 700 800

Time (days)

Page 32: Brian McFarland - LNEC

Residual life can be calculated

Predicted anode life (Galvashied CC65)

0.0010

mps

0.0006

0.0008

outp

ut /

Am

0 0000

0.0002

0.0004

Cur

rent

0.00000.00 5.00 10.00 15.00 20.00 25.00 30.00

Life / Years

Page 33: Brian McFarland - LNEC

Comber Bridge

Page 34: Brian McFarland - LNEC

Comber Bridge

Page 35: Brian McFarland - LNEC

Comber Bridge

Page 36: Brian McFarland - LNEC

Comber Bridge

Page 37: Brian McFarland - LNEC

Carrick Leisure Centre

Page 38: Brian McFarland - LNEC

Carrick Leisure Centre

Page 39: Brian McFarland - LNEC

Lakeland Forum

Page 40: Brian McFarland - LNEC

Lakeland Forum

Page 41: Brian McFarland - LNEC

Eglinton Church

Page 42: Brian McFarland - LNEC

Eglinton Church

Page 43: Brian McFarland - LNEC

Red Arch Bridge

Page 44: Brian McFarland - LNEC

Red Arch Bridge

Page 45: Brian McFarland - LNEC

Red Arch Bridge

Page 46: Brian McFarland - LNEC

Ballylumford Jetty

Page 47: Brian McFarland - LNEC

Ballylumford Jetty

Page 48: Brian McFarland - LNEC

Beatties Bridge

Page 49: Brian McFarland - LNEC

Beatties Bridge

Page 50: Brian McFarland - LNEC

Conclusions

Carbonation & Chloride Attack are the main problems encountered

Traditional Repair alone rarely deals with the source of the problem

Electrochemical Repair treats “Fire with Fire” and deals with the source of the problem – reinforcement corrosion

Realkalisation & Chloride Extraction are time consuming and costly

Cathodic Protection requires a power source and monitoring and is prone to breaking down vandalism and failure of the anodesto breaking down, vandalism and failure of the anodes

Sacrificial Anodes are passive

H b id S l ti i i th b fit f CP CE d SA ith t thHybrid Solutions maximise the benefits of CP, CE and SAs without the downsides