c2c12 microrna

7
21 28 20171008 Chinese Journal of Tissue Engineering Research October 8, 2017 Vol.21, No.28 ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 4505 www.CRTER.org 1991 1982 2014 510515 :R318 :A :2095-4344 (2017)28-04505-07 2017-06-09 He Yu-tong, Studying for master’s degree, Department of Human Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, Guangdong Province, China Zhang Ma-hui, Master, Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou 510515, Guangdong Province, China He Yu-tong and Zhang Ma-hui contributed equally to this work. Corresponding author: Wang Le-yu, M.D., Associate professor, Department of Human Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, Guangdong Province, China C2C12microRNA ( 510515 510515) . C2C12 microRNA [J].201721(28):4505-4511. DOI:10.3969/j.issn.2095-4344.2017.28.013 ORCID: 0000-0001-9124-4817() microRNA 2024 RNA miRNA miRNA miRNA miRNA Myf5myogenin, MRF4 MyoD microRNA Flexcell-5000 C2C12 C2C12 microRNA microRNA 10%0.125 Hz C2C12 C2C12 MyoD Myogenin 0.125 Hz 10 microRNA miR-340-5p/449c-5p/1941-3p miR-500-3p/1934-5p/31-3p/378a-5p/3473b/331-3p/5097 microRNA C2C12 MAPK microRNA MAPK microRNAC2C12 MAPK RNAs (31100700)(A2015412) MicroRNA expression profile in the process of cyclic mechanical stretch promoting C2C12 myogenesis He Yu-tong , Zhang Ma-hui , Song Chen , Ye Gen-lan , Yu Lei , Qiu Xiao-zhong , Wang Le-yu ( Department of Human Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, Guangdong Province, China; Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou 510515, Guangdong Province, China) C2C12 microRNA Flexcell-5000 C2C12 (1) C2C12 (2) (1) 10 microRNA (2) microRNA MAPK C2C12

Upload: others

Post on 29-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: C2C12 microRNA

�������� � 21 � � 28 � 20171008 �

Chinese Journal of Tissue Engineering Research October 8, 2017 Vol.21, No.28

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

4505

www.CRTER.org

�������

������1991���

��� �����

�����������

����� !"#$�

%&'()

*+,-./0123�

4�1982 ������

2014 �������5

6��������78

!"#$�%&'()

9:./0;<=�>��

?@A��������

BCD�@'E�FG

!"HIJKLMNOP

E�FGFQ

510515

�����:R318

���:A

����:2095-4344

(2017)28-04505-07

�����2017-06-09

He Yu-tong, Studying for

master’s degree, Department

of Human Anatomy, Southern

Medical University,

Guangdong Provincial Key

Laboratory of Construction

and Detection in Tissue

Engineering, Guangzhou

510515, Guangdong

Province, China

Zhang Ma-hui, Master,

Department of Neurology,

Zhujiang Hospital of

Southern Medical University,

Guangzhou 510515,

Guangdong Province, China

He Yu-tong and

Zhang Ma-hui contributed

equally to this work.

Corresponding author:

Wang Le-yu, M.D., Associate

professor, Department of

Human Anatomy, Southern

Medical University,

Guangdong Provincial Key

Laboratory of Construction

and Detection in Tissue

Engineering, Guangzhou

510515, Guangdong

Province, China

��

��������C2C12�� ���microRNA�����

��

���

�����

���

����

�� �

�����

�����

�(

������������ ���������������

������� 510515�

������� !�"#$%�������� 510515)&

������������������ ���������. ��������� C2C12�� !"#$microRNA%&'

()[J].$*+,-#./�2017�21(28):4505-4511.

DOI:10.3969/j.issn.2095-4344.2017.28.013 ORCID: 0000-0001-9124-4817(���)

�������

�����

microRNA����������� 2024 !"#�� RNA�$%&'�()*+,-�./0123

miRNA 45)* 678�9: miRNA ;45.<=� 782>+?@�.<ABC45DE�

miRNAF./* 78�GH�;45DE: miRNA�IJFK&./L 78�GH2

�� ���MN.<8OPQR-STMyf5�myogenin, MRF4UMyoDVMW2$XMN.<8OY

O�DEZ&'[\]^.<]9Z_`N�abEcXdefg,-�01�MN.<8O�GHhiM

NEc�ib2jk)lmno%MN&'Mp�EcXMN.<8Odefg,-�01�ZMN&']

^.<�*+qrDsjtuvw=x�4yu�DEMN.<8Owz{|}~����fMN.<8O

wzFd01�2

��

���k�F�_`N���ib��F����_`N����?y�)����_`N���?�YO

��Z�_`N�����()���012

�����microRNA%_`NabX�012

���Flexcell-5000 ������� ¡�� C2C12 MN&'�¢£J¤���¥�¦]MNib§�D

¨©ª«©Z¬IU��I C2C12&'X­®microRNA�GH§̄ Z>°­®microRNA]^b±q²l

Y³2

������´10%µ¶�0.125 Hz��¥�4¦] C2C12MN&'·¸�¯4n� C2C12&'XMN8

O MyoD U Myogenin �GH§¹0.125 Hz ��IUZ¬Iº»¼) 10 ­® microRNA�ST½.�

miR-340-5p/449c-5p/1941-3p U¾.� miR-500-3p/1934-5p/31-3p/378a-5p/3473b/331-3p/5097§¿>°

microRNA4yDE*+�.<��Z C2C12MN&'�MNEc]^.<�$X»�,-�Ds)MAPK

qrDs§ÀÁÂGÃ�Ä¥�����lÅh4yDE microRNA �¶ÆÇdMN8O�GHÈ�jÉÇ

dMNib�$X4yÊË�qrDs�MAPKqrDs2

����

+,012+,-#2microRNA2C2C12 !��2MAPK 34562*789:;<=

����

> RNAs2 !��2+,-#

�� !�

*789:;<=(31100700)2?@AB;:;CD./<=(A2015412)

MicroRNA expression profile in the process of cyclic mechanical stretch promoting

C2C12 myogenesis

He Yu-tong

�, Zhang Ma-hui

�, Song Chen

�, Ye Gen-lan

�, Yu Lei

�, Qiu Xiao-zhong

�, Wang Le-yu

� (

�Department of

Human Anatomy, Southern Medical University, Guangdong Provincial Key Laboratory of Construction and

Detection in Tissue Engineering, Guangzhou 510515, Guangdong Province, China;

�Department of Neurology,

Zhujiang Hospital of Southern Medical University, Guangzhou 510515, Guangdong Province, China)

�������� C2C12 �� �� microRNA ���

��

����

���

��

��������

Flexcell-5000 �

� ��C2C12��

���������

���

����

��������

�����

��

(1) C2C12 ����

������ !�

"#$%&

(2) '��(�)*

+ ,��-.�

��

����

���

��

(1) ���/0��1� 213

104microRNA�"#356&

(2) 78 microRNA 9:��;4

�<=��>?@ ������

�<=AMAPKBC�DE,FG

HI���

� �

� �

��

�� C2C12

�����

Page 2: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

P.O. Box 10002, Shenyang 110180 www.CRTER.org

4506

www.CRTER.org

Abstract

BACKGROUND: In recent years, the incidence of skeletal muscle injury becomes higher and higher, but the skeletal

muscle repair ability is limited; therefore, studies on the molecular mechanism of skeletal muscle repair play a positive

role in the treatment of skeletal muscle injury.

OBJECTIVE: To explore the role of microRNA in skeletal muscle regeneration.

METHODS: C2C12 myoblasts were cyclic stretched in vitro by the Flexercell-5000 flexible device, and the appropriate

stretch condition which could induce myogenesis was selected. The microRNA expression alteration during mechanical

stretch-induced myoblast myogenesis was explored using high-throughout sequencing, and the differentially expressed

microRNAs were further studied by the bioinformatics analysis.

RESULTS AND CONCLUSION: 10% deformation, 0.125 Hz cyclic mechanical stretch could promote myoblast

proliferation and increase MyoD and Myogenin expressions in C2C12 myoblasts. MicroRNA expression profile

alteration, including the downregulated miR-500-3p/1934-5p/31-3p/378a-5p/3473b/331-3p/5097 and upregulated

miR-340-5p/449c-5p/1941-3p, were all involved in the stretch-mediated myoblast myogenesis, and the MAPK signal

pathway seemed to participate in this process. These results suggest that the low frequency of the cyclic mechanical

stretch can upregulate the expression levels of myogenic regulatory factors through the alteration of MicroRNA

expression, further inducing myogenesis, which the MAPK signal pathway may be involved in.

Subject headings: MicroRNAs; Myoblasts; Tissue Engineering

Funding: the National Natural Science Foundation of China, No. 31100700; the Guangdong Provincial Medical

Research Foundation, No. A2015412

Cite this article: He YT, Zhang MH, Song C, Ye GL, Yu L, Qiu XZ, Wang LY. MicroRNA expression profile in the

process of cyclic mechanical stretch promoting C2C12 myogenesis. Zhongguo Zuzhi Gongcheng Yanjiu.

2017;21(28):4505-4511.

0 �� Introduction

���������� ���������

������������� ��!����"

#$%��&'()*%�+,-./!�0123

456789:;�;<56=>!?@���'(�

�34A�BCDEFG�0HIJKG)*HI

L=MNOPQRSTUV�WJ�<XYZ[�N

\����]^'(��Z[_`abc�0de��

0de�fbghijk@�0de�lmR�)*�

(<nop�q)*rs%�p%it%��&uv

[1-6]

@

Fw�0HIDxZynz{|}~��Fw�0

|}�o�/!)*K|}��D�n��34�{

��~����bD����@

microRNA(miRNAs�miRs)GR�)*R���j

k,-./!|}��JOPD����56=>56

���microRNADE20�25T����RU����

+RNA

[7]

�.�G��"OP�H���GOP�H�

�_� #C¡¢@/!OP34D£¤�

microRNA�¥�+¦§9)**¨"�©Dicer��

ª1«�¬�¥�+©ev­R�v®¤�microRNA�

¯°¤�pmicroRNAJ±²³�´mRNAµ¶[

·�¸microRNAJ±²³mRNAQ¹¶º»ev"

microRNA�¼4�´mRNA½¾�microRNAJ±²³

mRNAw�¶º»¿¬�´mRNAÀ«

[8-12]

@G§ÁÂ

Ã_�ÄÅÆ�ÇzÈ®Dicerª"��G���(R

J.ÉV­ÊËÌ_`abcmicroRNA�+jk

[13]

@

���G�0delmR�Z[_�!microRNA��Í

op&�ÎÏÐ�ÑÒ56@

ÂÃxZÓÔ3P4Flexcell-5000ÕÖÑÒº�×

C2C12R�)*ØÙÚÛ®3ÜÝÞ�ßà²áÝÞâ

ã¿ØC2C12R�)*ØÙäårsæç�)*R�H

+���æxZ/!�xåèé&(Á|ê0�κ

�0ÝÞ¿ØC2C12R�)*R��&ºë�ØÙ�Î�

�56microRNAG�0de_�¿Ø���R�Z[_

jkçìSíî°@

1���������Materials and methods

1.1 �� ¥F)*0ÂÃ@

1.2 ����� ï2015�12ðñ2016�9ðGò�ó

ôä0õ¥«ö÷5ø�Çù[ÂÃøQR@

1.3 � �×C2C12R�)*úû�üýATCCþ��

��I%��I%DMEMû�GIBCOþ�@

1.4 ��

1.4.1 )*�� C2C12R�)*����

10%�� �(GIBCO)%100 U/mL��I&100 U/mL��

IDMEM(GIBCO)���_���G37 ��¥�

5%CO

2

��K��@

1.4.2 �0ÕÖ C2C12)*,1×10

5

/�nGç��©

:����6��_�¬C2C12)*G�_����24 h�

�"GEÓÔ3P4�Flexcell-5000ÝÞ��_�ØÙ

� ���0.125 Hz%0.25 Hz &0.5 Hz�É�� ·�

10%ÚÛ®ÝÞÕÖ!§�"#ØÙ1$ÝÞ�"$Ý

Þ»%�2 h�&MØÙÝÞ4 d�)*'#()1$@ºë

�GNS��K��@

1.4.3 )*ÚÛ*è )*ÚÛ�Îk+,)**è�

Â-@G10%­o%bN� ÝÞC2C12)*©.ª/

p%a012@12)*#3G1 mL PBS_�4ÕG¥

�70%56_�4 78{Z9@a012)*�PBS

Page 3: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

4507

www.CRTER.org

:;2$�)*k500 µL <p=>(100 mg/L)#3�37 �?

¢30 min"³3*è@/ºDNArs@kj=,�ABZ

þ,[(S%+G

2

/M%)/(S%+G

2

/M%+G

0

/G

1

%)]ÓÔ

[14]

@

1.4.4 qRT-PCRÂà ºë�&ÝÞ�C2C12)*&

RNAkTRIzol(Invitrogen)CëDEF³GHØÙçà@

I��IJkI��KLM(TAKARA)GABI9700PCRN

³ØÙ@»{åPCRk»PCR*èN (Stratagene

Mx3000P»PCRN�Agilent)@MyoD&MyogeninlÁ

éOP�

��

�1�lÁE³Q(ù²R@PCR�20 µLIJ¥Ñ�

�R2 µL I��SÁ�0.2 µL Taq DNAT²ª�10 µL 5×

PCR UV)�0.6 µL 5 µmol/L lÁ&WX1@IJâã

�95 7 3 min�95 7 12 s�62 7 40�60 s�40TYZØ

Ù[r@/º�H��åk/º\]YZ(2

�∆∆Ct

)�^ÓÔ�

K_�GAPDH@

1.4.5 �xåèé �xåèék�*èGºë�&

0.125 HzÝÞ�C2C12)*_`ÈmicroRNA��@GÝ

Þ4 d"�2�C2C12)*&RNAkTRIzolçà�çà

&RNAañ�bcþ�ØÙMicroRNA�HèédkT=

efgh�ij��RNAs(18�75 nt)k&RNA_�a�l

p��RNA©m³5’&3’nopq�I���cDNA@lp

DNA\rk�xåèéN(Illumina genome Analyzer

IIx)ØÙmicro-RNA�Hèé@�sß�`È��

microRNA�tSp"°ØÙPanc-1J3T3uvwv

ÓÔ�ÓÔ±xyz{wv> 2|t-test(}ZBonferron~

É)�P < 0.05�©��D`È��microRNA@

1.4.6 (Á|ê0�Î

���������dº�`ÈMicroRNA�

��H!k:3T�ãdMireap�miRanda�targetscanØ

Ù/!�Î,�����H�è±x��®�毰3

T±x�2j����H�è±x@�9��

� è � H ` � Gene Ontology ° � (http://www.

geneontology. org/)ØÙ�Tterm����"ÓÔ��H

��9"Tterm��'!k���*���J��

_��H��/w�G���H_�2y�GO�

�ÓÔ�9P-valuekBonferroni~É�"�,corrected

P-value ��0.05j��v��� ¡âãGO term{¢�

G�ß��H_�2y�GO term@Ø�xZGO¤�y�

®�2�Î�{�ß��HÙ¬BC(Á0¤�@£k

GENECODISv 2.0�ã (http://genecodis.dacya.ucm.es/)

& DIANA(http://diana.cslab.ece.ntua.gr/pathways/) º

KEGG (Kyoto Encyclopedia of Genes and Genomes)x

¤ØÙ�Î@��£kKEGGSOAP&TRANSFAC 7.0

public � ã º Network & TFBS (Transcription factor

binding sites)ØÙ�Î@

1.5 ������ )*rsBxZ)*ÚÛop�

¥{��+12BCxZ�xåèé�¦�ÒÓ0`È

microRNA@

2������Results

2.1 10%��0.125 Hz�� ���C2C12����

bN� ÝÞ�ºC2C12)*ØÙÚÛ®ÝÞ4 d"�+,

)**è)*ÚÛq�

��

�1���/ºJrs@P�

��

�2@

E§1g¨¦�0.125 HzÝÞ�C2C12)*©ïrsÛ(S

Û^G2Û))*Eywºë�r<��0.25 Hz& 0.5 Hz

ÝÞ�)*ÚÛJºë�wª£Ey`È@Eþ,(Ô�

)*rs@"��2gP�0.125 HzÝÞ�C2C12)

*rs@)*wºë�����0.25 Hz& 0.5 HzÝÞ

�)*rs@Jºë�wª`È£y�®«¢@

� 1 MyoD� Myogenin�����

Table 1 Primer sequences of MyoD and Myogenin

���� ����(5’-3’) ���(5’-3’)

MyoD GCC TGA GCA AAG TGA

ATG AG

GGT CCA GGT GCG TAG

AAG G

Myogenin TGT CTG TCA GGC TGG

GTG TG

TCG CTG GGC TGG GTG

TTA G

� 2 ���� C2C12������

Table 2 The proliferation index of C2C12 myoblasts under

different tensile frequencies

� � ��(%)

�� 31.95

0.125 Hz �� 49.03

0.25 Hz �� 30.53

0.5 Hz �� 29.78

� 1 ����� C2C12�������� ��

Figure 1 Effect of different tensile frequencies on the cell cycle of C2C12 myoblasts

���� A�����B� 0.125 Hz��C� 0.25 Hz��D� 0.5 Hz��

A

B

C

D

Page 4: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

P.O. Box 10002, Shenyang 110180 www.CRTER.org

4508

www.CRTER.org

� 3 ��microRNA�����

GO�(� 20� �)

Figure 3 GO analysis diagram of

the differentially expressed

microRNA prediction target (the first

20 entries)

2.5

2.0

1.5

1.0

0.5

0

��

���

��� 0.125 Hz ��� 0.25 Hz ��� 0.5 Hz ���

� 2 �� C2C12����� myoD� myogenin �����

Figure 2 Expression of myoD and myogenin genes in the C2C12

myoblasts in each group

��������

P < 0.05�

a

a

a

a

� 3 � 0.125 Hz��� C2C12�����microRNA��

Table 3 The differentially expressed microRNAs in the C2C12

myoblasts in the 0.125 Hz stretch group

microRNA �� Log2 ����

miR-500-3p �0.97

miR-1934-5p �1.12

miR-31-3p �1.25

miR-378a-5p �1.48

miR-3473b �1.62

miR-331-3p �1.86

miR-5097 �2.21

miR-340-5p 1.23

miR-449c-5p 1.56

miR-1941-3p 1.86

MyoD Myogenin

Page 5: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

4509

www.CRTER.org

2.2 10%���0.125 Hz�����C2C12��

myoD myogenin������ ��

��

�2���0.125 Hz

����C2C12�myoD�myogenin �����

��������(P < 0.05)�0.25 Hz����C2C12

�������������� !"��#$%�

0.5 Hz����C2C12��myoD�myogenin �

����������&'(P < 0.05)(

2.3 10%��) 0.125 Hz�� C2C12�����

microRNA������ *+�*,-./-�0.125 Hz

������C2C12�����0��12� !3

P < 0.0541105microRNA(0����17567

microRNA�89:miR-331-3p� miR-5097�miR-500-3p�

miR-3473b�miR-1934-5p�miR-31-3p�miR-378a-5p(

;135:���<7microRNA�89:miR-1941-

3p�miR-340-5p�miR-449c-5p(�

��

�3)(

2.4 ������ !"(GO!"#KEGG!") =GO

>?8@AB������������1 !

microRNAC-DE8��0FGHIJK�AL�MK

�AL�NOAL�K�ALPQR>?�S��(�T

C-DE�HUVWH�X��XY8��X1Z[

�\�1Z[�\��\P]^>?��(C-DE

_�`abcHdefW7g�hi7g��jklm

+n7g�hiop7g��q8��PQR>?���

;Prsts1u�v2Hw]^>?s��(�

��

�3)(

KEGG*x8@AB�����>?*x4129

]�;0��yz�{|}~1�*x1�T��

�hi*x������hi*x����������

cNO�y�7g*x�B���hi*x�MAPK

hi*x���`���βhi*x�����hi*x�

�������������lm*x����8@��

P < 0.05S��>?�3Prst�v2Hw]^s>?

(�

��

�4)(

3������Discussion�

������)���t ¡��¢£����

¤¥��(L¦§Y¨�de©ª«�§¬­��

�®¯

[14-15]

(°±²³´15%��©2�pµ���

{|�;10%��)1 Hz¢£#��(��1 h�¶·

23 h)©ª«���®¯

[12]

(̧ ¹º»°±²¼½�0¾

µ10%���¿����¡ÀÁ1�7Â(Ã;¸¹

ºAB���ÄC2C12���Å10%��)�����

�(0.125�0.25¡0.5 Hz)¢£#(��2 h�¶·22 h�

1Æ/d�4ÇÈ4 d)¨�ÇÈ6�É10.125 Hz¨���

��©ª«���®¯(HÊ���6�¸¹º*+

�'����Ë���®rÌ�®ÇÍ(Êιº

AB��5%��)0.1 Hz��]Ï©ªËÐÑÒÓÔ�

�®¯

[16]

(

��7g��ÕÖ×ØÙÚMyf5�myogenin�

MRF4�MyoDP�Û(0���7g��8�:*+�

�ÜÓ«Ý7g«;�yz�Þ`+n�ßàáâãØ

äå���7g�����eæ��+næ`(çè

1�éêëH����ì+n���7g��ßàá

âãØäå�����«Ý7gíîhi*xçïð

ñò�ó�©Gð:*+��7g��òôõÄö÷øùú

á��7g��òôûßäå

[17]

(;¸¹ºAB���

���C2C12����Myogenin�MyoD��ð:

��<7�v2T��]Ï©ª«��+næ`(

HüýÍ10%��)0.125 Hz����©ª«��ï�

äéå�*,-.Qþ/-Í����0.125 Hz���

C2C12�� !microRNA��(¹ºAB����

���S0.125 Hz���������microRNA��1

!41105�0�<7:�miR-340-5p� miR-1941-

3p�miR-449c-5p�;0���67:�miR-378a-5p�

miR-500-3p�miR-5097�miR-31-3p�miR-3473b�miR-

331-3p�miR-1934-5p(H��8��miR-3473b)

� 4 ��microRNA��

��� KEGG���

Figure 4 The KEGG

channel analysis diagram

of the differentially

expressed microRNA

prediction targets

Page 6: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

P.O. Box 10002, Shenyang 110180 www.CRTER.org

4510

www.CRTER.org

miR-1934-5p)miR-5097)miR-1941-3p����(miR-

500-3pHyz�Þ`QRäåÊ�������0�

��{|}~1��1±²³´miR-500-3pH�y�

Å� ï�Þ`��miR-500��H�»�g�

:67

[18]

(MiR-340+�������1�

[19]

(H�

MDXt���������éyz�microRNA���

��æ��miR-449HT�îyz����:<��Å

�ä�Þ`microRNA�

[20]

( ����2�miR-31�

�Å��ï© ª«�������é����NO

L��® ��}~�Þ`�0©G�S¾î1!"

#Q$

[21]

�%åmiR-31&�'ï© Ë`���Myf5��

®

[22]

(H�miR-378Ê�����1³´��miR-378

+��©*+7gy�(��NO2�1)8*+b�N

Oe,(MAPK)�«;�����®¯

[23]

(�-miR-331�

1����miR-331H��+n�:<7

[24]

(¸¹ºAB

�2���S0.125 Hz���©G:*+miR-449)

MiR-340��<7�miR-378)miR-31)miR-331��

67ï.�õÁ�äå�Ã磌��æ`(¸��/

02Í1ö2�³´miR-1941-3p)miR-1934-5p)miR-

5097)miR-3473b)miR-500)miR-340P6îmicroRNA�

_�Íyz���+n(

ä髾3����� 0.125 Hz��� !

microRNA«Ý`4h5�8@(*+GO>?8@���

�����microRNA��1 !C-DE_�`

abcHhiop7g�defW7g��jklm

+n7g��q8���hi7gP]^>?��(3

KEGG*x8@AB����64129]*x>?���

;0��yz�{|}~1�*x×Ø1 6Y8�

��`���βhi*x�T���hi*x�����

����B���hi*x������hi7��MAPK

hi*x���������lm����������

hi*x��cNO�y�7g�0�MAPKhi*x

:³´�í�yz�}~QR1�

[25-30]

(MAPK ()*

+b�NOe,)hi*x:íî�ð89:H¾]

hi�pòô�0×Ø�¾�;<b�)=>�NOe

,����-� �����¢£%Ýð?1¡0

ãØ7@äå

[31-36]

(MAPKÙÚíî8��ÅebïA

$BXCc����ÙÚ�D��HXBNO�[��

NO�«;¹�� ��D�0E`abc7g

[37]

(

MAPKH���8�+n��ßàãØäå��î

äå¾Y8:*+����7g¾��D���FGHã

INOû¹�

[38]

(JiP

[39]

H2010J���Kë�¢£

#LM��ïyz�`�:*+MAPKbcû7gB

��κB�Deb;¹��NO1Á:HPQ!W(1

±²³´ebMAPK©ª«�R�STC��T;UV

��L�Þ`

[40]

(;¸��æ��'��¢£#L

M��©ª«yz�Þ`��îL�©GY8:*+7g

MAPKhi*x;¹�(

61�¸���2�'��¢£#LM��©ª«

yz�Þ`�}~(*+ �-.WX�¢£#LM��

�����microRNA��Y«Ý8@�æ�Í10î

microRNA��:1 !���microRNA©G*+í

î7gL�û¹�����®¯7g�AL¹ºA

B�Ê�±²³´�0�MAPKhi*x:0��ãØL

�(MAPK©*+�¾��D���FGHãINO�Ê

�NO���«Ý7g«;¹�����FG7g(

��Z3��ABS[﫾3��§Y¨�de�

�Xhi7gHyz�{|}~P`abc��

L�ê\¾ý ]��Syz�{|"#��ê\;

�u^ ](

�� ������������ ����������

�������

���� ����������� !"#$%&��'

(��) *+#,-.#/012�)� 345��67�

�� 89�:;<=>?@ABCDEFG�

�� � HIJKL��MNOPBCQRS(T ?@�

U�2VWXYZ?@[\]^_`SabVWcdefSgHI�

2hij`SabVW2kl�mnopq�

���� ?@rstuvw CNKIxyz?{|}~��� 3

����

���� ?@v^�4<��������� OP�bk�

���

���� ���:����:��HIjU���?�r��

����������?����� ¡¢#£¤(¥¦�§¨£¤©)

ª«�¬�u­®9Co¯°±#²³j´µ >¶·¸��

���� ?@rst¹ºu2»¼�:½¾¿ÀÁ]s¾BC

ÂÃ�

������ ÄÅ�ÆÇÈÉÊ?@ ?@rst¹ºu2»

¼�:½¾¿ÀÁ]s¾BCÂÃ�-¤fËÌ;³Í>ÂÃqÎÁ

ÏÐÑÒÓÔÕJÐB<MÖ;³3.0×ØÙ ÚPRÛJ�ÜÝÞ

ßÍà¿áÑÒÓÔâ�ã��?�äVW#åæjçè <éßÍ

� Jêëì#Þí#îï#ðñ#òó#|ô#õö÷¶ø?{

ù�úûüôÛ J�ýþ���£¤���� P�J��

4 ���� References

[1] Kook SH, Lee HJ, Chung WT, et al. Cyclic mechanical stretch

stimulates the proliferation of C2C12 myoblasts and inhibits their

differentiation via prolonged activation of p38 MAPK. Mol Cells.

2008;25(4): 479-486.

[2] Khalsa PS, Ge W, Uddin MZ, et al. Integrin alpha2beta1 affects

mechano-transduction in slowly and rapidly adapting

cutaneous mechanoreceptors in rat hairy skin. Neuroscience.

2004;129(2): 447-459.

[3] Cachaço AS, Pereira CS, Pardal RG, et al. Integrin repertoire on

myogenic cells changes during the course of primary

myogenesis in the mouse. Dev Dyn. 2005;232(4):1069-1078.

[4] Rauch C, Loughna PT. Static stretch promotes MEF2A nuclear

translocation and expression of neonatal myosin heavy chain in

C2C12 myocytes in a calcineurin- and p38-dependent manner.

Am J Physiol Cell Physiol. 2005;288(3): C593-605.

[5] Dias P, Dilling M, Houghton P. The molecular basis of skeletal

muscle differentiation. Semin Diagn Pathol.1994;11(1): 3-14.

Page 7: C2C12 microRNA

�����. ����� � C2C12 ������� microRNA �����

ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

4511

www.CRTER.org

[6] Kumar A, Murphy R, Robinson P, et al. Cyclic mechanical strain

inhibits skeletal myogenesis through activation of focal adhesion

kinase, Rac-1 GTPase, and NF-kappaB transcription factor.

FASEB J. 2004;18(13): 1524-1535.

[7] Wang H, Sun H, Guttridge DC. microRNAs: novel components

in a muscle gene regulatory network. Cell Cycle. 2009;8(12):

1833-1837.

[8] Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for

mouse development. Nat Genet. 2003;35(3): 215-217.

[9] Li J, Wang G, Jiang J, et al. Dynamical Expression of

MicroRNA-127-3p in Proliferating and Differentiating C2C12

Cells. Asian-Australas J Anim Sci. 2016;29(12): 1790-1795.

[10] Hua W, Zhang M, Wang Y, et al. Mechanical stretch regulates

microRNA expression profile via NF-kappaB activation in C2C12

myoblasts. Mol Med Rep. 2016;14(6): 5084-5092.

[11] Ma Z, Sun X, Xu D, et al. MicroRNA, miR-374b, directly targets

Myf6 and negatively regulates C2C12 myoblasts differentiation.

Biochem Biophys Res Commun. 2015;467(4): 670-675.

[12] Zhang Y, Yang L, Gao YF, et al. MicroRNA-106b induces

mitochondrial dysfunction and insulin resistance in C2C12

myotubes by targeting mitofusin-2. Mol Cell Endocrinol. 2013;

381(1-2): 230-240.

[13] O'Rourke JR, Georges SA, Seay HR, et al. Essential role for

Dicer during skeletal muscle development. Dev Biol. 2007;

311(2): 359-368.

[14] Wang LY, Wang HY, Ouyang J, et al. Low concentration of

lipopolysaccharide acts on MC3T3-E1 osteoblasts and induces

proliferation via the COX-2-independent NFkappaB pathway.

Cell Biochem Funct, 2009. 27(4): 238-242.

[15] Otis JS, Burkholder TJ, Pavlath GK. Stretch-induced myoblast

proliferation is dependent on the COX2 pathway. Exp Cell Res.

2005;310(2): 417-425.

[16] Wazir R, Luo DY, Dai Y, et al. Expression and proliferation

profiles of PKC, JNK and p38MAPK in physiologically

stretched human bladder smooth muscle cells. Biochem

Biophys Res Commun. 2013;438(3): 479-482.

[17] Mok GF, Sweetman D. Many routes to the same destination:

lessons from skeletal muscle development. Reproduction.

2011;141(3): 301-312.

[18] Yu B, Zhou S, Qian T, et al. Altered microRNA expression

following sciatic nerve resection in dorsal root ganglia of rats.

Acta Biochim Biophys Sin (Shanghai). 2011;43(11): 909-915.

[19] Zhou J, Gao J, Zhang X, et al. microRNA-340-5p Functions

Downstream of Cardiotrophin-1 to Regulate Cardiac Eccentric

Hypertrophy and Heart Failure via Target Gene Dystrophin. Int

Heart J. 2015;56(4): 454-458.

[20] Greco S, De Simone M, Colussi C, et al. Common micro-RNA

signature in skeletal muscle damage and regeneration induced

by Duchenne muscular dystrophy and acute ischemia. FASEB J.

2009;23(10):3335-3346.

[21] Cacchiarelli D, Incitti T, Martone J, et al. miR-31 modulates

dystrophin expression: new implications for Duchenne muscular

dystrophy therapy. EMBO Rep. 2011;12(2):136-141.

[22] Crist CG, Montarras D, Buckingham M. Muscle satellite cells are

primed for myogenesis but maintain quiescence with

sequestration of Myf5 mRNA targeted by microRNA-31 in

mRNP granules. Cell Stem Cell. 2012;11(1):118-126.

[23] Hou X, Tang Z, Liu H, et al. Discovery of MicroRNAs associated

with myogenesis by deep sequencing of serial developmental

skeletal muscles in pigs. PLoS One.2012;7(12): e52123.

[24] Dmitriev P, Barat A, Polesskaya A, et al. Simultaneous miRNA

and mRNA transcriptome profiling of human myoblasts reveals a

novel set of myogenic differentiation-associated miRNAs and

their target genes. BMC Genomics. 2013;14: 265.

[25] Huang Z, Xie X. [Chemerin induces insulin resistance in C2C12

cells through nuclear factor-kappaB pathway-mediated

inflammatory reaction]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.

2015;31(6): 725-729.

[26] Zhao M, Zhang ZF, Ding Y, et al. Astragalus polysaccharide

improves palmitate-induced insulin resistance by inhibiting

PTP1B and NF-kappaB in C2C12 myotubes. Molecules.

2012;17(6):7083-7092.

[27] Kemaladewi DU, de Gorter DJ, Aartsma-Rus A, et al. Cell-type

specific regulation of myostatin signaling. FASEB J. 2012;26(4):

1462-1472.

[28] Xie Q, Deng Y, Huang C, et al. Chemerin-induced mitochondrial

dysfunction in skeletal muscle. J Cell Mol Med. 2015;19(5):

986-995.

[29] Tabandeh MR, Hosseini SA, Hosseini M, et al. Ginsenoside Rb1

exerts antidiabetic action on C2C12 muscle cells by leptin

receptor signaling pathway. J Recept Signal Transduct Res.

2017;37(4): 370-378.

[30] Bloch SA, Lee JY, Syburra T, et al. Increased expression of

GDF-15 may mediate ICU-acquired weakness by

down-regulating muscle microRNAs. Thorax. 2015;70(3):

219-228.

[31] Kim SH, Hwang JT, Park HS, et al. Capsaicin stimulates glucose

uptake in C2C12 muscle cells via the reactive oxygen species

(ROS)/AMPK/p38 MAPK pathway. Biochem Biophys Res

Commun. 2013;439(1): 66-70.

[32] Tarabees R, Hill D, Rauch C, et al. Endotoxin transiently inhibits

protein synthesis through Akt and MAPK mediating pathways in

C2C12 myotubes. Am J Physiol Cell Physiol. 2011;301(4):

C895-902.

[33] Dimchev GA, Al-Shanti N, Stewart CE. Phospho-tyrosine

phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast

migration in vitro. Requirement of PI3K/AKT and MAPK/ERK

pathways. J Muscle Res Cell Motil. 2013;34(2): 125-136.

[34] Gan L, Liu Z, Zhang Z, et al. SOCS2 inhibited mitochondria

biogenesis via inhibiting p38 MAPK/ATF2 pathway in C2C12

cells. Mol Biol Rep. 2014;41(2): 627-637.

[35] Zbinden-Foncea H, Deldicque L, Pierre N, et al. TLR2 and TLR4

activation induces p38 MAPK-dependent phosphorylation of S6

kinase 1 in C2C12 myotubes. Cell Biol Int. 2012;36(12):

1107-1113.

[36] Lee JO, Kim N, Lee HJ, et al. Visfatin, a novel adipokine,

stimulates glucose uptake through the Ca2 +-dependent

AMPK-p38 MAPK pathway in C2C12 skeletal muscle cells. J

Mol Endocrinol. 2015;54(3): 251-262.

[37] ���, ��, ���. ��� ���(MAPK)�����

����[J]. �����, 2002, 37(5): 98-102.

[38] Knight JD, Tian R, Lee RE, et al. A novel whole-cell lysate

kinase assay identifies substrates of the p38 MAPK in

differentiating myoblasts. Skelet Muscle. 2012;2: 5.

[39] Ji G, Liu D, Liu J, et al. p38 mitogen-activated protein kinase

up-regulates NF-kappaB transcriptional activation through RelA

phosphorylation during stretch-induced myogenesis. Biochem

Biophys Res Commun. 2010;391(1): 547-551.

[40] Dimchev GA, Al-Shanti N, Stewart CE. Phospho-tyrosine

phosphatase inhibitor Bpv(Hopic) enhances C2C12 myoblast

migration in vitro. Requirement of PI3K/AKT and MAPK/ERK

pathways. J Muscle Res Cell Motil.2013;34(2):125-136.