bridge lrfd theory deep foundations

Upload: ipman99

Post on 04-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    1/172

    LRFD Theory forGeotechnical Design

    Topic 3 Part A

    Deep Foundations

    Session 3

    LRFD for Highway Bridge Substructures

    and Earth Retaining Structures

    Course No. 130082A

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    2/172

    A. State the performance limits thatshould be evaluated when designinga deep foundation

    B. Be able to select a deep foundationtype

    C. Be able to select the appropriateresistance factor for eachperformance limit evaluated

    Learning Outcomes

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    3/172

    Deep Foundation

    Performance Limits

    A

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    4/172

    Start F.1 F.2 F.3 F.4 F.5

    F.6 F.7 F.8 F.9 F.10

    D.1

    F.11

    D.2

    F.12

    F.13

    F.14

    F.15

    F.16

    F.17

    F.18D.3D.4End

    Detailed Flow ChartRM page 3.3.6

    1. Decide deep foundation type2. Select resistance factor

    3. Compute resistances4. Layout foundation group and

    analyze at the strength limit state5. Check the service limit state

    Deep Foundation DesignProcess

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    5/172

    Structuralresistance

    Axial geotechnicalresistance

    Driven resistance

    Structuralresistance

    Axial geotechnicalresistance

    Driven Piles Drilled Shafts

    Strength Limit State Checks

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    6/172

    Structural Axial Failure

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    7/172

    Structural Flexure Failure

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    8/172

    Structural Shear Failure

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    9/172

    Axial Geotechnical Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    10/172

    Pile damage

    Driven Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    11/172

    Driven Performance Limit

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    12/172

    Driven Performance Limit

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    13/172

    Global StabilityVerticalDisplacement

    Horizontal

    Displacement

    Driven Piles Drilled Shafts

    Global StabilityVerticalDisplacement

    Horizontal

    Displacement

    Service Limit State Checks

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    14/172

    Global Stability

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    15/172

    x

    z

    Displacement

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    16/172

    Same

    Determining Resistance

    Determining Deflection

    Different

    Comparison of load and resistance

    Specific separation of resistance anddeflection

    LRFD Differences from ASD

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    17/172

    Deep foundation type

    selectionMethod of support

    Bearing material depthLoad type, direction and magnitude

    Constructability

    Cost

    B

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    18/172

    Deep Foundation Material

    Driven X X X X X X X

    Drilled or Bored -- X -- X X -- X

    Jacked / Special X -- -- X X -- X

    Pres

    tresse

    dC

    oncre

    te

    Pos

    t-tension

    Cocnre

    te

    Pre-cast

    Concre

    te

    Cast-in-p

    lace

    Concre

    te

    Stee

    l

    Woo

    d

    Spec

    ialty

    /Compos

    ites

    Drilled Shafts

    Driven Piles

    Deep Foundation Types

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    19/172

    End Bearing Side Friction Combined

    Method of Support

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    20/172

    Driven LowDisplacement Piles

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    21/172

    Driven HighDisplacement Piles

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    22/172

    Drilled Shafts

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    23/172

    Depth to Bearing/ Scour

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    24/172

    Permanent/ Transient/ Cyclic

    Horizontal or Vertical

    Load Type and Direction

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    25/172

    Wood is better for transientresistance than permanent

    Steel pile better cyclic resistance

    High horizontal loads better resistedby stiffer piles or shafts

    Load Type and Direction

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    26/172

    Deep foundationtype

    Typical range ofnominal (ultimate)resistance (kips)

    Typicallength (feet)

    Timber pile 75 200 20 40

    Concrete pile 200 2,000 20 150

    Steel H-pile 200 1,000 20 160

    Pipe pile 175 2,500 20 100

    Drilled shaft 750 10,000 20 160

    Load Magnitude

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    27/172

    Obstructions/ Rock

    Use low displacement

    steel piles-or-Drilled shafts

    Constructability

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    28/172

    Equipment access

    Low headroom requires pile splicingEquipment size a function of pile/shaft size

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    29/172

    Wrap Up

    1. Decide deep foundation type

    2. Select resistance factor3. Compute resistances

    4. Layout foundation group and analyzeat the strength limit state

    5. Check the service limit state

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    30/172

    Selection of

    Resistance factorsStrength limit state

    Structural Resistance

    Geotechnical Resistance

    Driven Resistance (piles only)

    Service limit state

    Resistance factor = 1.0(except global stability)

    C

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    31/172

    Axial compression

    Combined axial and flexure

    Shear

    LRFD

    Specifications

    Concrete Section 5

    Steel Section 6

    Wood Section 8

    Methods for determiningstructural resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    32/172

    Concrete (5.5.4.2.1)Axial Comp. = 0.75Flexure = 0.9

    Shear = 0.9

    Steel (6.5.4.2)Axial = 0.5-0.6Combined

    Axial= 0.7-0.8Flexure = 1.0Shear = 1.0

    Timber (8.5.2.2)Compression = 0.9Tension = 0.8Flexure = 0.85

    Shear = 0.75

    LRFD

    Specifications

    Structural resistance factors

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    33/172

    Field methods

    Static load test

    Dynamic load test (PDA) Driving Formulae

    Static analysis methods

    Determining GeotechnicalResistance of Piles

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    34/172

    Determining GeotechnicalResistance of Piles

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    35/172

    Load

    Settlemen

    t

    Pile top settlement

    Static Load Test

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    36/172

    Dynamic Load Test (PDA)

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    37/172

    Driving Formulas

    Geotechnical Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    38/172

    Geotechnical ResistanceFactors for Piles

    Method Site Variability

    Static LoadTest

    Low 0.8 0.9

    Medium 0.7 0.9

    High 0.55 0.8

    AASHTO Table 10.5.5.2.2-2

    Site Variability Defined in NCHRP

    Report 507 Range of Values of Resistance

    Factors Depends on Number ofStatic Load Tests

    Geotechnical Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    39/172

    Geotechnical ResistanceFactors for Piles

    Method Dynamic Test w/Signal Matching (e.g.,PDA + CAPWAP)

    0.65

    AASHTO Table 10.5.5.2.2-1 & 3

    Test 1% to 50% of ProductionPiles, Depending on SiteVariability and Number of Piles

    Driven Site Variability Defined in NCHRP

    Report 507

    Geotechnical Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    40/172

    Geotechnical ResistanceFactors for Piles

    Method

    Wave Equation only 0.4

    FHWA-Modified Gates 0.4

    ENR 0.1

    AASHTO Table 10.5.5.2.2-1

    Geotechnical Safety

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    41/172

    Geotechnical SafetyFactors for Piles

    Basis for Design and Typeof Construction Control

    Increasing Design/Construction Control

    Subsurface Exploration

    Static Calculation

    Dynamic Formula

    Wave Equation

    CAPWAPAnalysis

    Static Load Test

    Factor of Safety (FS) 3.50

    X

    X

    X

    X

    X

    X

    X

    X

    1.90

    X

    X

    X

    X

    2.00

    X

    X

    X

    X

    2.25

    X

    X

    X

    2.75

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    42/172

    Computation of StaticGeotechnical Resistance

    AASHTO10.7.3.7.5-2

    RP

    RS

    RR= Rn

    Rn = qpRp + qsRs

    RP = AP qP

    RS = AS qs

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    43/172

    Static Analysis Methods

    a method

    b methodl method

    Nordlund -Thurman

    method

    SPT-method

    CPT-method

    a method

    b methodSide friction inRock

    Tip Resistance in

    Rock

    Driven Piles Drilled Shafts

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    44/172

    Pile Group ResistanceStatic Geotechnical Resistance

    Take lesser of

    Geotechnical Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    45/172

    Geotechnical ResistanceFactors Pile Static

    Analysis MethodsMethod Comp Ten

    - Method 0.35 0.25

    - Method 0.25 0.20

    - Method 0.40 0.30

    Nordlund-Thurman 0.45 0.35

    SPT 0.30 0.25

    CPT 0.50 0.40

    Group 0.60 0.50

    AASHTO Table 10.5.5.2.2-1

    Driven Pile Time

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    46/172

    Driven Pile TimeDependant Effects

    Setup Relaxation

    RP

    RS

    RP

    RS

    RP

    RS

    RP

    RS

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    47/172

    Side Resistance

    Tip Resistance

    Total Resistance

    A

    B

    CD

    RP

    RS

    RR= Rn = qpRp + qsRs

    Displacement

    Resistan

    ce

    Drilled Shaft Resistance

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    48/172

    For cohesivesoils useequivalent pier

    approach

    For cohesionlesssoils, use groupefficiency factorapproach

    Drilled Shaft Group Resistance

    Rn group = x Rn single

    where: = 0. 65 at c-c spacingof 2.5 diameters = 1.0 at c-c spacing of

    6 diameters

    G t h i l R i t F t

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    49/172

    Geotechnical Resistance FactorsDrilled Shafts

    Method Comp Ten

    Shafts in Clay

    - Method (side) 0.45 0.35

    Total stress (tip) 0.40 --Shafts in Sand

    - Method (side) 0.55 0.45

    ONeill & Reese (tip) 0.50 --Group (sand or clay) 0.55 0.45

    AASHTO Table 10.5.5.2.3-1

    Geotechnical Resistance Facto s

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    50/172

    Geotechnical Resistance FactorsDrilled Shafts

    Method Comp Ten

    Shafts in Interm. Geomatls (IGMs)

    ONeill & Reese (side) 0.60

    ONeill & Reese (tip) 0.55 --Shafts in Rock

    Side (H&K, O&R) 0.55 0.40

    Side (C&K) 0.50 0.40Tip (CGS, PMT, O&R) 0.50 --

    Load Test (all matls)

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    51/172

    AxialGeotechnicalResistance of aDrilled Shaft in

    Clay

    ReferenceManual3.3.7.5

    Example 9

    50

    2.5

    Stiff Clay

    Su = 1500 psf

    E = 200 ksf = 125 pcf

    e50 = 0.007

    Drilled Shaft

    fc = 4 ksi

    Ec = 3600 ksi

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    52/172

    Determine Unit

    Side Resistance

    qs = Su

    To find a, checkSu/pa = 1.5 / 2.12Su/pa = 0.7 < 1.5

    So

    = 0.55

    qs = 0.55 x 1500 psf

    qs = 0.825 ksf

    50

    2.5

    Stiff Clay

    Su = 1500 psf

    E = 200 ksf = 125 pcf

    e50 = 0.007

    Drilled Shaft

    fc = 4 ksi

    Ec = 3600 ksi

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    53/172

    Determine ExclusionZones

    Per AASHTO 10.8.3.5.1bTop 5' non contributingBottom 1 diameter (2.5')

    non contributing

    Ls= 50 5- 2.5 = 42.5

    2.5

    50

    2.5

    5

    42.5

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    54/172

    As = D LsAs = (2.5)(42.5)

    As = 334 ft2

    Rs = qs AsRs = (0.825 ksf)(334 ft

    2)

    Rs = 275 kips

    2.5

    50

    Rs=275kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    55/172

    Point Resistance

    qp = Nc Su

    Nc = 6(1 + 0.2 (Z/D)) < 9Nc = 6(1 + 0.2 (50/2.5))Nc = 30not less than 9 thus

    Nc = 9

    qp = 9 (1.5 ksf)q

    p

    = 13.5 ksf 2.5

    50

    Rs=275kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    56/172

    Point Resistance

    Rp = qp Ap

    Ap = D2/4

    Ap = (2.5)2/4

    Ap = 4.9 ft2

    Rp = 13.5 ksf (4.9 ft2)

    Rp = 66 kips

    Rs=275kips

    Rp = 66 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    57/172

    Combining Side andPoint Resistance

    RR= qs Rs + qp Rp

    qs = 0.45

    qps = 0.4

    RR= 0.45 (275) + 0.4 (66)RR= 150 kips

    Rs

    =275kips

    Rp = 66 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    58/172

    Combining Side andPoint Resistance

    1.0 2.0

    1.0

    Dzt/ D (%)

    Rsd

    /Rs

    0 5.0 10.0Dz

    t/ D (%)

    1.0

    Rpd

    /Rp

    Dzt/ D (%)

    00

    0

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    59/172

    Check Relative Stiffness

    SR

    = (Z/D) (Esoil

    /Eshaft

    ) < 0.01

    SR= (50/2.5) (1.39 ksi

    l/3600 ksi)

    SR = 0.008 < 0.01

    If

    Shaft can be considered rigid

    Shaft can be considered rigid

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    60/172

    0

    50100

    150

    200

    250

    300

    350

    0 0.5 1 1.5 2

    Displacement (in)

    Develo

    ped

    Resistance

    (kips)

    Developed Side Resistance Developed Base Resistance

    Developed Nominal Resistance

    Rs = 256 kips

    RP

    = 38 kips

    0.3

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    61/172

    RR= qs Rs + qp RpRR= 0.45 (256) + 0.4 (38)

    RR= 131 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    62/172

    Driven Resistance

    Drivehead

    Ground

    Surface

    Ram

    Cushion

    Soft Layer

    Dense

    Layer

    (a) (b) (c)Permanent Set

    (d)

    Pile

    elastic

    elastic

    vo

    c

    c

    cc

    CompressiveForce Pulse

    (Incident)

    Compressive

    Force Pulse

    (Attenuated)

    Compressive

    Force Pulse

    Tensile or

    Compressive

    Force Pulse

    (Reflected)

    Comp Str

    k i

    Tens Str

    k i

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    63/172

    Wave

    EquationResults

    ksi

    30

    20

    10

    Ult Cap

    200

    400

    600

    800

    kips

    0 160 320 480 Blows/ft

    4.0

    8.0

    12.0

    16.0

    ft

    Stroke

    ksi

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    64/172

    Concrete piles, = 1.00

    AASHTOArticle 5.5.4.2.1

    Steel piles, = 1.00AASHTOArticle 6.5.4.2

    Timber piles, = 1.15

    AASHTOArticle 8.5.2.2

    Driven Resistance Factors

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    65/172

    Participant Workbook

    Page 3.3A.22

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    66/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    67/172

    Method Qn

    (kips)

    Qr(kips)

    # ofPiles

    a-method 0.4 550 220 17

    PDA on 5% 0.65 550

    Gates Formula 0.4 550

    Structural Resistance 0.6 775 8465

    17220

    11358

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    68/172

    Comparison to ASDService Load = 2794 kips

    Method FSQn

    (kips)

    Qr(kips)

    # ofPiles

    a-method 3.5 550 15718

    (17)

    PDA on 5% 2.25 550 24412

    (11)

    Gates Formula 3.5 550 157 18(17)

    Structural Resistance3

    (0.33fy)775 256

    11(8)

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    69/172

    Wrap Up

    1. Decide deep foundation type

    2. Select resistance factor

    3. Compute resistances

    4. Layout foundation group and analyze atthe strength limit state

    5. Check the service limit state

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    70/172

    Participant Workbook

    Page 3.3A.25

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    71/172

    1. Geotechnical resistance

    2. Structural resistance3. Driven resistance

    1. Horizontal deflection2. Vertical deflection (settlement)

    3. Global stability

    Exercise 1: List the three strength limitstate checks for driven piles

    Exercise 2: List the three service limit

    state checks for drilled shafts

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    72/172

    Exercise 3: Match thedeep foundation type to

    the condition.

    Condition1) Deep granular material

    2) Loose random filloverlying rock3) Large horizontal loads

    TypeA)Steel H-Pile

    B) Closed endpipe

    C) Large diameterdrilled shaft

    A

    B

    C

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    73/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    74/172

    A. State the performance limits thatshould be evaluated when designinga deep foundation

    B. Be able to select a deep foundationtype

    C. Be able to select the appropriate

    resistance factor for eachperformance limit evaluated

    Learning Outcomes

    Session 3

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    75/172

    LRFD Theory for

    Geotechnical Design

    Topic 3 Part B

    Deep Foundations

    Session 3

    LRFD for Highway Bridge Substructures

    and Earth Retaining Structures

    Course No. 130082A

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    76/172

    D. Apply the rigid cap method toevaluate the strength limit state

    checks

    Learning Outcome

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    77/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    78/172

    X

    Y

    Z

    Centroid ofPile group

    Rigid Cap Model

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    79/172

    X

    Y

    Z

    Mx

    MyFz

    -xi yi

    Pi

    n

    1i

    2

    i

    iy

    n

    1i

    2

    i

    ixzi

    x

    xM

    y

    yM

    n

    FP

    Distribution of Axial Loads

    Distribution of

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    80/172

    X

    Y

    Z

    FxHi

    Distribution ofHorizontal Loads

    i l

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    81/172

    Ht

    Qt

    Mty

    P

    y

    y

    PropertiesA, E, I

    Horizontal Response

    C d l

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    82/172

    P-y Curve development

    Typical requiredsoil parameters

    Su

    f

    k

    50

    k coefficient of variation of subgrade reaction

    50 - strain at 50% of ultimate strength

    l f i l l

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    83/172

    10.1 k

    1740 k8000 in-k

    Depth,

    ft

    50

    40

    30

    20

    10

    -0.2 0 0.2 0.4 0.6 0.8 0 20 40 60 80 -60 -40 -20 0 20

    Deflection,

    in.Moment,

    in. -kx102Shear,

    k

    0.84 8640

    65.5

    P-y Results for Single Element

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    84/172

    Pil H d Fi it

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    85/172

    xx

    Service Limit State

    Moment Moment

    Strength Limit State

    Pile Head Fixity

    G Eff t

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    86/172

    Fx

    H1H2

    Group Effects

    P I t ti Eff t

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    87/172

    P

    yPm * P

    P

    P-y Interaction Effects

    O t t f lti l l d

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    88/172

    Output for multiple loads

    AppliedHorizontal

    Load

    ResultingDeflection

    MaximumMoment

    3.00E+01ad

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    89/172

    -2.00E+03

    -1.50E+03

    -1.00E+03

    -5.00E+02

    0.00E+000 0.5 1

    0.00E+00

    1.00E+01

    2.00E+01

    0 0.5 1HorizontalLoa

    (kip

    s)

    Deflection (in)

    Maxim

    um

    Moment(

    in-kips)

    C t P M d li

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    90/172

    Computer P-y Modeling

    Horizontal Loads,

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    91/172

    FxH1H2

    x x

    M1M2

    Horizontal Loads,Pile Moment

    Wh W A G i

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    92/172

    1. Decide deep foundation type2. Select resistance factor

    3. Compute resistances4. Layout foundation group and analyze at

    the strength limit stateCompute load effects in piles using rigid

    cap methodCompare load effects to factoredresistances for piles

    5. Check the service limit state

    Where We Are Going

    Guided Walk Through

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    93/172

    Participant Workbook

    Page 3.3B.7

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    94/172

    12-0

    4-6

    5-0

    5-0

    6-0

    15-0

    3-6

    46-6

    15-6

    23-0

    15-6

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    95/172

    18 60 1860 60 60

    18

    18

    36

    36

    36

    HP 12x53 Centroid

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    96/172

    Fz

    Fy

    Fx

    -My

    Mx

    Applied LoadsStrength V load case

    Fx

    = 38.4 kipsFy = 109.1 kipsFz = 3594.0 kips

    Mx = 3196.5 k-ftMy = -8331.9 k-ft

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    97/172

    n

    1i

    2

    i

    iy

    n

    1i

    2

    i

    ixzi

    x

    xM

    y

    yM

    n

    FP

    Example calculation, pile 9:

    Fz = 3594.0 kips Mx = 3196.5 k-ftn = 20 piles y

    i= 18 in (1.5 ft)

    xi2 = 1000 ft2 My = -8331.9 k-ft

    yi2 = 225 ft2 xi = 60 in (5 ft)

    P9

    = 243 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    98/172

    160 k

    Y

    X

    202 k 244 k 285 k 327 k

    118 k 159 k 201 k 243 k 284 k

    75 k 117 k 158 k 200 k 242 k

    32 k 74 k 116 k 157 k 199 k

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    99/172

    y

    y assumed to be 0.15

    Fy

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    100/172

    -200

    -400

    -600

    108

    6

    4

    2

    00.1 0.2

    Lo

    ad(kips)

    Max.

    Momen

    t(k-in)

    Deflection (in)

    0.1

    5

    in

    7.2 kips

    5.9 kips4.5 kips

    -340 k-in-390 k-in-450 k-in

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    101/172

    Row Pm Hy Mmax1 0.35 4.5 kips -340 k-in

    2 0.35 4.5 kips -340 k-in

    3 0.5 5.9 kips -390 k-in

    4 0.7 7.2 kips -450 k-in

    Sum of Hy forces times piles per column =(22.1 kips/column) (5 columns) = 110.5 kips

    110.5 kips close to 109.1 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    102/172

    x

    x assumed to be 0.05

    Fx

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    103/172

    -33

    -66

    -100

    2.0

    1.5

    1.0

    0.5

    00.025 0.075

    Lo

    ad(kips)

    Max.

    Momen

    t(k-in)

    Deflection (in)

    0.0

    5

    in

    2.2 kips2.0 kips1.8 kips

    -75 k-in-80 k-in-90 k-in

    2.5

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    104/172

    Column Pm Hx Mmax

    1 0.7 1.8 kips -75 k-in

    2 0.7 1.8 kips -75 k-in

    3 0.7 1.8 kips -75 k-in

    4 0.85 2.0 kips -80 k-in

    5 1.0 2.2 kips -90 k-in

    Sum of Hx forces times piles per row =(9.6 kips/row) (4 rows) = 38.4 kips

    38.4 kips = 38.4 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    105/172

    100

    200

    300

    Dep

    th(in)

    Shear (kips)-2 0 2 4 6 8

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    106/172

    For load case Strength V:

    Max. shear = 7.2 kips in y-direction(Piles 1, 2, 3, 4, 5 at the top of pile)

    Max. axial load (Pile 5) = 326 kipsMin. axial load (Pile 16) = 32 kips

    Maximum combined loading (Pile 5)Axial load = 326 kipsMoment (x-direction) = -37.5 kip-ft

    Moment (y-direction) = -7.5 kip-ft

    (no uplift)

    Where We Are Going

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    107/172

    1. Decide deep foundation type2. Select resistance factor

    3. Compute resistances4. Layout foundation group and analyze at

    the strength limit stateCompute load effects in piles using

    rigid cap methodCompare load effects to factoredresistances for piles

    5. Check the service limit state

    Where We Are Going

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    108/172

    Loose

    Silty sand

    Hard Clay

    Driven

    HP 12 x 534

    35

    >100

    f= 31o

    sat = 110 pcf

    Su = 8000 psfsat = 125 pcf

    OCR = 10

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    109/172

    Structural Resistance

    Axial compression

    As = 15.5 in2

    (after corrosion loss)Fy = 50 ksil = 0 in

    Pn

    AASHTOArticles 6.9.4.1-1, 10.7.3.12.1

    Pn = 0.66lFyAs = 0.66

    0(50)(15.5)

    Pn = 775 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    110/172

    Structural ResistanceFlexure Resistance

    zx = 74 in

    3

    zy = 32.2 in3

    Fy = 50 ksi

    Mny

    Mnx = (50 ksi)(74 in3) =Mny = (50 ksi)(32.2 in

    3) =3700 k-in1610 k-in

    y

    xMnx

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    111/172

    Structural Resistance

    Shear ResistanceD = 11.78 intw = 0.435 in

    Fy = 50 ksiC = 1.0

    Vny

    AASHTO Articles 6.10.7.2-1,6.10.7.2-2,6.10.7.3.3a

    Vp = (0.58)(50 ksi)(11.78 in)(0.435 in)

    VpC = 149(1.0) = 149 kips

    y

    x

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    112/172

    Axial Compression= 0.6 for Pr

    Combined Compression and Flexure= 0.7 for Pr, 1.0 for Mr

    Shear= 1.0 for Vr

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    113/172

    Geotechnical Resistance Axial compression

    Use the beta method fro axial resistance in sand

    and clay.

    qs = b'v and qp = Nt'v

    ForSand

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    114/172

    Sand

    0.28

    ForSand

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    115/172

    Sand

    28

    ForClay

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    116/172

    Clay

    1.5

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    117/172

    Tip resistance in clay

    qp = 9Su

    Depth

    (ft)

    Average

    'v (ksf)

    Cum.side

    friction

    (kips)

    Qp

    =q

    pA

    p

    (kips)

    TotalResistance

    (kips)0 0 0 0 0

    5 0.12 0.67 6.6 7.3

    00 500 1000 1500 2000

    Resistance (kips)AxialGeotechnical

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    118/172

    0

    20

    40

    60

    80

    100

    120

    140

    0 500 1000 1500 2000

    Depth(

    ft)

    Side Friction

    Point Resistance

    Total Resistance

    Resistance

    vs. Depth

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    119/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    120/172

    Steps to perform drivability analysis: Estimate total soil resistance and

    distribution

    Select hammer

    Model driving system and soil resistance

    Run wave equation analysis

    00 500 1000 1500 2000

    Resistance (kips)

    Estimate ResistanceDistribution

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    121/172

    0

    20

    40

    60

    80

    100

    120

    140

    Depth(

    ft)

    Side Friction

    Point Resistance

    Total Resistance

    Q = dyn Rn

    stat = 0.65Rn = 465 kips/0.65

    Rn = 715 kips

    715 kips

    Dest= 70

    EB = 10%

    20%40%

    80%

    100%

    60%

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    122/172

    Skin quake = 0.1 default per WEAP

    manual

    Skin damping = 0.2 From WEAP manual

    Toe quake = 0.1 1/120 of pile width

    Toe damping = 0.15 per FHWA NHI-05-042

    page 17-68

    Select dynamic properties of soil

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    123/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    124/172

    715 kips

    Bigger hammer (Delmag 46-13)

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    125/172

    715 kips

    58 ksi

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    126/172

    Evaluate driving stressdr= 0.9 da fy (permissible driving stress)da = 1.0

    dr= 0.9 (1.0) 50 ksidr= 45 ksi

    45 ksi < 58 ksi (driving stress exceeded)

    What is the maximum resistance that canbe developed without exceeding thepermissible driving stress?

    45 ksi

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    127/172

    550 kips

    45 ksi

    17 BPI

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    128/172

    Factored resistance limited by drivingstress (driven resistance)

    RR

    =dyn

    Rn

    dyn = 0.65RR= 0.65 (550 kips)RR = 358 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    129/172

    *AASHTO Eqn. 6.9.2.2-2

    Axial geotechnical performance ratio =326/465 = 0.7

    Axial structural performance ratio =

    326/465 = 0.7Combined axial and flexural performanceratio = 0.78*

    Driven performance ratio

    326 / 358 = 0.91Shear performance ratio =7.2 / 256 = 0.03

    00 500 1000 1500 2000

    Resistance (kips)EstimateRequired Length

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    130/172

    0

    20

    40

    60

    80

    100

    120

    140

    Depth

    (ft)

    Side Friction

    Point Resistance

    Total Resistance

    for Actual

    Factored load Q = 326 kips

    Q = stat Rnstatstat = 0.25

    Rnstat = 326 kips/0.25

    Rnstat = 1304 kips

    1304 kips

    Dest= 91

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    131/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    132/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    133/172

    Fz

    Fy

    Fx

    -My

    Mx

    Beam seat elevation

    Rock

    Loose Sand

    Applied Loads

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    134/172

    Pile 5

    Pile 16

    Rigid Cap Results

    Shear Results0.0 ft

    2.0 ft

    4.0 ft

    6.0 ft

    8.0 ft

    10.0 ft

    12.0 ft

    14.0 ft

    16.0 ft

    18.0 ft

    20.0 ft

    22.0 ft

    24.0 ft

    26.0 ft

    28.0 ft

    30.0 ft

    32.0 ft

    -7.

    59

    kips

    1.

    87

    kips

    Shear = 7.2 kipsMoment = - 37.5 k-in

    0.0 ft

    2.0 ft

    4.0 ft

    6.0 ft

    8.0 ft

    10.0 ft

    12.0 ft

    14.0 ft

    16.0 ft

    18.0 ft

    20.0 ft

    22.0 ft

    24.0 ft

    26.0 ft

    28.0 ft

    30.0 ft

    32.0 ft

    -30.

    1

    kip-ft

    15.

    3

    kip-ft

    Moment ResultsAxial Results

    0.0 ft

    2.0 ft

    4.0 ft

    6.0 ft

    8.0 ft

    10.0 ft

    12.0 ft

    14.0 ft

    16.0 ft

    18.0 ft

    20.0 ft

    22.0 ft

    24.0 ft

    26.0 ft

    28.0 ft

    30.0 ft

    32.0 ft

    -324

    kips

    -18.

    2

    kips

    Max. Axial = 327 kipsMin. Axial = 32 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    135/172

    *AASHTO Eqn 6 9 2 2-2

    Axial geotechnical performance ratio =327/465 = 0.7

    Axial structural performance ratio =327/465 = 0.7

    Combined axial and flexural performanceratio = 0.73*

    Driven performance ratio327 / 358 = 0.91

    Shear performance ratio =7.59 / 256 = 0.03

    (0.7)

    (0.78)

    (0.91)

    (0.03)

    (0.7)

    00 500 1000 1500 2000

    Resistance (kips)Accounting forScour

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    136/172

    0

    20

    40

    60

    80

    100

    120

    140

    Depth

    (ft)

    Side Friction

    Point Resistance

    Total Resistance

    Q = 358 kips

    Q = stat Rnstatstat = 0.25

    Rnstat = 326 kips/0.25

    Rnstat = 1432 kips

    RS scour= 20 kips

    1432 kips

    Dest= 96

    20 kips

    Scoured

    Accounting for Scour

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    137/172

    Accounting for Scour

    Required driven resistance during construction

    Q = 358 kips

    Q = dyn Rndr RS scourRndr = Q / dyn+ RS scourdyn = 0.65

    Rndr= 326 kips/0.65 + 20 kipsRndr= 571 kips

    00 500 1000 1500 2000

    Resistance (kips)Accounting forDowndrag

    Q

    358 ki

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    138/172

    0

    20

    40

    60

    80

    100

    120

    140

    Depth

    (ft)

    Side Friction

    Point Resistance

    Total Resistance

    Q = 358 kips +

    DD DD

    DD = 1.8

    RS scour= 20 kips

    DD = 20 kips

    Q = 394 kips

    Rnstat = 394 kips/0.25

    Rnstat = 1576 kips

    1576 kips

    Dest= 100

    20 kips

    Settling

    Accounting for Downdrag

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    139/172

    ccou g o o d agRequired driven resistance during construction

    Q = 358 kips + DD DD

    DD = 1.0

    Since resistance in downdrag zone determined bysignal matching

    Q = 358 kips + 1.0 (20 kips) = 378 kips

    Q = dyn Rndr RS downdrag

    Rndr = Q / dyn+ RS downdragdyn = 0.65

    Rndr= 378 kips/0.65 + 20 kips

    Rndr= 602 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    140/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    141/172

    00 500 1000 1500 2000

    Resistance (kips)Accounting forSet up

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    142/172

    0

    20

    40

    60

    80

    100

    120

    140

    Depth

    (ft)

    Side Friction

    Point Resistance

    Total Resistance

    R1dr= 25.6 kips

    Rndr= 963 kips

    963 kips

    Dest= 95

    Setup

    25.6 kips

    End Bearing on Hard Rock

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    143/172

    g

    Assume structural resistance is much less thangeotechnical resistance.

    Assume potential damage to pile

    RR = PnPn = 775 kips

    = 0.5 (due to potential for damage)

    RR = 0.5 (775 kips) = 388 kips

    Estimate length based on depth to rock Control driving to prevent damage

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    144/172

    Participant WorkbookPage 3.3B.29

    Given a load case with loadingdirections as depicted in the

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    145/172

    X

    Y Z

    a. Which pile will havethe highest axial load?

    b. Which pile will havethe lowest axial load?c. Which pile will be

    subject to the highest

    horizontal load?d. Which pile will be

    subject to the highestbending moments?

    directions as depicted in the

    adjacent figure:

    Mx

    My

    Fx

    Fz

    Fy

    1 2

    3 4

    5D c-c

    1

    4

    2

    2

    Learning Outcome

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    146/172

    D. Apply the rigid cap method toevaluate the strength limit state

    checks

    LRFD Th f

    Session 3

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    147/172

    LRFD Theory for

    Geotechnical DesignTopic 3 Part C

    Deep Foundations

    LRFD for Highway Bridge Substructures

    and Earth Retaining Structures

    Course No. 130082A

    Learning Outcome

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    148/172

    E. Be able to perform a rigid capanalysis of a driven pile group at

    Service Limit State

    Where We Are Going

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    149/172

    1. Decide deep foundation type2. Select resistance factor

    3. Compute resistances4. Layout foundation group and

    analyze at the strength limit state5. Check the service limit state

    Axial Response of a Single Element(Approximate method)

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    150/172

    Qtop

    L

    ztop

    zp

    Point bearing onlyztop = zp + Qtop L/ (A E)

    Constant side friction onlyztop = zp + Qtop L/ (2 A E)

    Linear increasing friction

    onlyztop = zp + Qtop L/ (3 A E)

    Pile Properties A, E

    (Approximate method)

    Axial Response of a Group

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    151/172

    Perform Rigid CapAnalysis Driven Pile

    E

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    152/172

    Analysis, Driven Pile

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    153/172

    18 60 1860 60 60

    18

    18

    36

    36

    36

    HP 12x53 Centroid

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    154/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    155/172

    128 k

    Y

    X

    159 k 191 k 222 k 254 k

    94 k 125 k 157 k 188 k 220 k

    60 k 91 k 123 k 154 k 186 k

    26 k 57 k 89 k 120 k 152 k

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    156/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    157/172

    1 2 3 4

    Fy = 86.1 kips / 5 rowsFy = 17.2 kips/row

    Assume deflection = 0.11

    Pm 0.35 0.35 0.5 0.7

    Fy = H1 + H2 + H3 + H4Fy = 3.7+3.7+4.6+5.5Fy = 17.5 kips

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    158/172

    10

    8

    6

    4

    2

    0 0.1 0.2

    Load(kips)

    Deflection (in)

    0

    .11

    in

    5.5 kips4.6 kips3.7 kips

    HP 12x53 in loose sand, fixed x-x axis

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    159/172

    QP

    Qtop

    L=3

    84

    in

    ztop

    zp

    Estimate Dzp=0.03 in @ Qp=500 k

    2900015.5

    3845000.03z top

    ztop= 0.46 in= 0.00092(Qtop)

    Assume point bearing:

    AE

    LQ

    zz

    top

    ptop

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    160/172

    Pile head displacements

    Dztop, Pile B = 0.00092 (88.8 kips)= 0.082 in.

    Dztop, Pile C = 0.00092 (190.6 kips)= 0.175 in.

    Dy for both piles is 0.11 in.

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    161/172

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    162/172

    A

    B

    CD

    Initial coordinates, A(72, -333)

    Final coordinates, A(72.40, -332.87)

    Displacement of A

    DyA= 0.40 inDzA= 0.13 in

    +y

    +z

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    163/172

    0.23 in

    0.50 in

    0.13 in

    FB Pier AnalysisDyA= 0.50 inDzA= 0.13 in

    Rigid CapDyA= 0.40 inDzA= 0.13 in

    Wrap Up

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    164/172

    1. Decide deep foundation type2. Select resistance factor

    3. Compute resistances4. Layout foundation group andanalyze at the strength limit state

    5. Check the service limit state

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    165/172

    Participant WorkbookPage 3.3C.10

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    166/172

    1 2 3 4

    Pm 0.7 0.7 0.7 0.85 1.0

    5

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    167/172

    Deflection (in.)

    Load(kips)

    0.01 0.03 0.05

    2.0

    1.6

    1.2

    0.8

    0.4

    0.0

    1.00.850.7

    HP 12x53 in loose sand, fixed y-y axis

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    168/172

    Average loads in XZ planePB = (26+60+94+128)/4 = 77 kipsPC = (152+186+220+254)/4 = 203 kips

    Horizontal ReactionsDisplacement assumed to be 0.04 inFx = 31.8 kips / 4 rows = 8 kips/row

    H1+H2+H3+H4+H5 =1.5+1.5+1.5+1.7+1.8 = 8 kips, OK

    Settlement as a Function of Qtop

    Dztop = 0 00092Qtop

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    169/172

    Pile Head DisplacementsPile B: Dztop = 0.071 in, Dx = 0.04 inPile C: Dztop = 0.187 in, Dx = 0.04 in

    Displaced GeometryzD = 3 (0.129)a = 0.02769o

    Final coordinates, A = (138.20, -332.87)

    DisplacementDxA= 0.20 in, DzA= 0.13 in

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    170/172

    0.23 in

    0.50 in

    0.13 in

    FB Pier AnalysisDxA= 0.23 inDzA= 0.13 in

    Rigid CapDxA= 0.20 inDzA= 0.13 inResults

    Learning Outcome

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    171/172

    E. Be able to perform a rigid capanalysis of a driven pile group at

    Service Limit State

  • 7/29/2019 Bridge Lrfd Theory Deep Foundations

    172/172