byeongbyeong--joo lee joo lee - postech cmse … › html › lecture › file ›...

29
Byeong-Joo Lee www.postech.ac.kr/~calphad Byeong Byeong-Joo Lee Joo Lee POSTECH POSTECH - MSE MSE [email protected] [email protected]

Upload: others

Post on 29-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Byeong-Joo Leewww.postech.ac.kr/~calphad

ByeongByeong--Joo LeeJoo Lee

POSTECH POSTECH -- MSEMSE

[email protected]@postech.ac.kr

Page 2: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Equipartition TheoremEquipartition Theorem

kT2

1

L+++= '''''' εεεε LL ''''''/)''''''(/ ZZZeeZ kTkT === ∑∑ +++−− εεεε

VT

ZNkTU

∂∂

=ln2

βε

∂∂

−==><Z

N

U ln

translational kinetic energy :

rotational kinetic energy :

2

21 mv

21 ωI

The average energy of a particle per independent component of motion is

Byeong-Joo Leewww.postech.ac.kr/~calphad

rotational kinetic energy :

vibrational energy :

kinetic energy for each independent component of motion has a form of

2

2

1 ωI2

212

21 kxmv +

2

ii pb

22

22

2

11 ff pbpbpb +++= Lε f

pbpbpbdpedpedpeP ff

2222

211

02

01

0

βββ −∞−∞−∞

∫∫∫= L

ii py 2/1β= ii

yb

i

pbKdyedpe iiii 2/1

0

2/1

0

22 −−∞−−∞== ∫∫ βββ

f

f

f KKKKKKZ LL 21

2/2/1

2

2/1

1

2/1 −−−− =⋅= ββββ

Page 3: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Equipartition TheoremEquipartition Theorem

kTffP

22

ln==

∂∂

−=><ββ

ε

RTu3

=

The average energy of a particle per independent component of motion is kT2

1

f

f KKKZ L21

2/−= β

※ for a monoatomic ideal gas :

Byeong-Joo Leewww.postech.ac.kr/~calphad

RTu2

=

RTu2

5=

RTqu )3( +=

※ for a monoatomic ideal gas :

for diatomic gases :

for polyatomic molecules which are soft and vibrate easily

with many frequencies, say, q:

※ for liquids and solids, the equipartition principle does not work

Page 4: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– Background Background

Byeong-Joo Leewww.postech.ac.kr/~calphad

Page 5: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– Concept Concept

3N independent (weakly interacting) but distinguishable

simple harmonic oscillators.

νε hii )(21+=

kTh

kTh

e

eP

/

2/

1 ν

ν

−= )1ln(

2

1ln / kThe

kT

hP νν −−−−=

Byeong-Joo Leewww.postech.ac.kr/~calphad

for N simple harmonic vibrators

+=

∂∂

=12

1ln/

2

kTh

V e

hhN

T

PNkTU ν

νν

average energy per vibrator 12 / −

+=><kThe

hhν

ννε

Page 6: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– number densitynumber density

Let dNv be the number of oscillators whose frequency lies

between v and v + dv

ννν dgdN )(=

where g(v), the number of vibrators per unit frequency band,

satisfy the condition

NdgdN 3)( == ∫∫ ννν

Byeong-Joo Leewww.postech.ac.kr/~calphad

NdgdN 3)( == ∫∫ ννν

The energy of N particles of the crystal

νννν

ε νν dge

hhdNU

kTh)(

12 /∫∫

+=><=

ννν

ν

ν

dge

ekThk

T

UC

kTh

kTh

V

V )()1(

)/(2/

/2

∫ −=

∂∂

=

Page 7: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– EinsteinEinstein

2/

/2

)1(

)/(3

−=

kTh

kTh

EV

E

E

e

ekThkNC ν

νν

All the 3N equivalent harmonic oscillators have the same frequency vE

ννν

ν

ν

dge

ekThk

T

UC

kTh

kTh

V

V )()1(

)/(2/

/2

∫ −=

∂∂

=

Byeong-Joo Leewww.postech.ac.kr/~calphad

k

h EE

νθ =

2/

/2

)1(3 −

=T

T

EV

E

E

e

e

TR

θθ

Defining Einstein characteristic temperature

Page 8: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– DebyeDebye

A crystal is a continuous medium supporting standing longitudinal

and transverse waves

2

3

9)( ν

νν

m

Ng =

ννννν

ν

ν

de

ekTh

Nk

C m

kTh

kTh

mV ∫ −=

2/

/232

)1(

)/)(/3(

3

ννν

ν

ν

dge

ekThk

T

UC

kTh

kTh

V

V )()1(

)/(2/

/2

∫ −=

∂∂

=

Byeong-Joo Leewww.postech.ac.kr/~calphad

νν deNk kTh∫ −

=0 2/ )1(3

kT

hx

ν=

TkT

hx mm

Θ==

ν

dxe

ex

TR

c T

x

x

V ∫Θ

−Θ=

/

0 2

4

3 )1()/(

3

3

set

Page 9: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– ComparisonComparison

Byeong-Joo Leewww.postech.ac.kr/~calphad

Page 10: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– More about DebyeMore about Debye

Behavior of dxe

ex

TR

c T

x

x

V ∫Θ

−Θ=

/

0 2

4

3 )1()/(

3

3

at T → ∞ 2

4

)1( −x

x

e

ex→ x2 RcV 3=

34

5

4

3

Θ

=T

R

cV π: Debye’s T3 law

at T → ∞ and T → 0

at T → 0

Byeong-Joo Leewww.postech.ac.kr/~calphad

53

Θ

=R

: Debye’s T lawat T → 0

Page 11: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Einstein and Debye Model for Heat Capacity Einstein and Debye Model for Heat Capacity –– More about CpMore about Cp

Tce ⋅= 'γ

for T << TF

Byeong-Joo Leewww.postech.ac.kr/~calphad

Page 12: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Effusion: Langmuir EquationEffusion: Langmuir Equation

Question: The rate at which particles strike a unit surface of a container

per unit time, given the pressure and temperature of the gas

Application:

1. Estimate of the time needed for a totally clean surface to be

covered with a monolayer of atoms or molecules,

Byeong-Joo Leewww.postech.ac.kr/~calphad

covered with a monolayer of atoms or molecules,

assuming that all the molecules that hit the surface stick to it

2. Calculate how many atoms will escape from a small hole

in a vessel per unit time, given the area of hole

(measure of vapor pressure)

3. How may particles may evaporate from a surface per unit time

Page 13: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Maxwell Distribution of Speed in Dilute GasesMaxwell Distribution of Speed in Dilute Gases

kTegZ

Nn /)()( εεε −= 2

2

2222

2

2

8)(

8r

mL

hnnn

mL

hzyx =++=ε

εεπ

πεε dh

mVdrrdg 2/1

3

2/32 )2(2

48

1)( ==

εε

επ

πεε dkTkT

Ndn

= exp1

2)( 2/1

2/32/3

2

2

=h

mkTVZ

π

Byeong-Joo Leewww.postech.ac.kr/~calphad

π kTkT

dvkT

mvv

kT

mNdvvn

=2

exp2

4)(2

2

2/3

ππ

m

kTv

32 >=<2/1

0 8)(

=>=<∫∞

m

kT

N

dvvvnv

π

2/1

* 2

=m

kTv

2

2

1mv=ε

Page 14: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Number of atoms N* that collide with side walls within a time

Effusion: Langmuir EquationEffusion: Langmuir Equation

A x - axis

τxvL =

τ

Byeong-Joo Leewww.postech.ac.kr/~calphad

Number of atoms N* that collide with side walls within a time

][2

1,,

*

ixix

i

vofyprobabilitV

NAvN τ∑=

=∑Z

ikTmV

h

V

NAvN ix

i

2

3/2

2

,

* 8exp

2

τ

Page 15: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Effusion: Langmuir EquationEffusion: Langmuir Equation

=∑Z

ikTmV

h

V

NAvN ix

i

2

3/2

2

,

* 8exp

2

kTmV

h3/2

22

8≡γ

im

kTv ix ⋅⋅

= γ2/1

,

2 2/3

2

2

=h

mkTVZ

π2/1

2

3/1 2

=h

mkTVZx

π

Byeong-Joo Leewww.postech.ac.kr/~calphad

diiim

kT

VZ

N

A

N)exp(

2

2

1 22

0

2/1*

γγτ

= ∫∞

2/1*

2

1

=mkTV

NkT

A

N

πτ

2

22

0 2

1)exp(

γγ =−∫

∞diii

2/1

*

)2( mkT

P

A

N

πτ=

Page 16: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Effusion: Langmuir EquationEffusion: Langmuir Equation

2/1

*

)2( mkT

P

A

N

πτ= 4

2/1

23

23

3

12*

10

1038.110022.6

102

101325)()sec( −

−−

−− ×

××

×

×

×=

TM

atmPcm

A

N

πτ

ττ

1523

* 101072.2 =×= P

A

NAssume 1015 atoms per cm2 in the surface monolayer.

For O2 (M=32 g/mol) at 300K and at 10-10 atm,

about 37sec is necessary for monolayer deposition.

Byeong-Joo Leewww.postech.ac.kr/~calphad

2/1)2( mkT

P

A

N equilevapor

πτ=

To keep the surface clean for 1 hour, the pressure

should be 10-12 atm.

At equilibrium, rate of evaporation is the same as

the rate of deposition.

ex) for liquid Al in vacuum at 1250 K,

mass loss due to a hole of 2 × 10-3 cm2

→ 1.7 × 10-9 g/s

→ Knudsen effusion method atm

mkTA

NP

evaporequil

7

2/1

1030.1

)2(

−×=

= πτ

Page 17: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Effusion: Langmuir EquationEffusion: Langmuir Equation

2/1)2( mkTA

NP

evaporequil π

τ=

aVNVNtvVN

tv>⇒==

)/(2

1

)/(

1

)/( 222 πσπσπσλ

Knudsen effusion method:

(valid for Knudsen flow)

Mean free path

for ideal gas

P

kT22πσ

λ =

2/1

2

1

2

1

=T

T

P

P

Byeong-Joo Leewww.postech.ac.kr/~calphad

ex) O2 gas (diameter = 3 × 10-10 m) at 300 K

at 1 atm, λ = 10-7 m

at 10-9 atm, λ = 100 m

λ / a > 1 Knudsen flow

λ / a < 0.01 Viscous flow

)(1002.1

)10103.1()103(2

300)1038.1(

)(

7

5)(

210

23

meterPP atmatm

− ×=

×××

××=

πλ

Page 18: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Diffusion in GasesDiffusion in Gases

∂∂

−=x

CDJm dx

x

CCC o

∂∂

+= **

*

6

1λ+><= xCvN

λ

∂∂

><−=−=x

CvNNJ

3

1 λ><= vD3

1

Byeong-Joo Leewww.postech.ac.kr/~calphad

∂x3 3

2/18

>=<m

kTv

π P

kT22πσ

λ =

P

T

m

kD

2

2/3

2/1

2/31

3

2

σπ

= for L<<λ

Page 19: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Flux during PVD Flux during PVD –– Evaporation (Langmuir) or Diffusion Controlled ?Evaporation (Langmuir) or Diffusion Controlled ?

cmP

kT 5

210

2==

πσλ

Consider W evaporation at 2473K onto cold substrate along 3cm path.

in vacuum

atmPequil 101023.1 −×=

smatomsmkT

P

A

NJW ⋅×=== 216

2/1

*

/1085.4)2( πτ

cm410−=λin 0.1 atm N2 gas

Byeong-Joo Leewww.postech.ac.kr/~calphad

smP

T

m

kD /1066.1

1

3

2 23

2

2/3

2/1

2/3

−×=

=σπ

cm10=λin 0.1 atm N2 gas

314 /106.3 matomkT

P

V

NC ×===

smatomsx

CDJW ⋅×=∆∆

−= 213 /102

Page 20: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Flux during PVD Flux during PVD –– GeneralGeneral

Langmuir Equation

kT

P

V

NC ==

2/1

*

)2( W

WW

mkT

P

A

NJ

πτ==

Diffusion Controlled

x

CDJW ∆∆

−=

PJ W=

Byeong-Joo Leewww.postech.ac.kr/~calphad

DxkTmkT

PJ

W

WW

/)2( 2/1 ∆+=

π

DxkT

PJ

W

WW

/∆=

In General

Page 21: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Size Distribution of Molecules in PolymerSize Distribution of Molecules in Polymer

For a polymer with NAmers (segment) : NA (Avogadro number)

X = number of segments in molecules

Nx = number of molecules with size X

N = total number of molecules

nx = fraction of molecules with size X = NX/N

Nb = number of bonding between segments

P = 고분자도 (중합도, degree of polymerization) = N /N

Byeong-Joo Leewww.postech.ac.kr/~calphad

P = 고분자도 (중합도, degree of polymerization) = Nb/NA

∑ −=X

Xb NXN )1(

AN

NP −=1

Page 22: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Size Distribution of Molecules in PolymerSize Distribution of Molecules in Polymer

∑ =X

Xn 1 ∑ =X

AX

N

NXn

∑−X

XX nn lnMaximize

With Constraints

∑ −

=X

X

Xe

en λ

λ

∑∑

=X

X

A

e

eX

N

λ

∑−

− =λ

λ ee X ∑

−− =

λλ e

Xe X

Peak Size ?

Byeong-Joo Leewww.postech.ac.kr/~calphad

∑ −−

−= λ

λ

e

ee X

1∑ −

−=

2)1( λλ

e

eXe X

λ−−=

eN

N A

1

1

AN

Ne −=− 1λ

21 )1( PPNN X

AX −= −

)1(1)1()()1/(

)( 1

1

1 PPN

N

N

Nee

ee

en X

A

X

A

XX

X −=

−=−=

−= −

−−−−−

−λλ

λλ

λ

21 )1( PXPN

XNW X

A

XX −== −

Page 23: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Entropy of Mixing in Polymer Solutions Entropy of Mixing in Polymer Solutions -- Flory Huggins TheoryFlory Huggins Theory

∑−=∆ iiM xxRS ln

n

n

n

iN

niNNZZ

N

niNZ

N

niNZniNw

−−=

−−

−−= −

+2

2

1 )1()1()(

N = N1 + nN2

Consider the number of ways for distribution of

segments of the (i+1)th n-mer

Byeong-Joo Leewww.postech.ac.kr/~calphad

∏=

=Ω2

12!

1N

i

iwN

= ∏

=

2

12!

1ln

N

i

ic wN

kS

iN

NZZN

ZN

ZniNw

−=

−=+1 )1()1()(

]ln)1()1ln()2([lnlnln 22

21

1 nnZnZNN

nNN

N

NN

k

Sc +−+−−++

−=

( )2211

22

11

22

11

lnln

lnlnlnln

φφ xxR

N

nNx

N

NxR

N

nNN

N

NNkSM

+−=

+

−=

+

−=∆

Page 24: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– Scope Scope

Ref. Ref. –– Castellan, Gilbert W., Physical Chemistry 3rd Ed., Benjamin/Cummings,Castellan, Gilbert W., Physical Chemistry 3rd Ed., Benjamin/Cummings,

New York, 1983 (Chap. 29)New York, 1983 (Chap. 29)

fdLTdSdU +=

LTTT T

fT

L

U

L

ST

L

Uf

∂∂

+

∂∂

=

∂∂

∂∂

=

Ideal rubber:

Byeong-Joo Leewww.postech.ac.kr/~calphad

T

f

T

f

L

=

∂∂

Ideal rubber:

0=

∂∂

LL

U

TL

STf

∂∂

−=

Polymer molecules themselves are not stretched, but the degree of

alignment is changed.

Position of one end of an N-mer with respect to the position of the other end

Page 25: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– Statistics of Random Walk Statistics of Random Walk

LR N

L

N

R

LR

R PPNN

NNNP

!!

!),( =

+=l

xNN R

2

1

−=l

xNN L

2

1

N

lxNlxN

NNxP

+=

2

1

!2

/!

2

/

!),(

−+

+

+=−

Nl

x

l

xNl

Nl

x

l

xNlNxP 1ln

21ln

2),(ln

Byeong-Joo Leewww.postech.ac.kr/~calphad

22 Nlx =

−=

−=

2

2

22

2

2exp

2

1

2exp),(

Nl

x

NlNl

xKNxP

π

+

+

=−NllNll

NxP 1ln2

1ln2

),(ln

2

2

11ln

−=

+Nl

x

Nl

x

Nl

x2

2

2),(ln

Nl

xNxP −=

Page 26: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– Statistics of Random Walk Statistics of Random Walk

dxdydzNl

zyxl

NdxdydzNzyxP

++−

=−

2

2222/3

2

2

)(3exp

32),,,( π

dxdydzN

zPN

yPN

xPdxdydzNzyxP

=3

,3

,3

,),,,(

2222 Rzyx =++

RN − 22/3

3

dRRdxdydz 24π=

Byeong-Joo Leewww.postech.ac.kr/~calphad

2/1N

Rl rms=

dRNl

RRl

NdRNRP

=−

2

22

2/3

2

2

3exp4

32),( ππ

2

2

24

0

2/3

22

2

3exp

324 NldR

Nl

RRl

NR =

= ∫∞

ππ

Page 27: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– Deformation & EntropyDeformation & Entropy

LLL o ∆+=

00 zz α→

oLL /=α oLL /∆=ε εα =−1

When a solid with original dimensions x0, y0, z0 is stretched in the z direction

at constant volume

02/10

1xx

α→ 02/10

1yy

α→

Byeong-Joo Leewww.postech.ac.kr/~calphad

Page 28: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– Deformation & EntropyDeformation & Entropy

dxdydzNl

zyxNldxdydzPu

++−

=−

2

2222/3

2

2

)(3exp

3

00 zz α→

When a solid with original dimensions x0, y0, z0 is stretched in the z direction

at constant volume

02/10

1xx

α→

02/10

1yy

α→

dxdydzzyx

NldxdydzP

++−

=

− 22222/3

2 )//(3exp

2 αααπ

Byeong-Joo Leewww.postech.ac.kr/~calphad

( )2

2222

2

111

11

3Nl

zyx

kS i

−+

−+

−=∆

ααα

)ln(ln usus kSSS Ω−Ω=−=∆

dxdydzNl

zyxNldxdydzPs

++−

=2

2

2

)//(3exp

3

2 αααπ

Flory, Paul J., Principles of Polymer Chemistry, Cornell University Press, Ithaca,

NY, 1960.

Page 29: ByeongByeong--Joo Lee Joo Lee - Postech CMSE … › html › lecture › file › thermo-stat...Equipartition Theorem kT P f f 2 2 ln = = ∂ ∂ < > =− β β ε u RT 3 =

Elasticity of Rubber Elasticity of Rubber –– ElasticityElasticity

−+−=∆ 32

2

2

αα

νkS

−+

−−=∆3

1

3

11

1

3

2

2

3 2αα

kS i

−=

∂∂

−=

∂∂

−=2

1

αα

να oToT L

kTS

L

T

L

STf

−=

−==

21 LLkTkTf oν

αν

σ

Byeong-Joo Leewww.postech.ac.kr/~calphad

−=

−==2 LLVVA

o

oαασ

L

dLE

L

dL

V

kT

L

dL

L

L

L

L

V

kTdL

L

L

LV

kTd o

o

o

o

=

+=

+=

+=

22

2

3

22

221

αα

νννσ

+=

+=22

22

αα

ρα

αν

cM

RT

V

kTE

c

A

M

N

V

ρν=