c t ti l ph t hcomputational photography: epsilon to coded ...raskar/talks/09nesosa/ras...raskar,...

44
Raskar, Camera Culture, MIT Media Lab C t ti l Ph t h Computational Photography: Epsilon to Coded Imaging Camera Culture Camera Culture Ramesh Raskar C C lt Camera Culture Associate Professor, MIT Media Lab http://raskar.info

Upload: others

Post on 12-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Raskar, Camera Culture, MIT Media Lab

    C t ti l Ph t hComputational Photography:Epsilon to Coded Imaging

    Camera Culture

    p g g

    Camera Culture

    Ramesh Raskar

    C C ltCamera CultureAssociate Professor, MIT Media Lab http://raskar.info

  • Tools

    for

    Visual Computing

    Shadow

    Refractive

    Reflective

    Fernald, Science [Sept 2006]

  • How can we create an entirely new class of imaging platforms

    that have an understanding of the world that far exceeds human ability

    and produce meaningful abstractions that are well ithi h h ibilit ?within human comprehensibility ?

    Ramesh Raskar http://raskar.info

  • Mitsubishi Electric Research Laboratories Raskar 2006Spatial Augmented Reality

    CurvedPlanar Non-planar Pocket-ProjObjects

    Computational IlluminationComputational Illumination

    CurvedPlanar Non planar

    SingleProjector

    ?

    Pocket ProjObjects1998 2002 20021997

    Projector

    jUser : T

    ?

    1998 2002 1999 20031998

    MultipleProjectors

    Computational Camera and PhotographyComputational Camera and Photography

  • Motion Blurred Photo

  • Sh t T diti l MURAShort Exposure

    Traditional MURAShutter

    Captured SinglePh tPhoto

    Deblurred Result

    Banding Artifacts and some spatial frequencies

    Dark d i some spatial frequencies

    are lostand noisy

  • Blurring == Convolution

    Sh Bl d

    Fourier Transform

    PSF == Sinc Function

    Sharp Photo

    Blurred Photo

    Traditional Camera: Shutter is OPEN: Box Filter

    ω

  • Sh Bl d

    Fourier Transform

    Sharp Photo

    Blurred PhotoPSF == Broadband Function

    Preserves High Spatial Frequencies

    Flutter Shutter: Shutter is OPEN and CLOSED

  • Flutter Shutter CameraFlutter Shutter CameraRaskar, Agrawal, Tumblin [Siggraph2006]

    LCD opacity switched in coded sequence

  • Traditional

    Coded Exposu

    rere

    Deblurred I

    Deblurred I ImageImage

    Image of Static Object

  • Coded Exposure Coded Aperture

    Temporal 1-D broadband code: Motion Deblurring

    Spatial 2-D broadband mask: Focus Deblurring

  • Coded Aperture CameraCoded Aperture Camera

    The aperture of a 100 mm lens is modified

    Rest of the camera is unmodifiedInsert a coded mask with chosen binary pattern

  • LED

    In Focus Photo

  • Out of Focus Photo: Open Aperture

  • Out of Focus Photo: Coded Aperture

  • Captured Blurred Photo

  • Refocused on Person

  • Raskar, Camera Culture, MIT Media Lab

    Computational Photography

    1. Epsilon Photography– Low-level Vision: Pixels– Multiphotos by bracketing (HDR, panorama)– ‘Ultimate camera’

    2. Coded Photography– Mid-Level Cues:

    • Regions, Edges, Motion, Direct/globalg , g , , g– Single/few snapshot

    • Reversible encoding of data– Additional sensors/optics/illum

    3. Essence Photography– Not mimic human eyeNot mimic human eye– Beyond single view/illum– ‘New artform’

  • Raskar, Camera Culture, MIT Media Lab

    • Ramesh Raskar and J k T bliJack Tumblin

    • Book Publishers: A K Peters

  • Less is MoreLess is More

    Blocking Light == More InformationBlocking Light == More Information

    Coding in Time Coding in Time Coding in SpaceCoding in Space

  • Larval Trematode WormLarval Trematode Worm Coded Aperture CameraCoded Aperture Camera

  • Shielding Light …Shielding Light …g gg g

    Larval Trematode WormLarval Trematode Worm Turbellarian WormTurbellarian Worm

  • Mask?

    Sensor

    MaskSensorMask

    ?

    SensorMask?

    Sensor

    Sensor

    Mask

    4D Light Field from 2D Photo:

    d h ld

    Full Resolution Digital Refocusing:

    Heterodyne Light Field Camera

    Coded Aperture Camera

  • Light Field Inside a CameraLight Field Inside a Camera

  • Light Field Inside a CameraLight Field Inside a Camera

    LensletLenslet--based Light Field camerabased Light Field camera

    [Adelson and Wang, 1992, Ng et al. 2005 ]

  • Stanford Plenoptic Camera Stanford Plenoptic Camera [Ng et al 2005][Ng et al 2005]

    Contax medium format camera Kodak 16-megapixel sensor

    4000 × 4000 pixels ÷ 292 × 292 lenses = 14 × 14 pixels per lens

    Adaptive Optics microlens array 125μ square-sided microlenses

  • Digital RefocusingDigital Refocusingg gg g

    [Ng et al 2005][Ng et al 2005]

    Can we achieve this with a Can we achieve this with a MaskMask alone?alone?Can we achieve this with a Can we achieve this with a MaskMask alone?alone?

  • Mask based Light Field CameraSensor

    MaskSensor

    [Veeraraghavan, Raskar, Agrawal, Tumblin, Mohan, Siggraph 2007 ]

  • How to Capture How to Capture 4D Light Field with g

    2D Sensor ?

    Wh t h ld b th What should be the pattern of the mask ?pattern of the mask ?

  • Mask Tile

    Cosine Mask Used

    Mask Tile

    1/f1/f0

  • Captured 2D Photo

    Encoding due to Mask

  • Sensor Slice captures entire Light Field

    fθfθ0

    fxfx0

    M d l iModulated Light Field

    Modulation Function

  • Computing 4D Light Field

    2D Sensor Photo, 1800*1800 2D Fourier Transform, 1800*1800

    2D FFT

    9*9=81 spectral copies

    Rearrange 2D tiles into 4D planes200*200*9*94D IFFT

    4D Light Field200*200*9*9

  • Full resolution 2D image of Focused Scene Parts

    Captured 2D Photo

    divide

    Image of White Lambertian Plane

  • Wavefront Sensing in Any Wavelength !

    MaskSensor

    [Veeraraghavan, Raskar, Agrawal, Tumblin, Mohan, Siggraph 2007 ]

  • Lens Flare Reduction/Enhancement using Lens Flare Reduction/Enhancement using 4D Ray Sampling4D Ray Sampling4D Ray Sampling4D Ray Sampling

    Captured Glare Glare Captured Glare Reduced

    Glare Enhanced

  • Glare = low frequency noise in 2D

    •But is high frequency noise in 4D

    •Remove via simple outlier rejection

    i

    Sensor

    j

    xu xu

  • Rays = Waves for Propagation and Interface

    Fresnel propagation Chirp (Lens) Fourier transform Fractional Fourier transform

    x2 x3 x4x1x1x0

    u2u1 u3b

    ¡ ba x0

    u4

    x2x0- x0a

    x1x0 x0- a

    b- a x0

    x3 x4-ba x0

    a

    x4

    I

  • Imaging via volume hologram (Depth-specific Imaging)

    KVH (x4=0, u4=θs/λ; x3, u3) -20

    -15

    -100.6

    0.8

    1 u4u3

    u 3 [m

    m-1

    ] -5

    0

    5

    10

    150

    0.2

    0.4

    0.6

    x3 x4L

    ZZ ½ µ ¶ ¾

    x3 [mm]

    -0.4 -0.2 0 0.2 0.4

    15

    20 -0.2

    K V H (x4; u4; x3; u3) =ZZ

    dx03dx04e¡ i 2¼(u04 x 4 ¡ u

    03 x 3 ) exp

    ½¡ i2¼̧ zf (u03 + u04)

    µ¡ u3 + u4 ¡

    µs¸

    ¶ ¾

    £ sinc½

    L¸µ

    ¡ u3 + u4 +u03 + u04

    2

    ¶ µu4 +

    u042

    ¡µs¸

    ¶ ¾sinc

    ½L¸

    µ¡ u3 + u4 ¡

    u03 + u042

    ¶ µu4 ¡

    u042

    ¡µs¸

    ¶ ¾

    K V H I (x2; u2; x1; u1)

    Derivation: h(x2; x1) = exp½

    ¡ i¼¸

    zff 2

    (x1 + x2 ¡ f µs)2¾

    sinc½

    L¸ f 2

    (x1 + x2) (x2 ¡ f µs)¾

    Parameters:0 5 ¹

    K V H (x4; u4; x3; u3)¸ = 0.5 ¹m

    µs= 30°L = 1 mm

    zf = 50 mm

  • Raskar, Camera Culture, MIT Media Lab

    Computational Photography

    Camera Culture Group Ramesh Raskar http://raskar.info

    Computational Photography1. Epsilon Photography

    – Low-level Vision: PixelsMask

    Sensor

    – Multiphotos by bracketing (HDR, panorama)– ‘Ultimate camera’

    2. Coded Photography– Mid-Level Cues:Mid Level Cues:

    • Regions, Edges, Motion, Direct/global

    • Coded Exposure– Flutter Shutter Motion Deblurring

    • Coded Aperture– Defocus

    • Optical Heterodyning• Optical Heterodyning– Lightfield or Wavefront sensing

    • Coded Glare• 6D Display u 3

    [mm

    -1]

    -20

    -15

    -10

    -5

    0

    5

    100.2

    0.4

    0.6

    0.8

    1

    p y• Femto-second Imaging• Rays = Waves x3 [mm]

    -0.4 -0.2 0 0.2 0.4

    15

    20 -0.2

    0

    1 2

    11

    2D 2D 2D

  • How can we create an entirely new class of imaging platforms

    that have an understanding of the world that far exceeds human ability

    and produce meaningful abstractions that are well ithi h h ibilit ?within human comprehensibility ?

    Ramesh Raskar http://raskar.info