c81icomst-proceedings.helsinki.fi/papers/1995_03_81.pdf · 2017. 1. 15. · c81 canthaxanthin as a...

2
C81 CANTHAXANTHIN AS A LIPID SOLUBLE ANTIOXIDANT IN AN OXYMYOGLOBIN LIPOSOME MODEL SYSTEM T.H. CLARK, C.L. FAUSTMAN, J.W. RIESEN, W.K.M. CHAN AND H.C. FURR Dept, of Animal Science, U n iv . of C t., Storrs, CT, 06269, USA KEYWORDS: antioxidant, carotenoids, canthaxanthin, liposome BACKGROUND: Canthaxanthin, a lip id - s o lu b le carotenoid, has been shown to function as a chain-breaking antioxidant in a liposome model system (Lim et a l., 1992) . In meat, both oxymyoglobin and lip id oxidize over time resulting in discoloration, and development of o ff flavors and undesirable odors, respectively (Greene, 1969; Kanner and Harel, 1985). V ita m in E, lik e canthaxanthin is lip id - s o lu b le , and has been shown to be a potent antioxidant in meat and m eat-related systems (Faustman, 1993). Carotenoids are t y p ic a lly used for pigm entation of muscle-based foods(e.g. salm onids); the ir potential efficacy for delaying oxidation of oxymyoglobin and lip id in muscle foods is unclear. OBJECTIVES: The objective of th is study was to determine the effectiveness of canthaxanthin as an antioxidant in an oxymyoglobin-liposome model. METHODS . , , , Liposome Preparation Canthaxanthin (CX) and egg yolk phosphatidylcholine (PC) were obtained commercially. Liposomes were prepared according to New (1990) in chloroform/methanol (2:1; v/v). Three mg dicetyl phosphate and 12 mg cholesterol were dissolved in a round bottom flask containing 30 mg PC, the appropriate concentration ot CX, and 5 mL solvent. The solvent was removed under nitrogen w ith a rotary evaporator to form a th in lip id film . . ^ _ , „ , . Q Oxymyoglobin Preparation Oxymyoglobin (OxyMb) was prepared according to Brown and Mebme (1969). Metmyoglobin (MetMb) was prepared in 10 mL sodium citrate buffer (50 mM, pH 5.6) and chem ically reduced w ith sodium hydrosulfite. The OxyMb solution was oxygenated, and residual hydrosulfite removed by mixed-bed ion exchange chromatography. The concentration of OxyMb was adjusted to 2.5 mg/mL (E 525= 7 .6 m M ^ c m " 1) . The OxyMb preparation or sodium citra te (control) was added to the previously prepared lip id film s. W ith one mg glass beads (1 mm d ia .). OxyMb-liposomes were formed by mechanical shaking at 5°C fo r 20 mm on a table top shaker and allowed to stand for 20 min before oxidation measurements. Measurement of OxyMB-Liposome Oxidation A ll assays were incubated at 30°C for a maximum period of 5 hrs. A liq u o ts (lm L ) were removed from each assay hourly and oxidation of OxyMb and lip id determined. The Krzywicki (1982) method was used to determine metmyoglobin form ation as previously described (Yin and Faustman, 1993). For lip id o x id a tio n , the TBARS assay of Schmedes and Holmer (1989) was used. B riefly, 1 mL myoglobin-liposome solution was combined w ith 2 mL 20% trichloroacetic acid. The resulting solution was centrifuged at 2000 g fo r 10 min at 4°C. One mL o f the supernatan was added to 1 mL 20 mM a q u e o u s thiobarbituric acid and incubated at 25°C for 20 hrs. The absorbance at 532 nm was recorded and reported as TBARS. Statistical Analysis Data were treated by analysis of variance (ANOVA) and computed using the SAS General Linear Model (GLM) procedure (SAS, 1985) . RESULTS AND DISCUSSION T r ip lic a te assays of each treatment were analyzed on three d iffe r e n t days. Treatmen effects are described below. There were no differences found between days (p>0.05). Therefore, the figures presented are a s in g le day's results representative of observed behavior. , , _ Figures 1 and 2 illu stra te a ty p ic a l oxidation sequence of control and 2 uM LX treatm ent. At 2 uM, CX tre a tm e n t resulted in a reduction in overall MetMb form ation between hours 2 and 3 of incubation at 30°C (p<0.05; F ig . 1) . At hours 2 and 3, the percent MetMb in the CX assays was 9% and 6 % less than in the control, respectively. The induction period was prolonged in lip id oxidation (p<0.05; F ig . 2). There appeared to be a stronger antioxidant effect of CX on lip id oxidation than on inhibition of MetMb form a tio n . Palozza and Krinsky (1992) also showed that CX was effective as an antioxidant on chem ically in itia te d lip id peroxidation in rat liv e r microsomes as monitored by malonaldehyde (MDA) production . .. . . =T._ The effect of CX a t varying concentrations on MetMb form ation and lip id oxidation ar presented in Figures 3 and 4, respectively. When the concentration of CX was varied from 2 to 10 uM, its antioxidant a ctivity was increased (p<0.05). At hours 2 and 3, the ^ antioxidant a ctivity was concentration-dependent (2 uM < 5 uM < 10 u M ). There was 18% an 12% percent lower MetMb at hours 2 and 3, respectively, observed w ith 10 uM CX th a n w ith the control (F ig . 3). Again, CX appeared to have a stronger effect in in h ib it in g lip id oxidation (F ig . 4). There was approxim ately a 4-fold decrease in TBARS at hour 2; and at hour 3, a 2.5-fold decrease in the 10 uM CX treatment when compared to the control. The effects of CX agree w ith results of Mayne and Parker (1989) which showed that CX was effective in protecting against lip id oxidation in chicks supplemented w ith CX. The authors used chem ic a lly intiated peroxidized liv e r homogenates and measured oxidation at varying pa rtial oxygen pressures; no attention was given to heme protein oxidation. CONCLUSIONS _ , „ , , . . In a myoglobin liposome model system, CX delayed oxidation of OxyMb and lip id . When incubated at 30°C at varying concentrations, CX was more effective at 10 uM than at lo w e r concentrations during the second and th ird hour of incubation. 400

Upload: others

Post on 14-Aug-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: C81icomst-proceedings.helsinki.fi/papers/1995_03_81.pdf · 2017. 1. 15. · C81 CANTHAXANTHIN AS A LIPID SOLUBLE ANTIOXIDANT IN AN OXYMYOGLOBIN LIPOSOME MODEL SYSTEM T.H. CLARK, C.L

C81

CANTHAXANTHIN AS A LIPID SOLUBLE ANTIOXIDANT IN AN OXYMYOGLOBIN LIPOSOME MODEL SYSTEM T.H. CLARK, C.L. FAUSTMAN, J.W. RIESEN, W.K.M. CHAN AND H.C. FURRD e p t , o f A n i m a l S c i e n c e , U n i v . o f C t . , S t o r r s , C T , 0 6 2 6 9 , U S A

KEYWORDS: a n t i o x i d a n t , c a r o t e n o i d s , c a n t h a x a n t h i n , l i p o s o m e

BACKGROUND: C a n t h a x a n t h i n , a l i p i d - s o l u b l e c a r o t e n o i d , h a s b e e n s h o w n t o f u n c t i o n a s a c h a i n - b r e a k i n g a n t i o x i d a n t i n a l i p o s o m e m o d e l s y s t e m ( L im e t a l . , 1 9 9 2 ) . I n m e a t , b o t h o x y m y o g l o b i n a n d l i p i d o x i d i z e o v e r t i m e r e s u l t i n g i n d i s c o l o r a t i o n , a n d d e v e l o p m e n t o f o f f f l a v o r s a n d u n d e s i r a b l e o d o r s , r e s p e c t i v e l y ( G r e e n e , 1 9 6 9 ; K a n n e r a n d H a r e l , 1 9 8 5 ) . V i t a m i n E , l i k e c a n t h a x a n t h i n i s l i p i d - s o l u b l e , a n d h a s b e e n s h o w n t o b e a p o t e n t a n t i o x i d a n t i n m e a t a n d m e a t - r e l a t e d s y s t e m s ( F a u s t m a n , 1 9 9 3 ) . C a r o t e n o i d s a r e t y p i c a l l y u s e d f o r p i g m e n t a t i o n o f m u s c le - b a s e d f o o d s ( e . g . s a l m o n i d s ) ; t h e i r p o t e n t i a l e f f i c a c y f o r d e l a y i n g o x i d a t i o n o f o x y m y o g l o b i n a n d l i p i d i n m u s c le f o o d s i s u n c l e a r .

OBJECTIVES: T h e o b j e c t i v e o f t h i s s t u d y w a s t o d e t e r m i n e t h e e f f e c t i v e n e s s o f c a n t h a x a n t h i n a s a n a n t i o x i d a n t i n a n o x y m y o g l o b i n - l i p o s o m e m o d e l .

METHODS . , , ,Liposome Preparation C a n t h a x a n t h i n (C X ) a n d e g g y o l k p h o s p h a t i d y l c h o l i n e (P C ) w e r e o b t a i n e d c o m m e r c i a l l y . L ip o s o m e s w e r e p r e p a r e d a c c o r d i n g t o N e w ( 1 9 9 0 ) i n c h l o r o f o r m / m e t h a n o l ( 2 : 1 ; v / v ) . T h r e e m g d i c e t y l p h o s p h a t e a n d 1 2 m g c h o l e s t e r o l w e r e d i s s o l v e d i n a r o u n d b o t t o m f l a s k c o n t a i n i n g 3 0 m g P C , t h e a p p r o p r i a t e c o n c e n t r a t i o n o t C X , a n d 5 m L s o l v e n t . T h e s o l v e n t w a s r e m o v e d u n d e r n i t r o g e n w i t h a r o t a r y e v a p o r a t o r t o

f o r m a t h i n l i p i d f i l m . . ^ _ , „ , . QOxymyoglobin Preparation O x y m y o g l o b i n (O x y M b ) w a s p r e p a r e d a c c o r d i n g t o B r o w n a n d M e b m e ( 1 9 6 9 ) . M e t m y o g lo b i n (M e tM b ) w a s p r e p a r e d i n 1 0 m L s o d iu m c i t r a t e b u f f e r (5 0 mM, p H 5 . 6 )

a n d c h e m i c a l l y r e d u c e d w i t h s o d iu m h y d r o s u l f i t e . T h e O x y M b s o l u t i o n w a s o x y g e n a t e d , a n d r e s i d u a l h y d r o s u l f i t e r e m o v e d b y m i x e d - b e d i o n e x c h a n g e c h r o m a t o g r a p h y . T h e c o n c e n t r a t i o n o f O x y M b w a s a d j u s t e d t o 2 . 5 m g /m L (E 525 = 7 . 6 m M ^ c m "1) . T h e O x y M b p r e p a r a t i o n o r s o d iu m c i t r a t e ( c o n t r o l ) w a s a d d e d t o t h e p r e v i o u s l y p r e p a r e d l i p i d f i l m s . W i t h o n e m g g l a s s b e a d s (1 mm d i a . ) . O x y M b - l i p o s o m e s w e r e f o r m e d b y m e c h a n i c a l s h a k i n g a t 5 °C f o r 2 0 m m o n a t a b l e t o p s h a k e r a n d a l l o w e d t o s t a n d f o r 2 0 m in b e f o r e o x i d a t i o n m e a s u r e m e n t s . Measurement of OxyMB-Liposome Oxidation A l l a s s a y s w e r e i n c u b a t e d a t 3 0 °C f o r a m a x im u m p e r i o d o f 5 h r s . A l i q u o t s ( lm L ) w e r e r e m o v e d f r o m e a c h a s s a y h o u r l y a n d o x i d a t i o n o f O x y M b a n d l i p i d d e t e r m i n e d . T h e K r z y w i c k i ( 1 9 8 2 ) m e t h o d w a s u s e d t o d e t e r m i n e m e t m y o g lo b i n f o r m a t i o n a s p r e v i o u s l y d e s c r i b e d ( Y i n a n d F a u s t m a n , 1 9 9 3 ) . F o r l i p i d o x i d a t i o n , t h e TB A R S a s s a y o f S c h m e d e s a n d H o lm e r ( 1 9 8 9 ) w a s u s e d . B r i e f l y , 1 m L m y o g l o b i n - l i p o s o m e s o l u t i o n w a s c o m b in e d w i t h 2 m L 20% t r i c h l o r o a c e t i c a c i d . T h e r e s u l t i n g s o l u t i o n w a s c e n t r i f u g e d a t 2 0 0 0 g f o r 1 0 m in a t 4 ° C . O n e m L o f t h e s u p e r n a t a n w a s a d d e d t o 1 m L 2 0 mM a q u e o u s t h i o b a r b i t u r i c a c i d a n d i n c u b a t e d a t 2 5 °C f o r 2 0 h r s . T h e a b s o r b a n c e a t 5 3 2 nm w a s r e c o r d e d a n d r e p o r t e d a s T B A R S .Statistical Analysis D a t a w e r e t r e a t e d b y a n a l y s i s o f v a r i a n c e (A N O V A ) a n d c o m p u t e d u s i n g t h e S AS G e n e r a l L i n e a r M o d e l (G LM ) p r o c e d u r e (S A S , 1 9 8 5 ) .

RESULTS AND DISCUSSIONT r i p l i c a t e a s s a y s o f e a c h t r e a t m e n t w e r e a n a l y z e d o n t h r e e d i f f e r e n t d a y s . T r e a t m e n

e f f e c t s a r e d e s c r i b e d b e l o w . T h e r e w e r e n o d i f f e r e n c e s f o u n d b e t w e e n d a y s ( p > 0 . 0 5 ) . T h e r e f o r e , t h e f i g u r e s p r e s e n t e d a r e a s i n g l e d a y ' s r e s u l t s r e p r e s e n t a t i v e o f o b s e r v e d

b e h a v i o r . „ , , _ „F i g u r e s 1 a n d 2 i l l u s t r a t e a t y p i c a l o x i d a t i o n s e q u e n c e o f c o n t r o l a n d 2 uM L X

t r e a t m e n t . A t 2 u M , CX t r e a t m e n t r e s u l t e d i n a r e d u c t i o n i n o v e r a l l M e tM b f o r m a t i o n b e t w e e n h o u r s 2 a n d 3 o f i n c u b a t i o n a t 3 0 °C ( p < 0 . 0 5 ; F i g . 1 ) . A t h o u r s 2 a n d 3 , t h e p e r c e n t M e tM b i n t h e CX a s s a y s w a s 9% a n d 6 % l e s s t h a n i n t h e c o n t r o l , r e s p e c t i v e l y . T h e i n d u c t i o n p e r i o d w a s p r o l o n g e d i n l i p i d o x i d a t i o n ( p < 0 . 0 5 ; F i g . 2 ) . T h e r e a p p e a r e d t o b e a s t r o n g e r a n t i o x i d a n t e f f e c t o f C X o n l i p i d o x i d a t i o n t h a n o n i n h i b i t i o n o f M e tM b f o r m a t i o n . P a l o z z a a n d K r i n s k y ( 1 9 9 2 ) a l s o s h o w e d t h a t CX w a s e f f e c t i v e a s a n a n t i o x i d a n t o n c h e m i c a l l y i n i t i a t e d l i p i d p e r o x i d a t i o n i n r a t l i v e r m ic r o s o m e s a s m o n i t o r e d b ym a lo n a l d e h y d e (M D A ) p r o d u c t i o n . . . . . =T._

T h e e f f e c t o f CX a t v a r y i n g c o n c e n t r a t i o n s o n M e tM b f o r m a t i o n a n d l i p i d o x i d a t i o n a r p r e s e n t e d i n F i g u r e s 3 a n d 4 , r e s p e c t i v e l y . W h e n t h e c o n c e n t r a t i o n o f CX w a s v a r i e d f r o m 2 t o 1 0 u M , i t s a n t i o x i d a n t a c t i v i t y w a s i n c r e a s e d ( p < 0 . 0 5 ) . A t h o u r s 2 a n d 3 , t h e ̂a n t i o x i d a n t a c t i v i t y w a s c o n c e n t r a t i o n - d e p e n d e n t (2 uM < 5 uM < 1 0 u M ) . T h e r e w a s 18% a n 12% p e r c e n t l o w e r M e tM b a t h o u r s 2 a n d 3 , r e s p e c t i v e l y , o b s e r v e d w i t h 1 0 uM C X t h a n w i t h t h e c o n t r o l ( F i g . 3 ) . A g a i n , CX a p p e a r e d t o h a v e a s t r o n g e r e f f e c t i n i n h i b i t i n g l i p i d o x i d a t i o n ( F i g . 4 ) . T h e r e w a s a p p r o x i m a t e l y a 4 - f o l d d e c r e a s e i n TB A R S a t h o u r 2 ; a n d a t h o u r 3 , a 2 . 5 - f o l d d e c r e a s e i n t h e 1 0 uM CX t r e a t m e n t w h e n c o m p a r e d t o t h e c o n t r o l . T h e e f f e c t s o f CX a g r e e w i t h r e s u l t s o f M a y n e a n d P a r k e r ( 1 9 8 9 ) w h i c h s h o w e d t h a t CX w a s e f f e c t i v e i n p r o t e c t i n g a g a i n s t l i p i d o x i d a t i o n i n c h i c k s s u p p l e m e n t e d w i t h C X . T h e a u t h o r s u s e d c h e m i c a l l y i n t i a t e d p e r o x i d i z e d l i v e r h o m o g e n a t e s a n d m e a s u r e d o x i d a t i o n a t v a r y i n g p a r t i a l o x y g e n p r e s s u r e s ; n o a t t e n t i o n w a s g i v e n t o h e m e p r o t e i n o x i d a t i o n .

CONCLUSIONS _ , „ , , . .I n a m y o g l o b i n l i p o s o m e m o d e l s y s t e m , C X d e l a y e d o x i d a t i o n o f O x y M b a n d l i p i d . W h e n

i n c u b a t e d a t 3 0 °C a t v a r y i n g c o n c e n t r a t i o n s , CX w a s m o r e e f f e c t i v e a t 1 0 uM t h a n a t l o w e r c o n c e n t r a t i o n s d u r i n g t h e s e c o n d a n d t h i r d h o u r o f i n c u b a t i o n .

400

Page 2: C81icomst-proceedings.helsinki.fi/papers/1995_03_81.pdf · 2017. 1. 15. · C81 CANTHAXANTHIN AS A LIPID SOLUBLE ANTIOXIDANT IN AN OXYMYOGLOBIN LIPOSOME MODEL SYSTEM T.H. CLARK, C.L

Referencesr ° Wn W .D . a n d M e b in e L . B . 1 9 6 9 . A u t o x i d a t i o n o f o x y m y o g l o b i n . J . B i o l . C h e m . 2 4 4 : 6 6 9 6 -

Pa 6 7 0 1 •u s tm a n C . 1 9 9 3 . F o o d f r o m s u p p l e m e n t - f e d a n i m a l s . C h . 8 . I n T e c h n o lo g y o f R edu ced -

q A d d i t i v e Foods, J . S m i t h ( E d . ) , p . 1 6 0 - 1 9 4 . B l a c k i e P u b l . , L o n d o n . e e n e B . E . 1 9 6 9 . L i p i d o x i d a t i o n a n d p i g m e n t c h a n g e s i n r a w b e e f . J . F o o d S c i . 3 4 : 1 1 0 -

K 113 •an n e r j . a n d H a r e l S . 1 9 8 5 . I n i t i a t i o n o f m e m b r a n a l l i p i d p e r o x i d a t i o n b y a c t i v a t e d

j. m e t m y o g lo b i n a n d m e t h e m o g l o b i n . A r c h . B io c h e m . B i o p h y s . 2 3 7 : 3 1 4 - 3 2 1 .z y w i c k i K . 1 9 8 2 . T h e d e t e r m i n a t i o n o f h a e m p i g m e n t s i n m e a t . M e a t S c i . 7 : 2 9 - 3 6 . m B - P . , N a g a o A . , T e r a o J . , T a n a k a K . ( S u z u k i T . a n d T a k a m a K . 1 9 9 2 . A n t i o x i d a n t

a c t i v i t y o f x a n t h o p h y l l s o n p e r o x y l r a d i c a l - m e d i a t e d p h o s p h o l i p i d p e r o x i d a t i o n , w E i o c h i m . B i o p h y s . A c t a . 1 1 2 6 : 1 7 8 - 1 8 4 .

V ne S . T . a n d P a r k e r R . S . 1 9 8 9 . A n t i o x i d a n t a c t i v i t y o f d i e t a r y c a n t h a x a n t h i n . N u t r .(j C a n e . 1 2 : 2 2 5 - 2 3 6 .

w R . R . C . 1 9 9 0 . P r e p a r a t i o n o f l i p o s o m e s . C h . 2 . I n L ip o so m es , R . R . C . N e w ( E d . ) , p . 3 3 - p . 1 0 4 . I R L P r e s s , N e w Y o r k .

0 z z a P . a n d K r i n s k y N . I . 1 9 9 2 . A s t a x a n t h i n a n d c a n t h a x a n t h i n a r e p o t e n t a n t i o x i d a n t s i n s m e m b ra n e m o d e l . A r c h . B io c h e m . B i o p h y s . 2 9 7 : 2 9 1 - 2 9 5 .

u m e d e s A . a n d H o lm e r G . 1 9 8 9 . A n e w t h i o b a r b i t u r i c a c i d (T B A ) m e t h o d f o r d e t e r m i n a t i o n o f f r e e m a lo n a l d e h y d e (M D A ) a n d h y d r o p e r o x i d e s s e l e c t i v e l y a s a m e a s u r e o f l i p i d P e r o x i d a t i o n . J . A m . O i l . C h e m . S o c . 6 6 : 8 1 3 - 8 1 7 .

M . a n d F a u s t m a n C . 1 9 9 3 . I n f l u e n c e o f t e m p e r a t u r e , p H , a n d p h o s p h o l i p i d c o m p o s i t i o n u p o n t h e s t a b i l i t y o f m y o g l o b i n a n d p h o s p h o l i p i d : A l i p o s o m e m o d e l . J . A g r i . F o o d C h e m . 4 1 : 8 5 3 - 8 5 7 .

1 • T h e e f f e c t o f 2 uM c a n t h a x a n t h i n ( C x ) o n M e tM b f o r m a t i o n i n a l i p o s o m e m o d e l y s t em i n c u b a t e d a t 3 0 ° C , p H 5 . 6 .

Ficrj 2 . T h e e f f e c t o f 2 uM C x o n l i p i d o x i d a t i o n i n a l i p o s o m e m o d e l s y s t e m f o l l o w i n g l t l c U b a t i o n a t 3 0 ° C , p H 5 .6 .

i n 53' , 3 ’ T ' l e e f f e c t s o f 0 , 2 , 5 , a n d 1 0 uM C X o n M e tM b f o r m a t i o n a t h o u r s 2 a n d 3 o f 3 0 °C n c u b a t i o n , p H 5 . 6 .

i n H \ ^ ‘ e f f e c t s o f 0 , 2 , 5 , a n d 1 0 uM C X o n l i p i d o x i d a t i o n a t h o u r s 2 a n d 3 o f 3 0 °CCub a t i o n , p H 5 . 6 .

Fi9 - 3 Time(hr) F'9 4 Time(hr)