cabling ad hoc cat 5e measurements - ieee 802 ad hoc cat 5e measurements larry cohen solarflare...

21
IEEE802.3 Plenary March 2003 10GBASE-T 1 Cabling Ad Hoc Cat 5e Cabling Ad Hoc Cat 5e Measurements Measurements Larry Cohen Solarflare Communications

Upload: danglien

Post on 04-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

1

Cabling Ad Hoc Cat 5e Cabling Ad Hoc Cat 5e MeasurementsMeasurements

Larry CohenSolarflare Communications

Page 2: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

2

OverviewOverview

• Cabling Ad Hoc Test Plan Measurement – One Cat 5e horizontal cable sample, four test channel

configurations characterized to 500 MHz– Insertion loss– NEXT: pair-to-pair and power sum– ELFEXT: pair-to-pair and power sum– Return loss– Propagation delay– Delay skew– Data from both sides of channel

• Measurement of multiple cable samples – insertion loss test

• Conclusion

Page 3: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

3

Test Channel ConfigurationsTest Channel Configurations

BA C

Test Channel 2

B

Test Channel 1

A= 5 meters, B= 90 meters, C=5 meters

A and C = work area and equipment cord: B= 90 meters horizontal cable

B = 90 meters horizontal cable

A= 5 meters, B1= 5 meters of CP Cable cut from B, B2=85 meters of horizontal cable cut from B, D= 3 meters, E= 2 meters

B1= CP cable, B2= horizontal cable: A,D and E= work area, patch cord, and equipment cord

B2B1 D

Test Channel 4

A

WA CP C1

E

C2

CA

WA CP C1

CA

WA CP C1

Test Channel 3B2B1

A= 5 meters, B1= 5 meters of CP Cable cut from B, B2=85 meters of horizontal cable cut from B, C= 5 meters

B1= CP cable, B2 =horizontal cable ,A and C = work area and equipment cord:

Page 4: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

4

Measurement EnvironmentMeasurement Environment

• Measurements made at room temperature

• All patch cords and connectors are Cat 5e

• Test cable sample laid out in simple large loop, no stretching or excessive mechanical stress applied

• Channel pairs defined by T568B RJ45 jack pin/pair assignment

• Measurement performed by HP8753C Network Analyzer

• Measurements normalized for test fixture insertion loss• All test channel interface points are Cat 5e Keystone jack to

RJ45 plug (except channel 4 interface between A and B1 is inline Cat 5e coupler)

• No RJ54 interface on test fixture – direct soldered connection

Page 5: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

Channel Insertion Loss Measurement SetupChannel Insertion Loss Measurement Setup

Network Analyzer

50 Ω 50 Ω

6 dB Splitter

50 Ω

S R A

16.5

16.5

16.5

Test Channel

50:100Ω Interface

100Ω

100:50Ω Interface

Other channel pairs

Cat 5/5e/6 quad pair UTP

100Ω

Matchingpad

Matchingpad

50ΩAttenuator

Attenuator matched to lineinterface matching pads

Page 6: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

6

Insertion Loss MeasurementInsertion Loss Measurement

0 50 100 150 200 250 300 350 400 450 500-60

-50

-40

-30

-20

-10

0Meas ured Channel Ins ertion Gain - P air 3

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = 7.00 dBTes t channel 2 = 4.42 dBTes t channel 3 = 4.17 dBTes t channel 4 = 3.76 dBCat 5e limit

•Figure of merit is margin above Cat 5e channel limit at 100 MHz•Connectors increase loss slightly and cause insertion loss deviation (ILD)•Cat 5e margin (extrapolated limit) increases with frequency

Page 7: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

NEXT Measurement SetupNEXT Measurement Setup

Network Analyzer

Victim Channel

50Ω

6 dB Splitter

50Ω

R A

Disturber Channel

Cat 5/5e/6 quad pair UTP

50Ω

S

50:100Ω Interface

Matchingpad

50ΩAttenuator

Attenuator matched to lineinterface matching pads

50:100Ω Interface

Matchingpad

Page 8: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

8

PairPair--toto--Pair NEXT Measurement Pair NEXT Measurement –– Interior PairsInterior Pairs

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10Meas ured P air-to-P air NEXT Coupling Gain - NEXT31

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -44.74 dBTes t channel 2 = -26.31 dBTes t channel 3 = -26.31 dBTes t channel 4 = -20.07 dBCat 5e limit

•NEXT at equipment room termination

•Figure of merit is integrated (average) power coupling loss to 500 MHz

•Adding connectors significantly increases interior pair NEXT coupling

•Connectors are dominant NEXT source

Page 9: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

9

Power Sum NEXT Measurement Power Sum NEXT Measurement –– Interior PairsInterior Pairs

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10Meas ured P ower S um NEXT Coupling Gain - P air 3

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -37.80 dBTes t channel 2 = -25.17 dBTes t channel 3 = -25.33 dBTes t channel 4 = -19.01 dBCat 5e limit

•Connector-dominated NEXT has different slope characteristic than cable-dominated NEXT•Connector NEXT shows smooth curve or large periodic fluctuations – cable NEXT is “noisy”

Page 10: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

10

PairPair--toto--Pair NEXT Measurement Pair NEXT Measurement –– Exterior PairsExterior Pairs

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10Meas ured P air-to-P air NEXT Coupling Gain - NEXT24

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -39.64 dBTes t channel 2 = -42.51 dBTes t channel 3 = -42.81 dBTes t channel 4 = -29.57 dBCat 5e limit

•Connectors have less effect on exterior pair NEXT coupling – physical separation

•Added connector in test channel 4 is an inline coupler –worse than ordinary connector.

Page 11: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

11

Power Sum NEXT Measurement Power Sum NEXT Measurement –– Exterior PairsExterior Pairs

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10Meas ured P ower S um NEXT Coupling Gain - P air 2

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -37.52 dBTes t channel 2 = -34.69 dBTes t channel 3 = -35.01 dBTes t channel 4 = -24.23 dBCat 5e limit

•One bad connector can significantly increase NEXT coupling (added inline coupler for channel 4)

Page 12: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

FEXT/ELFEXT Measurement SetupFEXT/ELFEXT Measurement Setup

Network Analyzer

Disturber Channel

100Ω

50Ω

6 dB Splitter

50Ω50Ω

S R A

Victim Channel

100Ω

Cat 5/5e/6 quad pair UTP

50:100Ω Interface

Matchingpad

100:50Ω Interface

Matchingpad

50ΩAttenuator

Attenuator matched to lineinterface matching pads

LNA

Page 13: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

13

PairPair--toto--Pair FEXT MeasurementPair FEXT Measurement

0 50 100 150 200 250 300 350 400 450 500-90

-80

-70

-60

-50

-40

-30Meas ured P air-to-P air FEXT Coupling Gain - FEXT32

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -69.10 dBTes t channel 2 = -65.03 dBTes t channel 3 = -61.57 dBTes t channel 4 = -59.78 dB

•FEXT is much less than NEXT on long lengths

•Measured FEXT becomes stronger on short lengths

•FEXT increased by connectors

Page 14: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

14

ELFEXT MeasurementELFEXT Measurement

0 50 100 150 200 250 300 350 400 450 500-70

-60

-50

-40

-30

-20

-10

0Meas ured P air-to-P air ELFEXT Coupling Gain - ELFEXT32

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Tes t channel 1 = -40.14 dBTes t channel 2 = -28.97 dBTes t channel 3 = -27.20 dBTes t channel 4 = -23.12 dBCat 5e limit

•FEXT is measured directly•ELFEXT is FEXT normalized by channel loss•Greater margin to limit than NEXT•ELFEXT increased by connectors

Page 15: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

15

Return Loss Measurement SetupReturn Loss Measurement Setup

-20 dB

-20 dB

Network Analyzer

Channel Under Test

50Ω

6 dB Splitter

50Ω50Ω

S R A

Other channel pairs

Test cable/channel Cat5e/6 quad pair UTP

50:100Ω

Matchingpad

100Ω

100Ω

100Ω

Matchingpad

100Ω ReturnLoss Bridge

Test Port

100:50Ω

Page 16: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

16

Return Loss MeasurementReturn Loss Measurement

0 50 100 150 200 250 300 350 400 450 5000

5

10

15

20

25

30

35

40Meas ured Channel Return Los s - P air 3

Frequency (MHz)

Ret

urn

Loss

(dB

)

Tes t channel 1Tes t channel 2Tes t channel 3Tes t channel 4Cat 5e limit

•Cable return loss is excellent•Return loss is degraded by adding connectors•Connector effects reduced by distance

Page 17: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

17

Multiple Sample Test Multiple Sample Test –– 100 meter channel100 meter channel

BA C

Test Channel

A= 2 meters, B= 93 meters, C=4.5 meters

A and C = Cat 5e work area and equipment cord: B = 93 meters horizontal cable

•Compare different cable samples from different manufacturers

•Measurements made at room temperature

•No stretching or excessive mechanical stress applied to test cable

•No RJ54 interface on test fixture – direct soldered connection

Page 18: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

18

Insertion Loss from Cable SamplesInsertion Loss from Cable Samples

•All sample channels are significantly better than the extrapolated Cat 5e/Class D channel limit line•Cat 6 test channel better than all Cat 5/5e test channels

0 50 100 150 200 250 300 350 400 450 500-60

-50

-40

-30

-20

-10

0Meas ured Wors t-Cas e P air Ins ertion Los s 100 Meter Channel

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Cat 5e s ample #1Cat 5e s ample #2Cat 5e s ample #3Cat 5 s ample #1 Cat 5e s ample #4Cat 6 s ample #1 Cat 5e s ample #5Cat 5e limit

Page 19: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

19

Worst Measured Cat 5/5e Loss vs. Cat 6 LimitWorst Measured Cat 5/5e Loss vs. Cat 6 Limit

•Worst Cat5/5e channel approximated by extrapolated Cat 6 channel limit line

0 50 100 150 200 250 300 350 400 450 500-60

-50

-40

-30

-20

-10

0Meas ured Wors t-Cas e P air Ins ertion Los s 100 Meter Channel

Frequency (MHz)

Inse

rtion

gai

n (d

B)

Cat 5 s ample #1 Cat 5e s ample #4Cat 5e s ample #5Cat 6 limit

Page 20: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

20

Propagation Delay and Delay SkewPropagation Delay and Delay Skew

• Propagation delay derived from time-domain conversion (IFFT) of measured network analyzer data

• Propagation delay varied from 450 to 500 nsec over different cable samples (be careful using propagation delay to measure length!)

• No correlation between loss and propagation delay across different cables brands

• Delay skew less than 15 nsec over various cable samples

Page 21: Cabling Ad Hoc Cat 5e Measurements - IEEE 802 Ad Hoc Cat 5e Measurements Larry Cohen Solarflare Communications IEEE802.3 Plenary March 2003 10GBASE-T 2 Overview • Cabling Ad Hoc

IEEE802.3 Plenary March 200310GBASE-T

21

Cat 5e Measurement SummaryCat 5e Measurement Summary

• Lots of Cat 5e cable performs much better than specified TIA/ISO limits• Most significant channel degradations are due to connectors• Poor connectors can significantly increase internal crosstalk and reduce

return loss• TIA/ISO limits are designed for worst-case pass/fail limit bounds

– Never intended as a typical channel characterization– Provide margin for test equipment imperfections and measurement noise– Use of extrapolated TIA/ISO insertion loss limits as a channel model is very

pessimistic with respect to a typical Cat 5e channel• Typical Cat 5e channel insertion loss at room temperature can be

approximated by the extrapolated Cat 6 channel limit line• Significant channel degradations can be mitigated by replacing

connectors