b.tech ii unit-3 material multiple integration

28
Unit: 3 MULTIPLE INTEGRAL Unit-III: MULTIPLE INTEGRAL Sr. No. Name of the Topic Page No. 1 Double integrals 2 2 Evaluation of Double Integral 2 3 To Calculate the integral over a given region 6 4 Change of order of integration 9 5 Change of variable 11 6 Area in Cartesian co-ordinates 13 7 Volume of solids by double integral 15 8 Volume of solids by rotation of an area (Double Integral) 16 9 Triple Integration (Volume) 18 10 Reference Book 21 RAI UNIVERSITY, AHMEDABAD 1

Upload: rai-university

Post on 25-Jul-2015

118 views

Category:

Education


2 download

TRANSCRIPT

Page 1: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Unit-III: MULTIPLE INTEGRAL

Sr. No. Name of the Topic Page No.

1 Double integrals 2

2 Evaluation of Double Integral 2

3 To Calculate the integral over a given region 6

4 Change of order of integration 9

5 Change of variable 11

6 Area in Cartesian co-ordinates 13

7 Volume of solids by double integral 15

8 Volume of solids by rotation of an area

(Double Integral)

16

9 Triple Integration (Volume) 18

10 Reference Book 21

MULTIPLE INTEGRALS

RAI UNIVERSITY, AHMEDABAD 1

Page 2: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

1.1 DOUBLE INTEGRALS:

We Know that

∫a

b

f ( x )dx= limn→ ∞δx →0

[f ( x1 ) δ x1+ f ( x2 ) δ x2+ f ( x3 ) δ x3+…+f ( xn ) δ xn ]

Let us consider a function f (x , y ) of two variables x and y defines in the finite region A of xy- plane. Divide the region A into elementary areas.

δ A1, δ A2, δ A3, …δ An

Then ∬A

f ( x , y )dA=¿ limn→ ∞δA → 0

[ f ( x1 , y1 ) δ A1+f ( x2 , y2 ) δ A2+…+ f ( xn , yn ) δ An ] ¿

2.1 Evaluation of Double Integral:

Double integral over region A may be evaluated by two successive integrations.If A is described as f 1(x)≤ y ≤ f 2(x ) [ y1 ≤ y ≤ y2 ]And a ≤ x≤ b ,

Then ∬A

f ( x , y )dA=∫a

b

∫y1

y2

f (x , y )dx dy

2.1.1 FIRST METHOD:

RAI UNIVERSITY, AHMEDABAD 2

Page 3: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

∬A

f ( x , y )dxdy=∫x1

x2 [∫y1

y2

f ( x , y )dy ]dx

f (x , y ) is first integrated with respect to y treating x as constant between the limits y1 and y2 and then the result is integrated with respect to x between the limits x1 and x2.

In the region we take an elementary area δxδy . Then integration w.r.t to y (x

keeping constant) converts small rectangle δxδy into a stripPQ ( y δx). While the integration of the result w.r.t x corresponds to the sliding to the strip, from AD to BC covering the whole regionABCD.

2.1.2 SECOND METHOD:

∬A

f ( x , y )dxdy=∫y1

y2 [∫x1

x2

f ( x , y )dx ]dy

Here f (x , y ) is first integrated w.r.t x keeping y constant between the limits x1 and x2 and then the resulting expression is integrated with respect to y between the limits y1 and y2 and vice versa.

NOTE: For constant limits, it does not matter whether we first integrate w.r.t x and then w.r.t y or vice versa.

2.2 Examples:

RAI UNIVERSITY, AHMEDABAD 3

Page 4: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Example 1: Find ∫0

1

∫0

x2

ey / x dy dx

Solution: Here, we have

∫0

1 [∫0

x2

e y/ x dy ]dx=∫0

1

[ e y / x

1/ x ]0

x2

dx

¿∫0

1 (ex−1 )1/ x

dx

¿∫0

1

x ex dx−∫0

1

x dx

¿ [ x ex−ex ]01¿−[ x2

2 ]0

1

¿

¿e1−e1+1−12

¿12

∴∫0

1

∫0

x2

e y / x dy dx=12

________ Answer

Example 2: Evaluate ∫0

∫0

e−x2(1+ y2) x dxdy

Solution: Here, we have

∫0

∫0

e−x2(1+ y2) x dxdy=∫0

dy∫0

e−x2(1+ y2) x dx

¿∫0

dy [ e−x2(1+ y2 )

−2(1+ y2) ]0∞

¿∫0

[0+ 1

2 (1+ y2 ) ]dy

¿12

[ tan−1 y ]0∞¿¿

¿12

[ tan−1 ∞−tan−10 ]

¿12 ( π

2 )

RAI UNIVERSITY, AHMEDABAD 4

Page 5: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿π4

∴∫0

∫0

e− x2(1+ y2) x dxdy=π4

________ Answer

Example 3: Sketch the area of integration and evaluate∫1

2

∫−√2− y

√2− y¿

2 x2 y2 dxdy

¿¿.

Solution: Here we have

∫1

2

∫−√2− y

√2− y¿

2x2 y2 dxdy=2

∫1

2

y2 dy ∫−√2− y

√2− y¿

x2 dx ¿

¿¿

¿4∫1

2

y2dy ∫0

√2− y¿

x2 dx¿

¿

[ ∵∫−a

a

f ( x )dx=2∫0

a

f (x ) dx

w here x2is an even function ] ¿4∫

1

2

y2dy [ x3

3 ]0

√2− y

¿ 43∫

1

2

y2 dy (2− y )32

¿ 43∫

1

0

(2− y )2 t3 /2(−dt) [ put 2− y=t∴dy=−dt ]

¿ 43 [(2−t)2( 2 t

52

5 )−(−2 ) (2−t ) 25

.27

t72+(2) 2

5.

27

.29

t92 ]

0

1

¿43 [ 2

5+2( 2

5.27 )+ (2 )( 2

5.27

.29 )]

¿43 [ 2

5+ 8

35+ 16

315 ] ¿

415 [2+ 8

7+16

63 ]RAI UNIVERSITY, AHMEDABAD 5

Page 6: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿4

15 [ 126+72+1663 ]

¿4

15 ( 21463 )

¿856945

∴∫1

2

∫−√2− y

√2− y¿

2 x2 y2 dxdy=856945

¿¿ ________ Answer

3.1 To Calculate the integral over a given region:

Sometimes the limits of integration are not given but the area of the integration is given.

If the area of integration is given then we proceed as follows:

Take a small areadx dy. The integration w.r.t x between the limits x1 , x2 keeping y fixed indicates that integration is done, alongPQ. Then the integration of result w.r.t to y corresponds to sliding the strips PQ from BC to AD covering the whole regionABCD.

We can also integrate first w.r.t ‘ y’ then w.r.t x , which ever is convenient.

Example 4: Evaluate ∬ xy dxdy over the region in the positive quadrant for

whichx+ y≤ 1.

Solution: x+ y=1 represents a line AB in the figure.

x+ y<1 represents a plane OAB.

The region for integration is OAB as shaded in the figure.

RAI UNIVERSITY, AHMEDABAD 6

Page 7: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

By drawing PQ parallel to y-axis, p lies on the line AB

i .e . ,(x+ y=1) & Q lies on x-axis. The limit for y is 1−x and 0.

Required integral =

∫0

1

dx ∫0

1−x

y dy=∫0

1

x dx [ y2

2 ]0

1− x

¿ 12∫

0

1

( xdx )(1−x)2

¿ 12∫

0

1

( x−2 x2+x3 ) dx

¿12 [ x2

2−

2 x3

3+

x4

4 ]0

1

¿ 12 [ 1

2−2

3+ 1

4 ]¿ 1

24 ________ Answer

Example 5: Evaluate ∬R

xy dxdy , where Rthe quadrant of the circle is

x2+ y2=a2 where x≥ 0∧ y ≥0.

Solution: Let the region of integration be the first quadrant of the circleOAB.

Let I=∬R

xy dx dy (x2+ y2=a2 , y=√a2−x2)

First we integrate w.r.t y and then w.r.t x.

The limits for y are 0 and √a2−x2 and for x, 0 to a.

RAI UNIVERSITY, AHMEDABAD 7

Page 8: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

I=∫0

a

x dx ∫0

√a2−x2

y dy

¿∫0

a

x dx [ y2

2 ]0

√a2−x2

¿ 12∫

0

a

x ( a2−x2 ) dx

¿12 [ a2 x2

2−

x4

4 ]0

a

¿ a4

8________ Answer

Example 6: Evaluate ∬A

x2dx dy , where A is the region in the first quadrant

bounded by the hyperbola xy=16 and the linesy=x , y=0∧x=8.

Solution: The line OP , y=x and the curve PS , xy=16 intersect atp(4,4).

The line SN ,x=8 intersects the hyperbola at S(8,2). Andy=0 is x-axis.

The area A is shown shaded.

Divide the area into two parts by PM perpendicular to OX.

For the area OMP , y varies from 0 to x, and then x varies from 0 to 4.

For the area PMNS , y varies from 0 to 16x and then x varies from 4 to 8.

∴∬A

x2dx dy=∫0

4

∫0

x

x2 dxdy+∫4

8

∫0

16x

x2 dxdy

¿∫0

4

x2dx∫0

x

dy+∫4

8

x2 dx∫0

16x

dy

¿∫0

4

x2 [ y ]¿0x

dx+∫4

8

x2 [ y ]¿0

16x dx

RAI UNIVERSITY, AHMEDABAD 8

Page 9: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿∫0

4

x3 dx+∫4

8

16 x dx

¿ [ x4

4 ]0

4

+16 [ x2

2 ]4

8

¿64+8(82−42)

¿64+384

¿448 ________ Answer

3.2 EXERCISE:

1) Find ∫0

1

∫0

y

x y e−x2

dx dy .

2) Evaluate the integral∫1

log 8

∫0

log y

ex+ y dx dy.

3) Evaluate∫0

a

∫xa

x¿

x dxdyx2+ y2

¿¿.

4) Evaluate∫0

1

∫0

1dx dy

√ (1−x2 ) (1− y2 ) .

5) Evaluate∬S

√xy− y2 dy dx, where S is a triangle with vertices (0, 0), (10,

1), and (1, 1).

6) Evaluate ∬ ( x2+ y2) dxdy over the area of the triangle whose vertices

are (0, 1), (1, 0), (1, 2).

7) Evaluate ∬ y dxdy over the area bounded by x=0 , y=x2 ,

x+ y=2 in the first quadrant.

8) Evaluate ∬ xy dxdy over the region R given by

x2+ y2−2 x=0 , y2=2 x , y=x.

4.1 CHANGE OF ORDER OF INTEGRATION:

On changing the order of integration, the limits of the integration change. To find the new limits, draw the rough sketch of the region of integration.

RAI UNIVERSITY, AHMEDABAD 9

Page 10: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Some of the problems connected with double integrals, which seem to be complicated can be made easy to handle by a change in the order of integration.

4.2 Examples:

Example 1: Evaluate ∫0

∫x

∞e− y

ydx dy .

Solution: We have, ∫0

∫x

∞e− y

ydx dy

Here the elementary strip PQ extends from y=x to y=∞ and this vertical strip slides fromx=0¿ x=∞. The shaded portion of the figure is, therefore, the region of integration.

On changing the order of integration, we first integrate w.r.t x along a horizontal strip RS which extends from x=0 tox= y. To cover the given region, we then integrate w.r.t ' y ' fromy=0¿ y=∞.

Thus

∫0

dx∫x

∞e− y

ydy=∫

0

∞e− y

ydy∫

0

y

dx

¿∫0

∞e− y

ydy [ x ]0

y¿ ¿

¿∫0

ye− y

ydy

¿∫0

e− y dy

¿ [ e− y

−1 ]0

¿−[ 1e y ]

0

RAI UNIVERSITY, AHMEDABAD 10

Page 11: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿−[ 1∞

−1]¿1 ________ Answer

Example 2: Change the order of integration in I=∫0

1

∫x2

2−x

xy dx dy and hence evaluate

the same.

Solution: We have I=∫0

1

∫x2

2−x

xy dx dy

The region of integration is shown by shaded portion in the figure bounded by parabola y=x2 , y=2−x , x=0( y−axis).The point of intersection of the parabola y=x2 and the line y=2−x is B (1,1 ).In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies from x2 to 2−x and x varies from 0 to 1.

On changing the order of integration we have taken a strip parallel to x-axis in the area OBC and second strip in the areaCBA. The limits of x in the area OBC are 0 and √ y and the limits of x in the area CBA are 0 and2− y.

So, the given integral is

¿∫0

1

y dy∫0

√y

x dx+∫1

2

y dy ∫0

2− y

x dx

¿∫0

1

y dy [ x2

2 ]0

√ y

+∫1

2

ydy [ x2

2 ]0

2− y

¿ 12∫

0

1

y2 dy+ 12∫1

2

y (2− y )2dy

¿12 [ y3

3 ]0

1

+12∫1

2

(4 y−4 y2+ y3)

¿ 16+ 1

2 [ 96−128+48−24+16−312 ]

¿ 16+ 5

24

RAI UNIVERSITY, AHMEDABAD 11

Page 12: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿ 924

¿ 38 ________ Answer

4.3 EXERCISE:

1) Change the order of the integration∫0

∫0

x

e−xy y dydx.

2) Evaluate ∫0

2

∫1

ex

dxdy by changing the order of integration.

3) Change the order of integration and evaluate∫0

2

∫√2 y

2x2 dx dy

√x 4−4 y2 .

5.1 CHANGE OF VARIABLE:

Sometimes the problems of double integration can be solved easily by

change of independent variables. Let the double integral be as∬R

f ( x , y )dxdy.

It is to be changed by the new variablesu , v.The relation of x , y with u , v are given asx=∅ (u , v ) , y=ψ (u , v ). Then the double integration is converted into.

1. ∬R

f ( x , y )dx dy=∬R'

f {ϕ (u , v ) , ψ (u , v )}|J|du dv ,

[dx dy=∂(x , y )∂(u , v )

du dv] ∬

R

f ( x , y )dx dy=∬D

f {x (u , v ) , y (u , v)}|∂(x , y)∂(u , v)|du dv

5.2 Example 1: Using x+ y=u , x− y=v , evaluate the double integral over the square R

∬R

( x2+ y2) dxdy

Integration being taken over the area bounded by the lines x+ y=2 , x+ y=0 , x− y=2 , x− y=0.

RAI UNIVERSITY, AHMEDABAD 12

Page 13: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Solution: x+ y=u ________(1)x− y=v ________(2)

On solving (1) and (2), we get

x=12

(u+v ) , y=12

(u−v )

J=∂( x , y )∂ (u , v)

=|∂ x∂ u

∂ x∂ v

∂ y∂ u

∂ y∂ v

|=|12

12

12

−12

| ¿−14−1

4 ¿−12

∬R

( x2+ y2) dxdy=∫0

2

∫0

2

[ 14(u+v)2+ 1

4(u−v)2]|∂(x , y )

∂(u , v )|du dv

¿∫0

2

∫0

212

(u2+v2 )|−12 |du dv

¿−14∫

0

2

dv∫0

2

(u2+v2 ) du

¿−14∫0

2

dv [ u3

3+u v2]

0

2

¿−14∫

0

2

dv ( 83+2v2)

¿−14∫

0

2

( 83+2 v2)dv

¿−14 [ 8

3v+ 2

3v3]

0

2

¿−14 [ 8

3(2 )+ 2

3(2 )3]

¿−14 ( 16

3+16

3 )¿−1

4 ( 323 )

RAI UNIVERSITY, AHMEDABAD 13

Page 14: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿−83 ________ Answer

5.3 EXERCISE:

1) Using the transformation x+ y=u , y=uv show that ∫0

1

∫0

1− x

e y/(x + y)dy dx=12(e−1)

2) Evaluate ∬R

(x+ y )2dx dy , where R is the parallelogram in the xy-plane with

vertices (1,0), (3,1), (2,2), (0,1), using the transformation u=x+ y and v=x−2 y.

6.1 AREA IN CARTESIAN CO-ORDINATES:

Area = ∫a

b

∫y1

y2

dxdy

6.2 Example 1: Find the area bounded by the lines

y=x+2

y=− x+2x=5

Solution: The region of integration is bounded by the lines

y=x+2 _________(1)

y=− x+2 _________(2)

x=5 _________(3)

On solving (1) and (2), we get the point A(0,2)

On solving (2) and (3), we get the point C (5 ,−3)

On solving (1) and (3), we get the point E(5,7)

We draw a strip parallel to y-axis.

On this strip the limits of y are y=− x+2 and y=x+2, and the limit of x are x=0 and x=5.

RAI UNIVERSITY, AHMEDABAD 14

Page 15: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Required area = Shaded portion of the figure

¿∬dxdy

¿∫0

5

dx ∫– x+2

x+2

dy

¿∫0

5

dx [ y ]−x+2

x+2¿ ¿

¿∫0

5

dx [ x+2−(−x+2)]

¿∫0

5

[ 2 x ] dx

¿ [ 2 x2

2 ]0

5

¿ [ x2 ]05¿¿

¿ [ 25−0 ]

¿25 Sq. units ________ Answer

Example 2: Find the area between the parabolas y2=4 ax andx2=4 ay.

Solution: We have, y2=4 ax ________ (1)

x2=4 ay ________ (2)

On solving the equations (1) and (2) we get the point of intersection (4a, 4a).

Divide the area into horizontal strips of width δy , x varies from

P ,y2

4a¿Q ,√4 ay and then y varies from O ( y=0 )¿ A( y=4 a).

∴The required area ¿∫0

4 a

dy ∫y2 /4 a

√4 ay

dx

RAI UNIVERSITY, AHMEDABAD 15

Page 16: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿∫0

4 a

dy [ x ]¿ y2

4 a

√4 ay

¿∫0

4 a

dy [√4 ay− y2

4 a ]

¿ [√4 ay3 /2

32

− y3

12 a ]0

4 a

¿ 4√a3

(4 a)3 /2−(4 a)3

12 a

¿ 163

a2 ________ Answer

7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL:

Let a surface S' be z=f (x , y )

The projection of s ' on x− y plane be S .

Take infinite number of elementary rectanglesδx δy. Erect vertical rod on the δx δy of height z .

Volume of each vertical rod ¿ Areaof the base× height

¿δx δy . z

Volume of the solid cylinder on S ¿ lim

δx → 0δy → 0

∑∑ z dx dy

¿∬ z dx dy

¿∬ f ( x , y ) dx dy

Here the integration is carried out over the area S.

RAI UNIVERSITY, AHMEDABAD 16

Page 17: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Example 1: Find the volume bounded by the xy-plane, the paraboloid 2 z=x2+ y2 and the cylinderx2+ y2=4.

Solution: Here, we have

2 z=x2+ y2⇒2 z=r2⇒ z= r2

2 (Paraboloid) ______ (1)

x2+ y2=4⇒r=2 , z=0 , (circle) ______ (2)

Volume of one vertical rod ¿ z .r dr dθ

Volume of the solid ¿∬ z r dr dθ

¿2∫0

π

dθ∫0

2r 2

2r dr

¿ 22∫

0

π

dθ∫0

2

r3 dr

¿∫0

π

dθ (r 4

4 )0

2

¿∫0

π

dθ (164 )

¿4∫0

π

¿4 [θ ]0π¿¿

¿4 π ________ Answer

8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL):

When the area enclosed by a curve y=f (x ) is revolved about an axis, a solid is generated; we have to find out the volume of solid generated.

Volume of the solid generated about x-axis ¿∫a

b

∫y1( x)

y2( x)

2 π PQ dxdy

RAI UNIVERSITY, AHMEDABAD 17

Page 18: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

Example 1: Find the volume of the torus generated by revolving the circle x2+ y2=4 about the linex=3.

Solution: x2+ y2=4

V=∬ (2 π PQ ) dxdy

¿2 π∬ (3−x ) dx dy

¿2 π∫−2

2

dx (3 y−xy )¿−√4− x2

+√4−x2

(3− x ) dy

¿2 π∫−2

+2

dx [3√4−x2−x √4−x2+3√4−x2−x √4−x2 ]

¿4 π∫−2

+2

[ 3√4−x2−x √4−x2 ] dx

¿4 π [3 x2

√4−x2+3×42

sin−1 x2+ 1

3(4−x2 )3 /2]

−2

+2

¿4 π [6×π2

+6 ×π2 ]

¿24 π2 ________ Ans.

8.2 EXERCISE:

1) Find the area of the ellipse x2

a2 + y2

b2 =1

2) Find by double integration the area of the smaller region bounded by x2+ y2=a2 andx+ y=a.

3) Find the volume bounded byxy−plane, the cylinder x2+ y2=1 and the planex+ y+z=3.

4) Evaluate the volume of the solid generated by revolving the area of the parabola y2=4 ax bounded by the latus rectum about the tangent at the vertex.

RAI UNIVERSITY, AHMEDABAD 18

Page 19: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

9.1 TRIPLE INTEGRATION (VOLUME) :

Let a function f (x , y , z) be a continuous at every point of a finite region S of three dimensional spaces. Consider n sub-spaces δ s1 , δ s2 , δ s3 , …. δ sn of the space S.If (xr , yr , zr) be a point in the rth subspace.

The limit of the sum ∑r=1

n¿

f (x r , y r , zr)δ sr ,as n →∞ ,δ sr →0¿

¿ is known as the triple integral of

f (x , y , z) over the space S.

Symbolically, it is denoted by

∭S

f (x , y , z ) dS

It can be calculated as∫x1

x2

∫y1

y2

∫z 1

z 2

f (x , y , z ) dx dy dz. First we integrate with respect to

z treating x , y as constant between the limitsz1∧z2. The resulting expression (function ofx , y) is integrated with respect to y keeping x as constant between the limits y1∧ y2. At the end we integrate the resulting expression (function of x only) within the limitsx1∧x2.

First we integrate from inner most integral w.r.t z, and then we integrate w.r.ty, and finally the outer most w.r.tx.

RAI UNIVERSITY, AHMEDABAD 19

Page 20: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

But the above order of integration is immaterial provided the limits change accordingly.

Example 1: Evaluate ∭R

( x−2 y+z ) dx dydz , w h ere R :0 ≤ x ≤10≤ y≤ x2

0 ≤ z≤ x+ y

Solution: ∭R

( x−2 y+z ) dx dydz

¿∫0

1

dx∫0

x2

dy ∫0

x+ y

(x−2 y+z)dz

¿∫0

1

dx∫0

x2

dy (xz−2 yz+ z2

2 )0

x+ y

¿∫0

1

dx∫0

x2

dy [ x ( x+ y )−2 y ( x+ y )+ (x+ y)2

2 ] ¿∫

0

1

dx∫0

x2

dy [ x2+xy−2xy−2 y2+(x+ y )2

2 ] ¿∫

0

1

dx∫0

x2

dy [ x2−xy−2 y2+ x2

2+xy+ y2

2 ] ¿∫

0

1

dx∫0

x2

dy [ 3 x2

2−3 y2

2 ] ¿ 3

2∫0

1

dx∫0

x2

( x2− y2 ) dy

¿32∫0

1

dx (x2 y−y3

3 )0

x2

¿ 32∫0

1

dx (x4− x6

3 ) ¿ 3

2 ( x5

5− x7

21 )0

1

RAI UNIVERSITY, AHMEDABAD 20

Page 21: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

¿ 32 ( 1

5− 1

21 ) ¿ 8

35 ________ Answer

Example 2: Evaluate ∫0

log 2

∫0

x

∫0

x+ y

ex+ y+z dx dy dz

Solution: I=∫0

log 2

∫0

x

ex+ y [ez ]0x+ y¿

dx dy¿

¿ ∫0

log 2

∫0

x

ex+ y(ex+ y−1)dx dy

¿ ∫0

log 2

∫0

x

[e2(x+ y)−ex + y ] dxdy

¿ ∫0

log 2

[e2 x .e2 x

2−ex . e y ]

0

x

dx

¿ ∫0

log 2

[ e4 x

2−e2x−

e2 x

2+ex]

0

x

dx

¿ [ e4 x

8−

e2x

2−

e2x

4+ex ]

0

log 2

¿ [ e4 log 2

8− e2 log 2

2− e2 log2

4+e log2]−( 1

8−1

2−1

4+1)

¿ [ e log16

8− e log 4

2− elog 4

4+e log2]−( 1

8−1

2−1

4+1)

¿( 168

− 42−4

4+2)−( 1

8−1

2− 1

4+1)

¿ 58 ________ Answer

9.2 EXERCISE:

RAI UNIVERSITY, AHMEDABAD 21

Page 22: B.tech ii unit-3 material multiple integration

Unit: 3 MULTIPLE INTEGRAL

1) Evaluate ∭R

¿ ¿( x+ y+z ) dxdy dz ,where R : 0≤ x ≤1 , 1≤ y ≤2 , 2≤ z≤ 3.

¿¿

2) Evaluate∫0

log 2

∫0

x

∫0

x+ log y

ex+ y +z dz dy dx.3) Evaluate ∭

R

( x2+ y2+z2 ) dxdy dz where R :x=0 , y=0 , z=0

x+ y+z=a ,(a>0)

10.1 REFERENCE BOOK:1) Introduction to Engineering MathematicsBy H. K. DASS. & Dr. RAMA VERMA2) www.bookspar.com/wp-content/uploads/vtu/notes/1st- 2nd-sem/m2-21/Unit-5-Multiple-Integrals.pdf3) http://www.mathstat.concordia.ca/faculty/cdavid/ EMAT212/solintegrals.pdf4) http://studentsblog100.blogspot.in/2013/02/anna- university-engineering-mathematics.html

RAI UNIVERSITY, AHMEDABAD 22