c-2: loss simulation

23
C-2: Loss Simulation C-2: Loss Simulation

Upload: ryann

Post on 02-Feb-2016

38 views

Category:

Documents


0 download

DESCRIPTION

C-2: Loss Simulation. Statistical Analysis in Risk Management. Two main approaches: Maximum probable loss (or MPY) if $5 million is the maximum probable loss at the _______percent level, then the firm’s losses will be less than $_____million with probability 0.95. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: C-2: Loss Simulation

C-2: Loss SimulationC-2: Loss Simulation

Page 2: C-2: Loss Simulation

Statistical Analysis in Risk Statistical Analysis in Risk ManagementManagement

– Two main approaches:

– Maximum probable loss (or MPY)

if $5 million is the maximum probable loss at the _______percent level, then the firm’s losses will be less than $_____million with probability 0.95.

Same concept as “Value at risk”

Page 3: C-2: Loss Simulation

When to Use the Normal DistributionWhen to Use the Normal Distribution– Most loss distributions are not normal

– From the __________ theorem, using the normal distribution will nevertheless be appropriate when

– Example where it might be appropriate:

Page 4: C-2: Loss Simulation

Using the Normal DistributionUsing the Normal Distribution

Important property

– If Losses are normally distributed with

– Then

Probability (Loss < ) = 0.95

Probability (Loss < ) = 0.99

Page 5: C-2: Loss Simulation

Using the Normal Distribution - An Using the Normal Distribution - An ExampleExample

– Worker compensation losses for Stallone Steel

sample mean loss per worker = $_____ sample standard deviation per worker = $20,000 number of workers = ________

– Assume total losses are normally distributed with mean = $3 million standard deviation =

– Then maximum probable loss at the 95 percent level is

$3 million + = $6.3 million

Page 6: C-2: Loss Simulation

A Limitation of the Normal DistributionA Limitation of the Normal Distribution

Applies only to aggregate losses, not _______losses

Thus, it cannot be used to analyze decisions about per occurrence deductibles and limits

Page 7: C-2: Loss Simulation

Monte Carlo SimulationMonte Carlo Simulation– Overcomes some of the shortcomings of the normal

distribution approach

– Overview:

Make assumptions about distributions for ________ and _______ of individual losses

Randomly draw from each distribution and calculate the firm’s total losses under alternative risk management strategies

Redo step two many times to obtain a distribution for total losses

Page 8: C-2: Loss Simulation

A. Total Loss ProfileA. Total Loss Profile1. E(L) forecast

a. single best estimate ……….b. variations from this number will occur, therefore …

2. Example for a large company.(next slide)mode, medianexpected = $ Pr(L) > $11,500,000 = Pr(L) > $14,000,000 =

Page 9: C-2: Loss Simulation

Unlimited Loss Distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

9 10 11 12 13 14 15 16 17 18 19

Total Losses (Millions)

Pro

bab

ilit

y

Page 10: C-2: Loss Simulation

3. Uses of Total Loss Profile

a. Evaluate and loss limits

b.

c.

d. MPL (MPY)

Page 11: C-2: Loss Simulation

B. Monte Carlo StepsB. Monte Carlo Steps1. Select frequency distribution

2. Select severity distribution

3. Draw from ________ distribution => N1 losses

4. Draw N1 severity values from severity distribution

5. Repeat steps____and ____ for 1000 or more iterations

Page 12: C-2: Loss Simulation

Iteration Number 1 2 1,000

N i 70 23 … 43

S1 $ 600 $ 94,000 $ _____

S2 $ 18,400 $ 150 $ 970 …

S10 $ _____ $ 2,600 $ 500 …

S23 $ 19,500 $ 1,350 $ 32,150 …

S43 $ 3,750 NA $182,000 …

S70 $ 54,000 NA NA

Total $ $ $

Page 13: C-2: Loss Simulation

Rank Order the Total Losses

Iteration Percentile Total Losses1 0.1 $ 143,000.100 10 1,790,000.500 50 2,280,000.700 70 ________.900 90 3,130,000.950 95 ________.1,000 100 3,970,000

Page 14: C-2: Loss Simulation

Draw LT 1,0001,000-4,999

5,000-9,999

10000-49,999

50,000-99,999

GE 100,000

Total

1 625 625 …98 ________ 2,050 _________…

251 999 4,000 _________..

730 789 789 …

980 999 4,000 5,000 40,000 50,000 10,001 110,000 Total 920,000 450,000 414,000 180,000 119,000 47,000 2,130,000

Horizontal Layering: From One Iteration

Layers for the 438th Iteration that produced 980 Severity Values

Page 15: C-2: Loss Simulation

D. Interpretation of ResultsD. Interpretation of Results

1. Look at summary statistics: mean, sigma, percentiles

2.

3.

Page 16: C-2: Loss Simulation

Within Limits At Limits

,000 X BAR Sigma X BAR Sigma

1 - 10 $ $ $ $

10 25 $ 612 $ 88 $ 2,655 $ 176

25 - 50 $ 326 $ 92 $ 2,981 $ 239

50 - 75 $ 128 $ 55 $ 3,109 $ 275

75 - 100 $ 65 $ 41 $ 3,174 $ 298

100 - 150 $ 60 $ 53 $ 3,234 $ 325

150 - 200 $ 26 $ 32 $ 3,260 $ 340

200 - 250 $ 15 $ 23 $ 3,275 $ 350

250 - 500 $ 23 $ 60 $ 3,298 $ 370

500 - 1,000 $ 9 $ 62 $ 3,307 $ 400

> 1,000 $ 1 $ 8 $ 3,307 $ 404 $

Page 17: C-2: Loss Simulation

E. Aggregates – Recap using text E. Aggregates – Recap using text

Page 18: C-2: Loss Simulation

Simulation Example - AssumptionsSimulation Example - Assumptions

– Claim frequency follows a Poisson distribution

Important property: Poisson distribution gives the probability of 0 claims, 1 claim, 2 claims, etc.

Page 19: C-2: Loss Simulation

Simulation Example - AssumptionsSimulation Example - Assumptions

– Claim severity follows a

expected value = standard deviation = note skewness

Page 20: C-2: Loss Simulation

Simulation Example - Simulation Example - AssumptionsAssumptions

Frequency Distribution with Expected Value Equal to 30

0

0.05

0.1

0.15

0.2

0.25

0 6 12

18

24

30

36

42

48

54

Number of Claims

PR

OB

AB

ILIT

Y Sample Frequency Distribution with Uncertain

Expected Value (1000 trials)

0

0.05

0.1

0.15

0.2

0.25

0 6 12

18

24

30

36

42

48

54

Number of Claims

PR

OB

AB

ILIT

Y

Sample Loss Severity Distribution(1000 trials)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.0075 0.6 1.2 1.8 2.4 3

Loss in Millions

PR

OB

AB

ILIT

Y

Page 21: C-2: Loss Simulation

Simulation Example - Alternative Simulation Example - Alternative StrategiesStrategies

Policy 1 2 3

Per Occurrence Deductible $500,000 $1,000,000 none

Per Occurrence Policy Limit $5,000,000 $5,000,000 none

Aggregate Deductible none none $6,000,000

Aggregate Policy Limit none none $10,000,000

Premium $780,000 $415,000 $165,000

Page 22: C-2: Loss Simulation

Simulation Example - ResultsSimulation Example - Results No Insurance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1. 5 3 4. 5 6 7. 5 9 10 .5 12

13 .5

Values in Millions

PR

OB

AB

ILIT

Y

$500,000 per Occurrence Retention

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1. 5 3 4. 5 6 7. 5 9 10 .5 12

13 .5

Values in Millions

PR

OB

AB

ILIT

Y

$6 Million Aggregate Annual Retention

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1. 5 3 4. 5 6 7. 5 9 10 .5 12

13 .5

Values in Millions

PR

OB

AB

ILIT

Y

$1 Million per Occurrence Retention

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 1. 5 3 4. 5 6 7. 5 9 10 .5 12

13 .5

Values in Millions

PR

OB

AB

ILIT

Y

Page 23: C-2: Loss Simulation

Simulation Example - ResultsSimulation Example - ResultsStatistic Policy 1: Policy 2: Policy 3: No

insuranceMean value of retained losses $______ $2,716 $2,925 $3,042

Standard deviation of retained losses 1,065 1,293 1,494 1,839

Maximum probable retained loss at 95% level 4,254 5,003 ______ 6,462

Maximum value of retained losses 11,325 12,125 7,899 18,898

Probability that losses exceed policy limits 1.1% 0.7% 0.1% n.a.

Probability that retained losses $6 million 99.7% ____% 99.9% 92.7%

Premium $780 $415 $165 $0

Mean total cost 3,194 3,131 3,090 3,042

Maximum probable total cost at 95% level 5,034 5,418 6,165 6,462