cac-chuyen-de-bd-hsg-ntb-nhatrang-2013.pdf

Upload: nghquan129

Post on 11-Feb-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    1/253

    Mc lc

    Li ni u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Trn Nam DngNguyn l cc hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    Trnh o Chin, L Tin Dng

    Mt s dng tng qut ca phng trnh hm Pexider v p dng . . . . . . . . . . . . . . . . . . . . 16

    L SngXy dng mt lp phng trnh hm nh cc hng ng thc lng gic . . . . . . . . . . . . . 24

    L Th Anh oanTnh n nh nghim ca mt s phng trnh hm Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    Trn Vit TngMt s lp phng trnh hm a n sinh bi phi ng thc . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    L Sng, Nguyn inh HuyT cng thc Euler n bi ton s phc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    Nguyn Th TnhMt s ng dng ca phng trnh Pell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    Hunh B LcPhp th lng gic l cng c gii ton trong cc bi thi chn hc sinh gii . . . . . . . . . . 79

    Nguyn Trung HngS dng vnh cc s nguyn gii mt s bi ton s hc . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    Phm Th Thy HngNi suy theo yu t hnh hc ca th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    L Sng, V c Thch SnBt bin nh l mt phng php chng minh v ng dng trong gii ton . . . . . . . . . . . 108

    1

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    2/253

    L Th Thanh HngMt s dng ton lin quan n dy s c quy lut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Trng Vn imVn dng tnh n iu trong cc bi ton tm gii hn dy s v gii phng trnh, bt

    phng trnh, h phng trnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Hunh Tn Chung dng mt s nh l c bn ca gii tch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    L Vn ThnMt s phng php gii h phng trnh .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Hunh Kim Linh, T Hng KhanhMt s bi ton v a thc trong cc k thi hc sinh gii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

    Nguyn Vn NgcMt s bi ton v chia ht i vi cc a thc i xng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

    Hunh Duy ThyNt p hm s tim n trong bi ton bt ng thc, bi ton tm gi tr ln nht vgi tr nh nht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    Nguyn Ti ChungThm mt phng php mi chng minh bt ng thc . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

    T NguynMt s vn v php nghch o trong mt phng v ng dng . . . . . . . . . . . . . . . . . . . . . 213

    Trn Vn TrungS dng mt s tnh cht ca nh x gii bi ton phng trnh hm s............235

    Nguyn Hu Tm - Hong T QuynT gic lng tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

    2

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    3/253

    Li ni u

    Ha nhp vi tui tr c nc hot ng si ni k nim ngy thnh lp on thanh nin

    Cng sn H Ch Minh v thi ua lp thnh tch cho mng ngy sinh ca Bc H knh yu,

    tin ti k nim 37 nm ngy gii phng Nha Trang v thc hin cc chng trnh i mi gio

    dc ph thng, S Gio Dc v o to Khnh Ha phi hp vi Hi Ton hc H Ni ng

    t chc Hi tho khoa hc Cc chuyn Ton hc bi dng hc sinh gii THPT khu vc

    Duyn hi Nam Trung b v Ty nguyn.

    y l hi tho ln th hai theo tinh thn cam kt ca cc tnh duyn hi Nam Trung b

    v Ty Nguyn v vic hp tc pht trin kinh t - vn ha v x hi. S Gio dc v o

    to Ph Yn tin hnh t chc Hi tho ln th nht vo ngy 18-19/4/2011 ti thnh ph

    Tuy Ha v lin kt bi dng hc sinh gii v bi dng hc sinh gii mn ton trng Trung

    hc ph thng Chuyn cc tnh duyn hi Nam Trung B v Ty Nguyn. Ti Hi tho ln th

    nht thng nht giao cho S Gio dc v o to Khnh Ha t chc Hi tho ln th hai.

    y l nt sinh hot truyn thng mi v sinh hot chuyn mn, v giao lu hp tc trong gio

    dc, o to v cc sinh hot hc thut khc. V thc t, gi y, ti vng duyn hi Nam

    Trung b v Ty Nguyn ny xut hin ngy cng nhiu nt thnh tch ni bt, c hc

    sinh t gii ton Olympic quc t. Nm nay, nhiu i tuyn t gii cao trong k thi hc sinhgii quc gia. Cc tnh k Lc, Ph Yn mnh dn c i tuyn tham d k thi Olympic

    H Ni m rng bng ting Anh v t gii cao.

    Khu vc Duyn hi Nam Trung b v Ty nguyn gi y thc s khi sc, to tin

    vn ln tm cao mi, ch ng hi nhp, snh vai ngang bng vi cc khu vc khc trong

    c nc.

    Hi tho khoa hc ln ny c tin hnh t 14-15/4/2012 ti thnh ph Nha Trang, Khnh

    Ha hn hnh c n tip nhiu nh khoa hc, nh gio lo thnh, cc nh qun l, cc chuyn

    gia gio dc v cc nh ton hc bo co ti cc phin ton th v cc cn b ch o chuyn

    mn t cc s Gio dc v o to, cc thy gio, c gio b mn Ton cc tnh, thnh khu

    vc Duyn hi Nam Trung b v Ty nguyn ang trc tip bi dng hc sinh gii mn Ton

    bo co ti cc phin chuyn ca hi tho.

    3

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    4/253

    Ban t chc nhn c trn 30 bo co ton vn gi ti hi tho. Song do khun kh

    rt hn hp v thi gian, khu ch bn v thi lng ca cun k yu, chng ti ch c th a

    vo k yu c 22 bi, nhng bi cn li s c ch bn gi qu i biu khi thc hin

    chng trnh bo co chuyn chnh thc ca hi tho.

    Ni dung ca k yu ln ny rt phong ph, bao gm hu ht cc chuyn phc v vic

    bi dng hc sinh gii ton t i s, gii tch, hnh hc, s hc n cc dng ton lin quan

    khc. Bn c c th tm thy y nhiu dng ton t cc k olympic trong nc v quc t,

    mt s dng ton v hm s, l thuyt ni suy, cc tr, ...

    Ban t chc xin chn thnh cm n s hp tc v gip ht sc qu bu ca qu thy

    gio, c gio v c bit l ton th t ton ca trng THPT chuyn L Qu n Nha Trang,

    Khnh Ha c c cun k yu vi ni dung thit thc v rt phong ph ny.V thi gian chun b rt gp gp, nn cc khu hiu nh v ch bn cun k yu cha

    c y , chi tit, chc chn cn cha nhiu khim khuyt. Rt mong c s cm thng

    chia s ca qu i biu. Nhng kin ng gp lin quan n cun k yu ny xin gi v

    a ch: Trng THPT Chuyn L Qu n, s 67 Yersin, Nha Trang, Khnh Ha. Email:

    [email protected].

    Xin trn trng cm n.

    Nha Trang ngy 25.03.2012

    Nguyn Vn Mu

    Ch tch Hi Ton hc H Ning trng ban t chc hi tho

    4

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    5/253

    NGUYN L CC HNTrn Nam Dng, Trng i hc KHTN Tp HCM

    Bi vit ny c pht trin t bi vit Cc phng php v k thut chng minh mchng ti trnh by ti Hi ngh Cc chuyn Olympic Ton chn lc ti Ba V, H Ni,thng 5-2010 v ging dy cho i tuyn Olympic Vit Nam d IMO 2010. Trong bi ny, chngti tp trung chi tit hn vo cc ng dng ca Nguyn l cc hn trong gii ton.Mt tp hp hu hn cc s thc lun c phn t ln nht v phn t nh nht. Mt tp conbt k ca N lun c phn t nh nht. Nguyn l n gin ny trong nhiu trng hp rt cch cho vic chng minh. Hy xt trng hp bin! l khu quyt ca nguyn l ny.

    1 Mt s v d m uTa xem xt mt s v d s dng nguyn l cc hn

    V d 1. C 3 trng hc, mi trng cn hc sinh. Mi mt hc sinh quen vi t nht n + 1hc sinh t hai trng khc. Chng minh rng ngi ta c th chn ra t mi trng mt bnsao cho ba hc sinh c chn i mt quen nhau.

    Li gii. Gi A l hc sinh c nhiu bn nht mt trng khc. Gi s bn nhiu nht nyl k. Gi sA trng th nht v tp nhng bn quen A l M = {B1, B2, . . . , Bk} trngth 2. Cng theo gi thit, c t nht 1 hc sinh C trng th 3 quen vi A. V C quenkhng qu k hc sinh trng th nht nn theo gi thit C quen vi t nht n + 1 k hcsinh ca trng th hai, t N =

    {D

    1, D

    2,...,D

    m}l nhng ngi quen C trng th hai th

    m n + 1 k. V M, N u thuc tp hp gm n hc sinh v |M| + |N| k + n + 1k = n + 1nn ta c M N = . Chn B no thuc M N th ta c A,B,Ci mt quen nhau.V d 2. Chng minh rng khng tn ti sn l, n > 1 sao cho 15n + 1 chia ht cho n

    Li gii. Gi s tn ti mt s nguyn l n > 1 sao cho 15n + 1 chia ht cho n. Gi p l c snguyn t nh nht ca n, khi p l. Gi sk l s nguyn dng nh nht sao cho 15k 1chia ht cho p (s k c gi l bc ca 15 theo modulo p).V 152n1 = (15n1)(15n+ 1) chia ht cho p. Mt khc, theo nh l nh Fermat th 15p11chia ht cho p. Theo nh ngha ca k, suy ra k l c s ca cc s p 1 v 2n. Suy rak|(p1, 2n). Do p l c s nguyn t nh nht ca n nn (n, p1) = 1. Suy ra (p1, 2n) = 2.Vy k|2. T k = 1 hoc k = 2. C hai trng hp ny u dn ti p = 7. Nhng iu nymu thun v 15n + 1 lun ng d2mod 7

    Trong hai v d trn, r rng vic xt cc trng hp bin em n cho chng ta nhngthng tin b sung quan trng. Trong v d th nht, vic chn A l hc sinh c s ngi quennhiu nht mt trng khc cho ta thng tin s ngi quen ca C trong trng th hai tnht l n + 1 k. Trong v d th hai, do p l c s nguyn t nh nht nn p 1 nguyn tcng nhau vi n l bi s ca p.Bi tp

    5

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    6/253

    1. Cho n im xanh v n im trn mt phng, trong khng c 3 im no thng hng.Chng minh rng ta c th ni 2n im ny bng n on thng c u mt khc mu sao chochng i mt khng giao nhau.2. Trn ng thng c 2n + 1 on thng. Mi mt on thng giao vi t nht n on thngkhc. Chng minh rng tn ti mt on thng giao vi tt c cc on thng cn li.3. Trong mt phng cho n > 1 im. Hai ngi chi ln lt ni mt cp im cha c nibng mt vc-t vi mt trong hai chiu. Nu sau nc i ca ngi no tng cc vc t v bng 0 th ngi th hai thng; nu cho n khi khng cn v c vc t no na mtng vn cha c lc no bng 0 th ngi th nht thng. Hi ai l ngi thng cuc nu ching?4. Gi sn l s nguyn dng sao cho 2n + 1 chia ht cho n.a) Chng minh rng nu n > 1 th n chia ht cho 3;b) Chng minh rng nu n > 3 th n chia ht cho 9;c) Chng minh rng nu n > 9 th n chia ht cho 27 hoc 19;d) Chng minh rng nu n chia ht cho s nguyn t p = 3 th p 19;e)* Chng minh rng nu n chia ht cho s nguyn t p, trong p = 3 v p = 19 th p 163.

    2 Phng php phn v d nh nhtTrong vic chng minh mt s tnh cht bng phng php phn chng, ta c th c thm

    mt s thng tin b sung quan trng nu s dng phn v d nh nht. tng l chngminh mt tnh cht A cho mt cu hnh P, ta xt mt c trng f(P) ca P l mt hm cgi tr nguyn dng. By gi gi s tn ti mt cu hnh P khng c tnh cht A, khi stn ti mt cu hnh P0 khng c tnh cht A vi f(P0) nh nht. Ta s tm cch suy ra iumu thun. Lc ny, ngoi vic chng ta c cu hnh P0 khng c tnh cht A, ta cn c micu hnh P vi f(P) < f(P0) u c tnh cht A.

    V d 3. Cho ng gic li ABCDE trn mt phng to c to cc nh u nguyn.a) Chng minh rng tn ti t nht 1 im nm trong hoc nm trn cnh ca ng gic (khcvi A, B, C, D, E) c to nguyn.b) Chng minh rng tn ti t nht 1 im nm trong ng gic c to nguyn.c) Cc ng cho ca ng gic li ct nhau to ra mt ng gic li nh A1B1C1D1E1 bn trong.Chng minh rng tn ti t nht 1 im nm trong hoc trn bin ng gic li A1B1C1D1E1.

    Cu a) c th gii quyt d dng nh nguyn l Dirichlet: V c 5 im nn tn ti t nht2 im X, Y m cp to (x, y) ca chng c cng tnh chn l (ta ch c 4 trng hp (chn,chn), (chn, l), (l, chn) v (l, l)). Trung im Z ca XY chnh l im cn tm.

    Sang cu b) l lun trn y cha , v nu XY khng phi l ng cho m l cnh th Z cth s nm trn bin. Ta x l tnh hung ny nh sau. rng nu XY l mt cnh, chnghn l cnh AB th ZBCDE cng l mt ng gic li c cc nh c to u nguyn v tac th lp li l lun nu trn i vi ng gic ZBCDE, ... Ta c th dng n bin chngminh qu trnh ny khng th ko di mi, v n mt lc no s c 1 ng gic c imnguyn nm trong.Tuy nhin, ta c th trnh by li l lun ny mt cch gn gng nh sau: Gi s tn ti mtng gic nguyn m bn trong khng cha mt im nguyn no (phn v d). Trong tt c

    6

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    7/253

    cc ng gic nh vy, chn ng gic ABCDE c din tch nh nht (phn v d nh nht). Nuc nhiu ng gic nh vy th ta chn mt trong s chng. Theo l lun trnh by cua), tn ti hai nh X, Y c cp to cng tnh chn l. Trung im Z ca XY s c to nguyn. V bn trong ng gic ABCDE khng c im nguyn no nn XY phi l mt cnhno . Khng mt tnh tng qut, gi s l AB. Khi ng gic ZBCDE c to cc nh

    u nguyn v c din tch nh hn din tch ng gic ABCDE. Do tnh nh nht ca ABCDE(phn v d nh nht pht huy tc dng!) nn bn trong ng gic ZBCDE c 1 im nguynT. iu ny mu thun v T cng nm trong ng gic ABCDE.Phn v d nh nht cng l cch rt tt trnh by mt chng minh quy np ( y thngl quy np mnh), trnh nhng l lun di dng v thiu cht ch.

    V d 4. Chng minh rng nu a, b l cc s nguyn dng nguyn t cng nhau th tn ticc s nguynx, y sao cho ax + by = 1.

    Li gii. Gi s khng nh bi khng ng, tc l tn ti hai s nguyn dng a, b nguynt cng nhau sao cho khng tn ti x, y nguyn sao cho ax + by = 1. Gi a0, b0 l mt cp snh vy vi a0 + b0 nh nht (phn v d nh nht).

    V (a0, b0) = 1 v (a0, b0) = (1, 1) (do 1.0 + 1.1 = 1) nn a0 = b0. Khng mt tnh tng qut,c th gi sa0 > b0. D thy (a0 b0, b0) = (a0, b0) = 1. Do a0b0 + b0 = a0 < a0 + b0 nndo tnh nh nht ca phn v d, ta suy ra (a0 b0, b0) khng l phn v d, tc l tn ti x, ysao cho (a0 b0)x + b0y = 1. Nhng t y th a0x + b0(y x) = 1. Mu thun i vi iu gis. Vy iu gi s l sai v bi ton c chng minh.Bi tp5. Gii phn c) ca v d 3.6. Trn mt phng nh du mt s im. Bit rng 4 im bt k trong chng l nh camt t gic li. Chng minh rng tt c cc im c nh du l nh ca mt a gic li.

    3 Nguyn l cc hn v bt ng thcNguyn l cc hn thng c p dng mt cch hiu qu trong cc bt ng thc c tnh

    t hp, dng chng minh tn ti k s tn s tha mn mt iu kin ny .

    V d 5. (Moscow MO 1984) Trn vng trn ngi ta xp t nht 4 s thc khng m c tngbng 1. Chng minh rng tng tt c cc tch cc cp s k nhau khng ln hn 14 .

    Li gii. Ta cn chng minh rng vi mi n 4 s thc khng m a1,...,an, c tng bng 1,ta c bt ng thc

    a1a2 + a2a3 + ... + an1an + ana1 14

    .

    Vi n chn (n = 2m) iu ny c th chng minh d dng: t a1 + a3 + ... + a2m1 = a; khi, r rng,

    a1a2 + a2a3 + ... + an1an + ana1 (a1 + a3 + ... + a2m1) (a2 + a4 + ... + a2m) = a(1 a) 14

    .

    7

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    8/253

    Gi sn l v ak l s nh nht trong cc s cho. ( thun tin, ta gi s1 < k < n1 - iuny khng lm mt tnh tng qut khi n 4.) t bi = ai, vi i = 1,...,k 1, bk = ak + ak+1v bi = ai+1 vi i = k + 1,...,n 1. p dng bt ng thc ca chng ta cho cc s b1,...,bn1,ta c:

    a1a2 + ... + ak2ak1 + (ak1 + ak+2)bk + ak+2ak+3 + ... + an1an + ana1 1

    4 .

    Cui cng, ta s dng bt ng thc

    ak1ak + akak+1 + ak+1ak+2 ak1ak + ak1ak+1 + ak+1ak+2 (ak1 + ak+2)bk, suy ra iu phi chng minh.nh gi trn y l tt nht; du bng xy ra khi 2 trong n s bng 12 , cn cc s cn li bng0.

    V d 6. Cho n 4 v cc s thc phn bita1, a2, . . . , an tho mn iu kin

    ni=1

    ai = 0,ni=1

    a2i = 1.

    Chng minh rng tn ti 4 s a,b,c,d thuc{a1, a2, . . . , an} sao cho

    a + b + c + nabc ni=1

    a3i a + b + d + nabd.

    Li gii. Nu a b c l ba s nh nht trong cc ai th vi mi i = 1, 2, . . . , n ta c btng thc

    (ai a)(ai b)(ai c) 0Suy ra

    a3i (a + b + c)a2i (ab + bc + ca)ai + abc vi mi i = 1, 2, . . . , n .

    Cng tt c cc bt ng thc ny, vi ch ni=1

    ai = 0,ni=1

    a2i = 1 ta c

    ni=1

    a3i a + b + c + nabc.

    By gi nu chn d l s ln nht trong cc ai

    th ta c

    (ai a)(ai b)(ai d) 0vi mi i = 1, 2, . . . , n . V cng thc hin tng t nh trn, ta suy ra bt ng thc v phica bt ng thc kp cn chng minh.

    V d 7. Tng bnh phng ca mt 100 s thc dng ln hn 10000. Tng ca chng nhhn 300. Chng minh rng tn ti 3 s trong chng c tng ln hn 100.

    8

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    9/253

    Li gii. Gi s 100 s l C1 C2 ... C100 > 0. Nu nhC1 100, th C1 + C2 + C3 >100. Do ta c th gi s rng C1 < 100. Khi 100 C1 > 0, 100 C2 > 0, C1 C2 0, C1 C3 0, v vy

    100(C1 + C2 + C3) 100(C1 + C2 + C3) (100 C1)(C1 C3) (100 C2)(C2 C3)= C2

    1+ C2

    2+ C

    3(300

    C1

    C2

    )

    > C21 + C22 + C3(C3 + C4 + . . . + C100)

    C21 + C22 + C23 + . . . + C2100) > 10000.Suy ra, C1 + C2 + C3 > 100.Bi tp7. Trong mi ca bng 2 n ta vit cc s thc dng sao cho tng cc s ca mi ct bng1. Chng minh rng ta c th xo i mi ct mt s sao cho mi hng, tng ca cc s cnli khng vt qu n+14 .8. 40 tn trm chia 4000 euro. Mt nhm gm 5 tn trm c gi l ngho nu tng s tinm chng c chia khng qu 500 euro. Hi s nh nht cc nhm trm ngho trn tng s

    tt c cc nhm 5 tn trm bng bao nhiu?

    4 Nguyn l cc hn v phng trnh DiophantTrong phn ny, ta trnh by chi tit ba v d p dng nguyn l cc hn trong phng

    trnh Fermat, phng trnh Pell v phng trnh dng Markov.

    V d 8. Chng minh rng phng trnhx4 + y4 = z2 (1) khng c nghim nguyn dng.

    Li gii. Gi s ngc li, phng trnh (1) c nghim nguyn dng, v (x,y,z) l nghimca (1) vi z nh nht.(1) D thy x2, y2, z i mt nguyn t cng nhau(2) T nghim ca phng trnh Pythagore, ta c tn ti p, q sao cho

    x2 = 2pq

    y2 = p2 q2z = p2 + q2

    (3) T y, ta li c mt b ba Pythagore khc, v y2 + q2 = p2.(4) Nh vy, tn ti a, b sao cho

    q = 2ab

    y = a2 b2p = a2 + b2

    a, b nguyn t cng nhau(5) Kt hp cc phng trnh ny, ta c:

    x2 = 2pq = 2(a2 + b2)(2ab) = 4(ab)(a2 + b2)

    9

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    10/253

    (6) V ab v a2 + b2 nguyn t cng nhau, ta suy ra chng l cc s chnh phng.(7) Nh vy a2 + b2 = P2 v a = u2, b = v2. Suy ra P2 = u4 + v4.(8) Nhng by gi ta thu c iu mu thun vi tnh nh nht ca z v:

    P2 = a2 + b2 = p < p2 + q2 = z < z2.

    (9) Nh vy iu gi s ban u l sai, suy ra iu phi chng minh.Phng php trnh by trn cn c gi l phng php xung thang. y c l l

    phng php m Fermat ngh ti khi vit trn l cun sch ca Diophant nhng dng chm sau ny c gi l nh l ln Fermat v lm in u bao nhiu th h nhng nhton hc.

    V d 9. Tm tt c cc cp a thcP(x), Q(x) tha mn phng trnh

    P2(x) = (x2 1)Q2(x) + 1(1)Li gii. Khng mt tnh tng qut, ta ch cn tm nghim trong tp cc a thc c h s

    khi u dng.Nu (x + x2 1)n = Pn(x)+x2 1Qn(x)(2) th (x x2 1)n = Pn(x)x2 1Qn(x)(3)Nhn (2) v (3) v theo v, ta c

    1 = (x + x2 1)n(x

    x2 1)n = (Pn(x) +

    x2 1Qn(x))(Pn(x) x2 1Qn(x))

    = P2n(x) (x2 1)Q2n(x)Suy ra cp a thc Pn(x), Qn(x) xc nh bi (2) v (3) l nghim ca (1). Ta chng minh yl tt c cc nghim ca (1). Tht vy, gi s ngc li, tn ti cp a thc P(x), Q(x) khngc dng Pn(x), Qn(x) tha mn (1). Ta xt cp a thc (P, Q) nh vy vi degQ nh nht. t

    (P(x) +x2 1Q(x))(x x2 1) = P(x) + x2 1Q(x)(4)Th r rng(P(x)

    x2 1Q(x))(x +

    x2 1) = P(x)

    x2 1Q(x)

    Suy ra (P, Q) cng l nghim ca (1).Khai trin (4), ta thu c P(x) = xP(x) (x2 1)Q(x), Q(x) = xQ(x) P(x). Ch lt (1) ta suy ra (P(x) xQ(x))(P(x) + xQ(x)) = Q2(x) + 1. V P(x) v Q(x) u c hs khi u > 0 v degP = degQ + 1 nn ta c deg(P(x) + xQ(x)) = degQ + 1. T y, dodeg(Q2(x) + 1) 2deg(Q) nn ta suy ra deg(Q(x)) deg(Q) 1 < degQ.Nh vy, theo cch chn cp (P, Q) th tn ti n sao cho (P, Q) = (Pn, Qn).Nhng khi t (4) suy ra

    P(x) + x2 1Q(x) = (P(x) +

    x2 1Q(x))(x +

    x2 1)= (x +

    x2 1)n(x +

    x2 1)

    = (x + x2 1)n+1

    Suy ra (P, Q) = (Pn+1, Qn + 1), mu thun.Vy iu gi s l sai v ta c iu phi chng minh.

    10

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    11/253

    V d 10. Tm tt c cc gi trk sao cho phng trnh(x + y + z)2 = kxyz c nghim nguyndng.

    Li gii. Gi sk l mt gi tr cn tm. Gi x0, y0, z0 l nghim nguyn dng ca phngtrnh

    (x + y + z)2 = kxyz(1)

    c x0 + y0 + z0 nh nht. Khng mt tnh tng qut, c th gi sx0 y0 z0.Vit li (1) di dng x2 (kyz 2y 2z)x + (y + z)2 = 0,ta suy ra x0 l nghim ca phng trnh bc hai

    x2 (ky0z0 2y0 2z0)x + (y0 + z0)2 = 0(2)

    Theo nh l Viet x1 = ky0z0 2y0 2z0 x0 = (y0+z0)2

    x0cng l nghim ca (2). T

    (x1, y0, z0) l nghim ca (1). Cng t cc cng thc trn, ta suy ra x1 nguyn dng. Tc l(x1, y0, z0) l nghim nguyn dng ca (1). T tnh nh nht ca x0 + y0 + z0 ta x1 x0. Ty ta c

    ky0z0 2y0 2z0 x0 x0 v (y0 + x0)2x0

    x0

    T bt ng thc th hai ta suy ra y0 + z0 x0. T , p dng vo bt ng thc th nht,ta c ky0z0 4x0.Cui cng, chia hai v ca ng thc x20 + y

    20 + z

    20 + 2x0y0 + 2y0z0 + 2z0x0 = kx0y0z0 cho x0y0z0,

    ta cx0

    y0z0+

    y0x0z0

    +z0

    x0y0+

    2

    z0+

    2

    x0+

    2

    y0= k.

    T suy ra k4 + 1 + 1 + 2 + 2 + 2 k, tc l k 323 . Suy ra k 10.Ch nu x0 = 1 th y0 = z0 = 1 suy ra k = 9. Nu k = 9 th x0 2 v nh gi trn trthnh

    k4 + 1 +

    12 + 2 + 1 + 2 k suy ra k

    263 , suy ra k 8Vy gi tr k = 10 b loi.

    Vi k = 1 phng trnh c nghim, chng hn (9, 9, 9)Vi k = 2 phng trnh c nghim, chng hn (4, 4, 8)Vi k = 3 phng trnh c nghim, chng hn (3, 3, 3)Vi k = 4 phng trnh c nghim, chng hn (2, 2, 4)Vi k = 5 phng trnh c nghim, chng hn (1, 4, 5)Vi k = 6 phng trnh c nghim, chng hn (1, 2,3)Vi k = 8 phng trnh c nghim, chng hn (1, 1, 2)Vi k = 9 phng trnh c nghim, chng hn (1, 1, 1)Ngoi ra, ta c th chng minh c rng trng hp k = 7 phng trnh khng c nghim

    nguyn dng (xin c dnh cho bn c).Vy cc gi tr k cn tm l k = 1, 2, 3, 4, 5, 6, 8, 9.

    V d 11. (CRUX, Problem 1420) Nu a,b,c l cc s nguyn dng sao cho

    0 < a2 + b2 abc cChng minh rng a2 + b2 abc l s chnh phng.

    11

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    12/253

    Li gii. Gi s ngc li rng tn ti cc s nguyn dng a,b,c sao cho 0 < a2 + b2abc cv k = a2 + b2 abc (1) khng phi l s chnh phng.By gi ta c nh k v c v xt tp hp tt c cc cp s nguyn dng (a, b) tha mn phngtrnh (1), tc l ta xt

    S(c, k) =

    {(a, b)

    (N)2 : a2 + b2

    abc = k

    }Gi s (a, b) l cp s thuc S(c, k) c a + b nh nht. Khng mt tnh tng qut c th gisa b. Ta xt phng trnh

    x2 bcx + b2 k = 0Ta bit rng x = a l mt nghim ca phng trnh. Gi a1 l nghim cn li ca phng trnhny th a1 = bc a = (b

    2k)a .

    Ta c th chng minh c rng (bn c t chng minh!) a1 nguyn dng. Suy ra (a1, b)cng thuc S(c, k).Tip theo ta c a1 = (b2 k)/a < a2/a = a, suy ra a1 + b < a + b. iu ny mu thun vicch chn (a, b).

    Bi tp9. Chng minh rng phng trnh x3 + 3y3 = 9z3 khng c nghim nguyn dng.10. Chng minh rng phng trnh x2 + y2 + z2 = 2xyz khng c nghim nguyn dng.11. (IMO 88) Nu a,b,q= (a2 + b2)/(ab + 1) l cc s nguyn dng th q l s chnh phng.12. (PTNK 03). Tm tt c cc s nguyn dng k sao cho phng trnh x2 (k2 4)y2 = 24c nghim nguyn dng.13. (Mathlinks) Cho A l tp hp hu hn cc s nguyn dng. Chng minh rng tn ti tphp hu hn cc s nguyn dng B sao cho A B,

    xB

    x =xB

    x2

    14.* (AMM 1995) Cho x, y l cc s nguyn dng sao cho xy + x v xy + y l cc s chnhphng. Chng minh rng c ng mt trong hai s x, y l s chnh phng.15. (IMO 2007) Cho a, b l cc s nguyn dng sao cho 4ab

    1 chia ht (4a2

    1)2. Chng

    minh rng a = b.16. (VMO 2012) Xt cc s t nhin l a, b m a l c s ca b2 + 2 v b l c s ca a2 + 2.Chng minh rng a v b l cc s hng ca dy s t nhin (vn) xc nh bi

    v1 = v2 = 1 v vn = 4vn1 vn2 vi mi n 2.

    5 Nguyn l cc hn trong t hpTrn y chng ta xem xt cc v d p dng ca nguyn l cc hn trong mnh t

    mu m nht dnh cho nguyn l cc hn. Nguyn l cc hn c th c ng dng chngminh mt qu trnh l dng (trong cc bi ton lin quan n bin i trng thi) trong biton v th, hay trong cc tnh hung t hp a dng khc. Cc i tng thng c emra xt cc hn thng l: on thng ngn nht, tam gic c din tch ln nht, gc lnnht, nh c bc ln nht, chu trnh c di ngn nht ...Di y ta xem xt mt s v d:

    V d 12. (nh l Sylvester) Cho tp hp S gm hu hn cc im trn mt phng tha mntnh cht sau: Mt ng thng i qua 2 im thuc S u i qua t nht mt im th bathuc S. Khi tt c cc im ca S nm trn mt ng thng.

    12

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    13/253

    Kt lun ca nh l nghe c v hin nhin nhng chng minh n th khng h n gin.Chng minh di y ca Kelly c chng ti tham kho t WikipediaGi s phn chng l tn ti mt tp hp S gm hu hn im khng thng hng nhng ming thng qua hai im trong S u cha t nht ba im. Mt ng thng gi l ngni nu n i qua t nht hai im trong S. Gi s (P,l) l cp im v ng ni c khongcch dng nh nht trong mi cp im-ng ni.Theo gi thit, l i qua t nht ba im trong S, nn nu h ng cao t P xung l th tn

    Hnh 1:

    ti t nht hai im nm cng mt pha ca ng cao (mt im c th nm ngay chnng cao). Trong hai im ny, gi im gn chn ng cao hn l B, v im kia l C.Xt ng thng m ni P v C. Khong cch tB ti m nh hn khong cch tP ti l, muthun vi gi thit v P v l. Mt cch thy iu ny l tam gic vung vi cnh huyn BCng dng v nm bn trong tam gic vung vi cnh huyn P C.Do , khng th tn ti khong cch dng nh nht gia cc cp im-ng ni. Ni cchkhc, mi im u nm trn ng mt ng thng nu mi ng ni u cha t nht baim.

    V d 13. V d 13. (Trn u ton hc Nga 2010) Mt quc gia c 210 thnh ph. Ban ugia cc thnh ph cha c ng. Ngi ta mun xy dng mt s con ng mt chiu nigia cc thnh ph sao cho: Nu c ng i t A n B v t B n C th khng c ng it A n C.Hi c th xy dng c nhiu nht bao nhiu ng?

    Li gii. Gi A l thnh ph c nhiu ng i nht (gm c ng i xut pht t A vng i n A). Ta chia cc thnh ph cn li thnh 3 loi. Loi I - C ng i xut pht tA. Loi II - C ng i n A. Loi III: Khng c ng i n A hoc xut pht t A. tm = |I|, n = |II|, p = |III|. Ta c m + n +p = 209.D thy gia cc thnh ph loi I khng c ng i. Tng t, gia cc thnh ph loi 2 khngc ng i.

    13

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    14/253

    S cc ng i lin quan n cc thnh ph loi 3 khng vt qu p(m + n). (Do bc caA = m + n l ln nht).Tng s ng i bao gm:+ Cc ng i lin quan n A: m + n+ Cc ng i lin quan n III : p(m + n)

    + Cc ng i gia I v II: mnSuy ra tng s ng i nh hn mn + (p + 1)m + (p + 1)n (m + n + p + 1)2/3 = 2102/3.Du bng xy ra vi th 3 phe, mi phe c 70 thnh ph, thnh ph phe 1 c ng i

    n thnh ph phe 2, thnh ph phe 2 c ng i n thnh ph phe 3, thnh ph phe 3 cng i n thnh ph phe 1.

    V d 14. Trong quc hi M, mi mt ngh s c khng qu 3 k th. Chng minh rng c thchia quc hi thnh 2 vin sao cho trong mi vin, mi mt ngh s c khng qu mt k th.

    y l mt v d m ti rt thch. C nhiu cch gii khc nhau nhng y chng ta strnh by mt cch gii s dng nguyn l cc hn. tng tuy n gin nhng c rt nhiu

    ng dng (trong nhiu bi ton phc tp hn).Ta chia quc hi ra thnh 2 vin A, B mt cch bt k. Vi mi vin A, B, ta gi s(A), s(B) ltng ca tng s cc k th ca mi thnh vin tnh trong vin . V s cch chia l hu hnnn phi tn ti cch chia (A0, B0) sao cho s(A0) + s(B0) nh nht. Ta chng minh cch chiany tha mn yu cu bi ton.Gi s rng cch chia ny vn cha tho mn yu cu, tc l vn c mt ngh s no cnhiu hn 1 k th trong vin ca mnh. Khng mt tnh tng qut, gi s ngh s x thuc A0c t nht 2 k th trong A0. Khi ta thc hin php bin i sau: chuyn x tA0 sang B0 c cch chia mi l A = A0 {x} v B = B0 {x}. V x c t nht 2 k th trong A0 vA khng cn cha x nn ta cs(A) s(A0) 4 (trong tng mt i t nht 2 ca s(x) v 2 ca cc k th ca x trong A0)V x c khng qu 3 k th v c t nht 2 k th trong A0 nn x c nhiu nht 1 k th trongB0 (hay B), cho nn

    s(B) s(B0) + 2T s(A) + s(B) s(A0) + s(B0) 2. Mu thun vi tnh nh nht ca s(A0) + s(B0). Vyiu gi s l sai, tc l cch chia (A0, B0) tha mn yu cu bi ton (pcm).Bi tp17. Cho 2n im trn mt phng, trong khng c 3 im no thng hng. Chng minh rngnhng im ny c th phn thnh n cp sao cho cc on thng ni chng khng ct nhau.18. Trong mt phng cho 100 im, trong khng c ba im no thng hng. Bit rng baim bt k trong chng to thnh mt tam gic c din tch khng ln hn 1. Chng minhrng ta c th ph tt c cc im cho bng mt tam gic c din tch 4.

    19. Trn mt phng cho 2n + 3 im, trong khng c ba im no thng hng v khng c4 im no nm trn mt ng trn. Chng minh rng ta c th chn ra t cc im ny 3im, sao cho trong cc im cn li c n im nm trong ng trn v n im nm ngoing trn.20. Trong mt phng cho n im v ta nh du tt c cc im l trung im ca cc onthng c u mt l cc im cho. Chng minh rng c t nht 2n 3 im phn bit cnh du.21. Ti mt quc gia c 100 thnh ph, trong c mt s cp thnh ph c ng bay. Bit

    14

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    15/253

    rng t mt thnh ph bt k c th bay n mt thnh ph bt k khc (c th ni chuyn).Chng minh rng c th i thm tt c cc thnh ph ca quc gia ny s dng khng qu a)198 chuyn bay b) 196 chuyn bay.22*. Trong mt nhm 12 ngi t 9 ngi bt k lun tm c 5 ngi i mt quen nhau.Chng minh rng tm c 6 ngi i mt quen nhau trong nhm .

    Ti liu tham kho[1] Nguyn Vn Mu, Cc chuyn Olympic Ton chn lc,Ba V , 5-2010 .

    [2] on Qunh ch bin, Ti liu gio khoa chuyn ton - i s 10, NXB GD, 2010.

    [3] http://fermatslasttheorem.blogspot.com/2005/05/fermats-last-theorem-n-4.html

    [4] vi.wikipedia.org/wiki/nh l Sylvester-Gallai

    [5] www.mathscope.org

    [6] www.problems.ru

    15

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    16/253

    MT S DNG TNG QUT CA PHNGTRNH HM PEXIDER V P DNG

    Trnh o Chin, Trng Cao ng S Phm Gia LaiL Tin Dng, Trng THPT Pleiku, Gia Lai

    Phng trnh hm Pexider (PTHP) l phng trnh hm tng qut trc tip ca Phng trnhhm Cauchy quen thuc. Bi vit ny cp n mt s dng tng qut ca PTHP v vi pdng ca n trong chng trnh Ton ph thng.

    1 Phng trnh hm PexiderPTHP c bn gm bn dng di y (li gii c th xem trong [1] hoc [2])

    Bi ton 1.1. Tm tt c cc hm sf, g, h xc nh v lin tc trnR tha mn iu kinf(x + y) = g (x) + h (y) , x, y R. (1)

    Gii. Nghim ca phng trnh (1) l

    f(t) = ct + a + b, g (t) = ct + a, h (t) = ct + b; a,b,c R.Bi ton 1.2. Tm tt c cc hm sf, g, h xc nh v lin tc trnR tha mn iu kin

    f(x + y) = g (x) h (y) , x, y R. (2)Gii. Nghim ca phng trnh (2) l

    f(t) = abec

    t, g (t) = aec

    t, h (t) = bec

    ; a,b,c Rhoc

    f 0, g 0, h CR,trong CR l tp hp cc hm s lin tc trn R,hoc

    f 0, h 0, g CR.Bi ton 1.3. Tm tt c cc hm sf, g, h xc nh v lin tc trnR+ tha mn iu kin

    f(xy) = g (x) + h (y) , x, y R+. (3)Gii. Nghim ca phng trnh (3) l

    f(t) = m.lnt + a + b, g (t) = m.lnt + a, h (t) = m.lnt + b; m,a,b,c R.Bi ton 1.4. Tm tt c cc hm sf, g, h xc nh v lin tc trnR+ tha mn iu kin

    f(xy) = g (x) h (y) , x, y R+. (4)Gii. Nghim ca phng trnh (4) l

    f(t) = abtc, g (t) = atc, h (t) = btc; a,b,c R.

    16

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    17/253

    2 Mt s dng tng qut ca Phng trnh hm PexiderTy theo mc kin thc, PTHP c nhiu dng tng qut khc nhau. Di y l mt s

    dng tng qut ca phng trnh (1) gn gi vi chng trnh ca h ph thng chuyn Ton.Bi ton 2.1. Tm tt c cc hm s f, fi (i = 1, 2,...,n) xc nh v lin tc trn R tha

    mn iu kinf

    ni=1

    xi

    =

    ni=1

    fi (xi), x, xi R. (5)

    Gii. y l dng quy np mt cch t nhin ca Bi ton 1.1. Nghim ca phng trnh(5) l

    f(t) = at +

    ni=1

    ai, fi (t) = at + ai; a, ai R.

    Tng t Bi ton 2.1, ta cng c th gii c phng trnh hm dng

    fni=1

    aixi

    =

    ni=1

    aifi (xi), x, xi R, ai R.

    Bi ton sau y l mt dng tng qut kh c bn, m phng php quy np khng thp dng trong li gii. Mt s phn chng minh c s dng mt s kin thc c bn, khngqu kh, ca i s tuyn tnh v Phng trnh vi phn, thuc chng trnh c s ca Toncao cp.Bi ton 2.2. Tm tt c cc hm s f, fi, gi (i = 1, 2,...,n) xc nh v tn ti o hm(theo mi bin s c lp x, y) trnR tha mn iu kin

    f(x + y) =

    nk=1

    fk (x) gk (y), x, y R, n 2. (6)

    Gii. Ta gii bi ton ny trong trng hp n = 2. Trng hp n 3 c gii tng t.Xt phng trnh hm

    f(x + y) = f1 (x) g1 (y) + f2 (x) g2 (y) , x, y R, (7)trong cc hm f, f1, f2, g1, g2 xc nh v tn ti o hm (theo mi bin s c lp x, y)trn R.

    Khng mt tnh tng qut, ta lun c th gi thit rng cc h hm {f1 (x) , f2 (x)} v{g1 (x) , g2 (x)} l c lp tuyn tnh. Ta c

    fx (x + y) = f

    1 (x) g1 (y) + f

    2 (x) g2 (y) ,

    fy (x + y) = f1 (x) g

    1 (y) + f2 (x) g

    2 (y) .

    V fx (x + y) = fy (x + y), nn

    f1 (x) g1 (y) + f

    2 (x) g2 (y) = f1 (x) g

    1 (y) + f2 (x) g

    2 (y) . (8)

    17

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    18/253

    Ngoi ra, v {g1 (x) , g2 (x)} l c lp tuyn tnh, nn tn ti cc hng s y1 , y2 sao cho g1 (y1) g1 (y2)g2 (y1) g2 (y2)

    = 0.Thay y1, y2 vo (8), ta c

    f1 (x) g1 (y1) + f

    2 (x) g2 (y1) = f1 (x) g

    1 (y1) + f2 (x) g

    2 (y1) ,

    f1 (x) g1 (y2) + f

    2 (x) g2 (y2) = f1 (x) g

    1 (y2) + f2 (x) g

    2 (y2) .

    V nh thc nu trn khc 0, nn h phng trnh ny c nghim duy nht f1 (x), f

    2 (x).Do , ta c th biu din f1 (x) v f

    2 (x) qua f1 (x) v f2 (x) di dng

    f1 (x) = a11f1 (x) + a12f2 (x) , f

    2 (x) = a21f1 (x) + a22f2 (x) . (9)

    Mt khc, thay y = 0 vo (7), ta c

    f(x) = c1f1 (x) + c2f2 (x) . (10)

    Suy raf (x) = c11f1 (x) + c12f2 (x) , f

    (x) = c21f1 (x) + c22f2 (x) . (11)

    - Nu

    c11 c12c21 c22

    = 0, th t (10) v (11), ta thu c phng trnh vi phn tuyn tnhthun nht

    a1f (x) + a2f

    (x) = 0,

    trong a1 v a2 khng ng thi bng 0. Gii phng trnh vi phn ny, ta tm c f(x).Tt c cc hm f(x) ny u tha mn (7) nn l nghim ca phng trnh.

    - Nu c11 c12

    c21 c22

    = 0, th t (10) v (11), ta c th biu din f1 (x) v f2 (x) bi mt t hptuyn tnh ca f (x) v f (x). Thay biu din ny vo (5), ta thu c phng trnh dng

    f(x) + a1f (x) + a2f

    (x) = 0.

    Gii phng trnh vi phn ny, ta tm c f(x) .Tt c cc hm f(x) ny u tha mn (7) nn l nghim ca phng trnh. Bi ton

    c gii quyt.Di y l mt s trng hp c bit m phng trnh (7) tr thnh mt s phng trnh

    hm c bn. Nhng phng trnh ny kh ni ting v c li gii hon ton s cp (c th

    xem trong [1] hoc [2]).- Vi f1 (x) = f(x), g1 (y) 1, f2 (x) 1, g2 (y) = f(y), phng trnh (7) tr thnh Phng

    trnh hm Cauchyf(x + y) = f(x) + f(y) , x, y R.

    - Vi f1 (x) = g (x), g1 (y) 1, f2 (x) 1, g2 (y) = h (y), phng trnh (7) tr thnh Phngtrnh hm Pexider

    f(x + y) = g (x) + h (y) , x, y R.

    18

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    19/253

    - Vi f2 (x) 1, phng trnh (7) tr thnh Phng trnh hm Vinczef(x + y) = f1 (x) g1 (y) + g2 (y) , x, y R,

    - Vi f1 (x) = f(x), g1 (y) = g (y), f2 (x) = g (x), g2 (y) = f(y), phng trnh (7) trthnh phng trnh hm dng lng gic (v mt nghim ca phng trnh ny l f(t) = sint,g (t) = cost)

    f(x + y) = f(x) g (y) + g (x) f(y) , x, y R.

    3 p dngPTHP tng qut c nhiu p dng trong vic nghin cu mt s vn lin quan ca Ton

    ph thng. Sau y l mt p dng lin quan n cc php chuyn i bo ton yu t gc camt tam gic.Bi ton 3.1. Tm tt c cc hm s f, g, h xc nh v lin tc trnR tha mn iu kinsau: NuA,B,C

    R, A+B +C = , thA1+B1+C1 = , trong A1 = f(A), B1 = f(B),

    C1 = f(C).Gii. Gi s cc hm s f, g, h xc nh v lin tc trn R tha mn iu kin trn. Ta c

    A1 + B1 + C1 = f(A) + f(B) + f(C) = f( B C) = f(B) f(C) . (12)

    t F (x) = f( x), G (x) = 2

    g (x), H(x) = 2

    h (x). Khi , phng trnh (12) cdng

    F(B + C) = G (B) + H(C) . (13)

    Phng trnh (13) chnh l Phng trnh Pexider bit. Nghim lin tc tng qut ca phng

    trnh ny l

    F(x) = ax + c1 + c2, G (x) = ax + c1, H(x) = ax + c2,

    trong a, c1, c2 R.Do

    f(x) = a ( x) + c1 + c2, g (x) = 2

    ax c1, h (x) = 2

    ax c2. (14)

    t a = k, c1 + c2 + a = , 2

    c1 = , 2

    c2 = . Th th k + + + = 1. Khi, bi (14), ta thu c

    f(x) = kx + , g (x) = kx + , h (x) = kx + ,

    trong k + + + = 1.R rng cc hm s f, g, h nu trn tha mn iu kin ca bi ton.

    Bi ton 3.2. Tm tt c cc hm s f, g, h xc nh v lin tc trnR tha mn iu kinsau: Nu A,B,C 0, A + B + C = , th A1, B1, C1 0, A1 + B1 + C1 = , trong

    19

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    20/253

    A1 = f(A), B1 = f(B), C1 = f(C) .Gii. Tng t cch gii trn, ta tm c

    f(x) = kx + , g (x) = kx + , h (x) = kx + ,

    trong

    0,

    0, k +

    0, k +

    0, +

    1, k + +

    1.

    Kt qu ca Bi ton 3.2 c nhiu p dng trong cc php chuyn i bo ton yu t gctrong tam gic, chng hn cc H qu sau y m phn chng minh dnh cho bn cH qu 3.1. NuA, B, C l ba gc ca mt tam gic, thA1, B1, C1 xc nh nh sau

    A1 =B + C

    2, B1 =

    C+ A

    2, C1 =

    A + B

    2

    cng l ba gc ca mt tam gic.H qu 3.2. NuA, B, C l ba gc ca mt tam gic tha mn max {A,B,C} <

    2, tc l

    tam gicABC nhn, thA1, B1, C1 xc nh nh sau

    A1 = 2A, B1 = 2B, C1 = 2Ccng l ba gc ca mt tam gic.H qu 3.3. NuA, B, C l ba gc ca mt tam gic, thA2, B2, C2 xc nh nh sau

    A2 =A

    2, B2 =

    B

    2, C2 =

    + C

    2

    cng l ba gc ca mt tam gic, trong C2 l gc t.H qu 3.4. NuA, B, C l ba gc ca mt tam gic, trong C l gc t, thA2, B2, C2xc nh nh sau

    A2 = 2A, B2 = 2B, C2 = 2 C

    cng l ba gc ca mt tam gic.H qu 3.5. Nu tam gicABC c ba gc nhn (hoc vung tiC), thA3, B3, C3 xc nhnh sau

    A3 =

    2 A, B3 =

    2 B, C3 = C,

    cng l ba gc ca mt tam gic t (hoc vung ti C3).H qu 3.6. Nu tam gicABC c gcC t (hoc vung), thA3, B3, C3 xc nh nh sau

    A3 =

    2 A, B3 =

    2 B, C3 = C,

    cng l ba gc ca mt tam gic nhn (hoc vung tiC3).

    By gi, m rng mt cch t nhin cc bi ton trn, ta c cc bi ton sauBi ton 3.3. Tm tt c cc hm s f, g, h xc nh v lin tc trnR tha mn iu kinsau: NuAi R,

    ni=1

    Ai = (n 2) , thni=1

    Ai = (n 2) , trong Ai = f(Ai).Gii. Tng t cch gii Bi ton 3.1, trong phng trnh hm cm sinh chnh l Phngtrnh hm Perxider tng qut. Cc hm s tm c l

    fi (x) = k0x + ki (n 2) (i = 1, ..., n, n 3) ,

    20

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    21/253

    trong n

    j=0

    kj = 1.

    Tng t, m rng Bi ton 3.2, ta thu cBi ton 3.4. Tm tt c cc hm s fi (i = 1,...,n,n 3) xc nh v lin tc trnR thamn iu kin sau: Nu0

    Ai

    2,ni=1 Ai = (n 2) , th0 Ai 2,

    ni=1Ai = (n 2) ,trong Ai = f(Ai).Gii. Tng t cch gii Bi ton 3.2, trong phng trnh hm cm sinh chnh l Phngtrnh hm Perxider tng qut. Cc hm s tm c l

    fi (x) = k0x + ki (n 2) (i = 1, ..., n, n 3) ,trong 0 ki (n 2) 2, 0 2k0 + ki (n 2) 2.

    Thu hp gi thit ca Bi ton 3.4, ta thu cBi ton 3.5. Tm tt c cc hm s fi (i = 1,...,n,n 3) xc nh v lin tc trnR thamn iu kin sau: Nu 0

    Ai

    ,

    n

    i=1Ai = (n 2) , th0 A

    i

    ,

    n

    i=1 Ai = (n 2) ,trong Ai = f(Ai).Gii. Tng t cch gii Bi ton 3.4, trong phng trnh hm cm sinh chnh l Phngtrnh hm Perxider tng qut. Cc hm s tm c l

    fi (x) = k0x + ki (n 2) (i = 1, ..., n, n 3) ,trong 0 ki (n 2) 1, 0 k0 + ki (n 2) 1.

    T nhng kt qu trn ta thy rng, vi ba gc ca mt tam gic cho trc, c th tora c ba gc ca mt tam gic mi v do c th suy ra c nhiu h thc lng giclin quan n cc gc ca tam gic . Hn na, bng cch phi hp nhng phng php khcnhau, ta cn c th to ra c nhiu ng thc v bt ng thc lng gic khc, v cng

    phong ph. Sau y l mt vi v d.Gi s rng, ta chng minh c cc h thc sau y v xem chng l nhng h thc"gc" ban u

    sin A + sin B + sin C 3

    3

    2, (15)

    cos A cos B cos C 18

    (16)

    0 < sin A sin B sin C 3

    3

    8, (17)

    sin2A + sin 2B + sin 2C = 4 sin A sin B sin C. (18)

    p dng H qu 3.1 vo (15), ta c

    sin

    A

    2

    + sin

    B

    2

    + sin

    C

    2

    3

    3

    2.

    Nh vy, ta to c bt ng thc sau

    Bt ng thc 1. cosA2

    + cosB

    2+ cos

    C

    2 3

    3

    2.

    21

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    22/253

    p dng H qu 3.1 vo (16), ta c

    cos

    A

    2

    cos

    B

    2

    cos

    C

    2

    1

    8.

    Nh vy, ta to c bt ng thc sauBt ng thc 2. sin A2

    sinB

    2sin

    C

    2 1

    8.

    p dng H qu 3.1 vo (18), ta c

    sin2

    A

    2

    + sin 2

    B

    2

    + sin 2

    C

    2

    = 4 sin

    A2

    sin B

    2sin

    C2

    .

    hay

    sin( A) + sin ( B) + sin ( C) = 4 sin A2

    sin B

    2sin

    C2

    .

    Nh vy, ta to c ng thc sau

    ng thc 1. sin A + sin B + sin C = 4cosA2

    cosB2

    cosC2

    .

    By gi, sng tc thm nhng h thc a dng hn, ta tip tc khai thc nhng kt qutrn, chng hn t Bt ng thc 2 ta c

    8sinA

    2sin

    B

    2sin

    C

    2 1 32sin A

    2sin

    B

    2sin

    C

    2.cos

    A

    2cos

    B

    2cos

    C

    2 4cosA

    2cos

    B

    2cos

    C

    2

    4

    2sinA

    2cos

    A

    2

    2sin

    B

    2cos

    B

    2

    2sin

    C

    2cos

    C

    2

    4cosA

    2cos

    B

    2cos

    C

    2

    4sin A sin B sin C

    4cos

    A

    2cos

    B

    2cos

    C

    2. (19)

    Nh vy, ta to c bt ng thc sau

    Bt ng thc 3. sin A sin B sin C cosA2

    cosB

    2cos

    C

    2.

    Bi (18) v ng thc 1, t (19), ta c bt ng thc sauBt ng thc 4. sin2A + sin 2B + sin 2C sin A + sin B + sin C.

    Ta tip tc khai thc Bt ng thc 4. Nhn xt rng, nu tam gic ABC l tam gic nhnth, p dng H qu 3.2 vo Bt ng thc 4, ta c

    sin2( 2A) + sin 2 ( 2B) + sin 2 ( 2C)

    sin(

    2A) + sin (

    2B) + sin (

    2C)

    sin4A sin4B sin4C sin2A + sin 2B + sin 2C.Nh vy, ta tip tc to c bt ng thc sauBt ng thc 5. sin2A + sin 2B + sin 2C+ sin 4A + sin 4B + sin 4C 0.

    By gi, p dng H qu 3.3 vo Bt ng thc 4, ta c

    sin

    2.

    A

    2

    + sin

    2.

    B

    2

    + sin

    2.

    + C

    2

    sin A

    2+ sin

    B

    2+ sin

    + C

    2.

    22

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    23/253

    Ta to c bt ng thc sau

    Bt ng thc 6. sin A + sin B sin C sin A2

    + sinB

    2+ cos

    C

    2.

    By gi, gi s tam gic ABC c gc C t. p dng H qu 3.4 vo Bt ng thc 1, ta c

    cos2A2 + cos2B2 + cos2C 2 332 .

    Ta to c bt ng thc sau

    Bt ng thc 7. cos A + cos B + sin C 3

    3

    2

    C >

    2

    .

    Tip theo, gi s tam gic ABC nhn (hoc vung ti C). p dng H qu 3.5 vo (17), tac

    0 < sin

    2 A

    sin

    2 B

    sin( C) 3

    3

    8

    Ta c bt ng thc sau

    Bt ng thc 8. 0 < cos A cos B sin C 338

    C

    2

    .

    By gi, gi s tam gic ABC c gc C t (hoc vung). p dng H qu 3.6 vo (15), tac

    0 < sin

    2 A

    + sin

    2 B

    + sin ( C) 3

    3

    2

    Ta c bt ng thc sau

    Bt ng thc 9. 0 < cos A + cos B + sin C 3

    3

    2

    C

    2

    .

    TI LIU THAM KHO

    [1] J. Aczl (1966), Lectures on Functional equations and their applications, Chapter 3, pp.141-145, Chapter 4, pp. 197-199.

    [2] Nguyn Vn Mu, Mt s lp phng trnh hm a n hm dng c bn, K yu Hitho khoa hc "Cc chuyn chuyn Ton bi dng hc sinh gii Trung hc ph thng", HNi, 2011.

    [3] D.S. Mitrinovic, J.E. Pecaric and V. Volenec (1989), Recent advances in geometric inequal-ities, Mathematics and its applications (East European series), Published by Kluwer AcademicPublishers, the Netherlands, Chapter V, pp. 64-69.

    23

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    24/253

    XY DNG MT LP PHNG TRNH HM NHCC HNG NG THC LNG GIC

    L Sng, Trng THPT Chuyn L Qu n - Khnh HaTrong cc k thi i hc cu hi v phng trnh, bt phng trnh thng c ch ,th trongcc cu hi ca thi chn hc sinh gii quc gia hay quc t cc bi ton v phng trnhhm cng chim phn trng tm. Trong bi vit ny chng ti th lin h kin thc v lnggic hc trong chng trnh ph thng a n mt s bi ton c nghim l hm slng gic

    1 Cc hm s lng gic trong chng trnh ton v vitnh cht

    sin(x y) = sin x cos y sin y cos x, x, y R(1)sin(x + y)sin(x y) = sin2 x cos2 y sin2 y cos2 x, x, y R(2)cos(x y) = cos x cos y sin x sin y, x, y R(3)

    T (2) a n cng thc ca phng trnh hm n l hm sin

    g(x + y)g(x y) = g2(x) g2(y) vi mi x, y R.T (3) ta cng t c cng thc ca hm cosin (phng trnh hm dAlembert )

    f(x + y) + f(x y) = 2f(x)f(y) vi mi x, y R.

    Ngoi ra t mt s cng thc lng gic m ta cng on c nghimf(2x) = 2f2 (x) 1, f(3x) = 4f3 (x) 3f(x),x R.

    Quy c: fn(x) = [f(x)]n.

    Bn Phng trnh hm c bn : Trong cc bi ton sau phn nhiu trc khi i nkt qu thng phi qua trung gian l cc phng trnh hm c bn sauCc phng trnh Cauchy

    A(x + y) = A(x) + A(y) (I)

    E(x + y) = E(x).E(y) (II)

    L(xy) = L(x) + L(y) vi x > 0 (III)F(xy) = F(x).F(y) vi x > 0 (IV)

    Ta c ln lt cc nghim l A(x)=ax ,vi a=f(1) c gii bi A.L.cauchy 1821

    E(x) = exp(ax) hay E(x) = 0L(x) = alnx hay L(x) = 0F(x) = xc hay F(x) = 0

    24

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    25/253

    2 Phng trnh hm dAlembert Hm cosinBi ton 1. Tm cc hmf(x) xc nh v lin tc trn v tha mn cc iu kin

    f(x + y) + f(x y) = 2f(x) f(y) , x, y Rf(0) = 1, x0 R : |f(x0)| < 1Li gii. V f(0) = 1 v f(x) lin tc trn R nn > 0 sao cho f(x) > 0, x (, )Khi theo (2) vi n0 N ln th

    f(x02n0

    ) > 0 f( x02n0

    ) < 1 (do phn chng )

    Vy tn ti x1 = 0, x1 = x02n0 sao cho

    0 < f(x1) < 1.f(x) > 0, x ( |x1| , |x1|) , f(x1) = cos , 0 < < 2

    T (1) suy ra f(2x1) = 2f2(x1) 1 = 2cos2 1 = cos 2Gi sf(kx1) = cos k, k = 1, 2,...,n N+. Khi

    f((n + 1) x1) = f(nx1 + x1)

    = 2f(nx1) f(x1) f((n 1) x1)= 2 cos n cos cos(n 1) = cos (n + 1) .

    T suy ra f(mx1) = cos m, m N+ v f(x) l hm chn trn R v nh vy

    f(mx1 = cos m, m Z(3)Do tnh tr mt trong R , f(x) v cos x l cc hm lin tc trn R nn f(x) = cos ax,a RTh li ta thy f(x) = cos ax (a = 0) tha mn cc iu kin ca bi ton .Nhn xt 1. Thay trong gi thit |f(x0)| < 1 bi ton 1 bi |f(x0)| > 1 ta c nghim cabi ton l f(x) = cosh(x), y l hm cosin hyprebol m ta khng kho st chng trnhhc ph thngNhn xt 2. Khi f l hm kh vi, ly o hm theo y hai ln , ta c f(0) = 0, f(x) =k.f(x), k hng Nu k = 0 th f(x) = ax + b;Nu k > 0 th f(x) = c sin bx + d cos bx, c,d hngTf(0) = 1, f(0) = 0 suy ra d = 1, bc = 0, b = 0 th f hng; c = 0 th f(x) = cos x

    Nu k < 0 th f(x) = c sinh bx + d cosh bx vi b2

    = k, iu kin f(0) = 1, f

    (0) = 0.Vy nghim l f(x) = cos bx, b s thc.

    nh l 1. (nh l nghim ca Phng trnh dAlembert)Cho f : R R hm lin tc v tha mn iu kin

    (C) f(x + y) + f(x y) = 2f(x)f(y), vi mix, ythf(x) = 0, f(x) = 1, f(x) = cos ax, hayf(x) = coshbx,a,b R.

    25

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    26/253

    Bi ton 2. (IMO1972). Tmf : R R lin tc v tha mn cc iu kin

    f(x + y) + f(x y) = 2f(x)f(y), vi mix, y

    Chng minh rng nuf(x) = 0, |f(x)| 1, x R th|g(y)| 1, y R

    Li gii. Do f b chn

    f(x) = 0 |f(x)| |g(y)| = 2 |f(x + y) + f(x y)| |f(x + y)| + |f(x y)| 2M, x R

    Bi ton 3. Tm tt c cc hm lin tc D R tha

    f(x + y) =f(x) + f(y)

    1 f(x)f(y)

    Li gii. Ta bit rng hm f(x) = tan x tha bi.V th nu t A(x) = arctanf(x) th A(x + y) = A(x) + A(y) 2k .Suy ra A(x) = kx mod 2 , t dn n f(x) = tan kcx.

    Bi ton 4. Tm cc hmf(x) xc nh v lin tc trnR v tha mn cc iu kin

    f(x) + f(y) = f

    x + y

    1 xy

    , x, y : x + y > 0

    Li gii. t x = cotgu, y = cotgv, 0 < u, v <

    Thx+y1xy = cotg (u + v)

    Hay A (u + v) = A (u) + A (v) , 0 < u, v < trong A (u) = f(cotgu) .

    f(x) = karcctgx, k , x R (i)

    Th li ta thy hm f(x) xc nh theo (i) tha mn cc iu kin ca bi tonKt lun f(x) = karcctgx, k R, x RBi ton 5. Tm cc cp hmf(x) vg(x) xc nh v lin tc trnR v tha mn iu kin

    f(x y) = f(x)g(y) + f(y)g(x)

    Li gii. Nghim ca bi ton lf(x) = cg(x) = 1 c2 hay

    f(x) = cos kxg(x) = sin kx , k R

    26

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    27/253

    Bi ton 6. (Putnam1991)Cho hai hm f : R R, g : R R, f(x), g(x) khc hng, kh vi v tha mn iu kin

    f(x + y) = f(x)f(y) g(x)g(y)g(x + y) = f(x)g(y) + g(x)f(y), x, y R

    v f(0) = 0 .Chng minh rng f2(x) + g2(x) = 1

    Li gii. Ta ch cn chng minh rng H(x) = f2(x) + g2(x) l hngTht vy ly o hm theo y ri thay y = 0ta c f(x) = g(0)g(x) vg(x) = g(0)f(x)Do 2f(x)f(x) + 2g(x)g(x) = 0 suy ra f2(x) + g2(x) = CNgoi ra f2(x + y) + g2(x + y) = (f2(x) + g2(x))(f2(y) + g2(y)) ,nn C2 = C.Nhng C = 0,nn C = 1Nhn xt.T gi thit ca bi ton ta thy hai hm f(x) = cos x, g(x) = sin x l nghim cabi ton, nn ta t E(x) = f(x) + ig(x) ,t gi thit bi ton ta c E(x + y) = E(x)E(y)V vy ta c 1 cch gii khc nh sau

    Do E hm kh vi nn E(0) = ib, E(x + y) = E(x)E(y) Ly o hm y ,ri cho y = 0 ta cE(x) = Ceibx,TE(0 + 0) = E(0)E(0), ta rt ra c C = 1.Cui cng f2(x) + g2(x) = |E(x)| =

    eibx

    2= 1

    Bi ton 7. a.Tm cc cp hmf : R R, g : R R lin tc v tha mn iu kinf(x y) = f(x)g(y) f(y)g(x)g(x y) = g(x)g(y) + f(x)f(y), x, y R

    p s. Nghim ca bi ton l f(x) = sin bx,g(x) = cos bx, b s thc hayf(x) = g(x) = 0

    b. f(x + y) = f(x)g(y) + f(y)g(x)

    g(x + y) = g(x)g(y) f(x)f(y), x, y Rp s . Nghim l f(x) = ax/2 sin bx,g(x) = ax/2 cos bx, a > 0, b s thc hay f(x) =

    g(x) = 0.

    Bi ton 8. Tm cc cp hmf(x) vg(x) xc nh v lin tc trnR v tha mn[f(x) + g(x)]2 = 1 + f(2x), f(0) = 0f(x + y) + f(x y) = 2f(x)g(y), x, y R

    p s . Nghim ca bi ton l f(x) = sin bx, g(x) = cos bx, bs thc hay f(x) = g(x) = 0

    3 Phng trnh hm c cha hm s lng gic3.1 Trc ht xt hm thc f xc nh vi mi x,y thuc R tha

    f(x + y) + f(x y) = 2cosxcosy, (3.1)

    27

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    28/253

    Kt qu 1. f(x) l nghim ca 4.1 khi v ch khi f(x) = cos xKt qu 2. Phng trnh f(x + y) + f(x y) = 2sin x sin y , khng c nghimKt qu 3. Phng trnh f(x + y) + g(x y) = 2 sin x sin yc nghim f(x) = c cos x, g(x) = cos x cDo cng thc bin i 2sin x sin y = cos(x y) cos(x + y) suy ra f(u) + cos u = cos v g(v)Kt qu 4. Phng trnh f(x + y) f(x y) = 2 sin x sin y c nghimf(x) = c cos x, c l hngKt qu 5. Phng trnh f(x + y) + f(x y) = 2 cos x sin y khng c nghimKt qu 6. Phng trnh f(x + y) + g(x y) = 2 cos x sin y,c nghim f(x) = c + sin x, g(x) = sin x cKt qu 7. Phng trnh f(x + y) + f(x y) = 2sin x cos y ,c nghim f(x) = sin x3.2 Xt hai hm thc f ,g xc nh trn R tha

    f(x + y) + g(x y) = 2 sin x cos y, (3.2)Kt qu 8. Nghim ca (3.2) l f(x) = c + sinx, g(x) = sinx cCho y = 0, ri thay y =

    y vo (3.2)

    ta c f(x) + g(x) = 2sin x v f(x + y) + g(x y) f(x y) + g(x + y) = 03.3 Cho hm thc f(x) tha f(x + y) + f(x y) = 2f(x)cos y (3.3) .Khi hm g(x) = f(x) d cos x tha g(x + y) = g(x)cos y + g(y)cos x (3.4)Kt qu 9. Nghim tng qut ca (3.4) l g(x) = b sin x, do f(x) = b sin x + d cos xTht vy, cho x = 0, ri hon i x, y trong (3.3) ta c f(y) + f(y) = 2d cos y v 2f(x +y) + f(x y) + f(y x) = 2f(x)cos y + 2f(y)cos xTc l 2f(x + y) + 2d cos(x y) = 2f(x)cos y + 2f(y)cos x. Suy ra (3.4) c nghim (3.4) , dng tnh kt hp ca hm g(x)

    g(x + y + z) = (g(x)cos y + g(y))cos x + g(z)cos(x + y)

    = g(x) cos(y + z) + (g(y)cos z+ g(z)cos y)cos x

    Suy ra g(x)sin y sin z = g(z)sin y sin x, mi x,y,zC nh y, z vi sin z= 0, ta c g(x) = b sin x3.4. Cho hai hm f : R R, g : R R tha

    f(x y) f(x + y) = 2g(x)sin y, vi mi s thc x, y(3.5)khi v ch khi f(x) = a cos x d sin x + c, g(x) = a sin x + d cos xLi gii. Cho x = 0, ri hon i x, y trong (3.5) ta c f(y) f(y) = 2d sin y v

    f(x y) f(y x) = 2g(x)sin y 2g(y)sin x

    Tc l 2d sin(x y) = 2g(x)sin y 2g(y)sin x.Suy ra (g(x) d cos x)sin y = (g(y) d cos y)sin x, tc l g(x) = d cos x + a sin x (c nh y).Thay g(x) vo (3.5) ta c kt qu3.5.Lp lun tng t ta cng c vi phng trnh hm

    sin(x + y) = f(x)sin y + f(y)sin x (3.6)

    sin(x + y) = g (x)sin y + g (y)sin x (3.7)

    f(x + y) = g (x)sin y + g (y)sin x (3.8)

    28

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    29/253

    Kt qu 10. Nghim (3.6 ) l f(x) = cos x ,nghim ca (3.7 ) l f(x) = cos x + d sin x, g(x) =cos x b sin x , nghim ca(4.8) l f(x) = a cos x = g(x)3.6. Dng tnh kt hp ca hmXt f(x + y)f(x y) = sin2(x) sin2(y), (3.9)Kt qu 11. (4.9) c nghim l f(x) = k sin x, k2 = 1

    Bi ton 9. Nghim ca f(x + y)f(x y) = f2(x) sin2(y), (3.10)L f(x) = a sin x hay f(x) = b cos x + d sin x,a,b,d hng tha a2 = 1 = b2 + d2

    Li gii. Cho x = y trong (4.10).Xt 2 trng hp f(0) = 0 hay khc khngTrng hp khc khng ta a v dng f(u)f(v) = bf(u + v) + sin u sin v.Sau xt bf(u + v + z) = f(u)(f(v)f(z) sin v sin z) sin u(sin v cos z+ cos v sin z)

    Tnh cht 1. Cho hm f(x)xc nh v lin tc trn R v tha mn iu kin

    (S)f(x + y + 2d) + f(x y + 2d) = 2f(x)f(y), vi mi x,y,d hng khc khngth f l hm s l

    Tnh cht 2.

    (i) Nu f(0) = 1 v f(d) = 1 th hm f c chu k l d(ii) Nu f(0) = 1 v f(d) = 1 th hm f c chu k l 2d(iii) Nu f(0) = 1 th f(d) = 0 hm f c chu k l d

    Bi ton 10. Tm hmf(x) tha mn (S*)

    Li gii. Trng hp (i) v (ii) th f tha phng trnh dAlembert ca hm (C)Trng hp (iii) th g(x) = f(x + 2d) l nghim ca phng trnh (C)g(x + y) + g(x y) = 2g(x)g(y), g(x) c chu k 4dKt qu. Nghim ca bi ton (S*) l f(x) = cos 2nxd hayf(x) = cos (2n+1)xd .

    4 Phng trnh hm sin (S)f(x + y)f(x y) = f2(x) f2(y),vi mi x, y

    Tnh cht 3. Hm f khc khng, tha (S) l hm lBi ton 11. Cho f : R R lin tc tha (S)Thf(x) = cx , f(x) = c sin bxhayf(x) = sinh bx

    Li gii. Do f lin tc, kh vi. Ly o hm ln th nht theo y, ln th hai theo xSuy ra f(x) = kf(x) . Nh vy ta c kt qu

    Bi ton 12. (Corovei) Cho hai hmf : R R, g : R R khc khng thaf(x)g(y x) = f

    y

    2

    g

    y

    2

    f

    x y

    2

    g

    x y2

    , x, y R()

    Khi g l nghim ca (S) v

    g(x) = A(x), f(x) = c+dA(x)(1), g(x) = b(E(x)E(x)), f(x) = c(E(x)E(x))+dE(x)(2)trong A, E tha phng trnh c bn, b vc l cc hng s.

    29

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    30/253

    Li gii. Thay x bi x + y, v y bi 2x vo (*) f(x + y)g(x y) = f(x)g(x) f(y)g(y)(3),sau i ch x v y vi nhau ta c f(x + y)g(y x) = f(x + y)g(x y),suy ra g(x) hm l ( do f khc khng)Ly y = x ri thay y bi y trong (1) , tr (*) cho (3)

    f(x

    y)g(x + y)

    f(x + y)g(x

    y) = g(y)(f(

    y) + f(y))

    Xt 2 trng hp f(0), f(0) = 0, th f v g trong (1) l nghim; f(0) khc khng, f v g trong(2) l nghimKt qu Trng hp hm lin tc, nghim khc khng l

    f(x) = bx + c, g(x) = ax;

    f(x) = c sin ax + d cos ax,g(x) = b sin ax;

    f(x) = b sinh ax + d cosh ax, g(x) = b sinh ax.

    5 M rng phng trnh hm dAlembert dng lng

    gic ca W. H. Wilson1919f(x + y) + f(x y) = 2f(x)g(y), (1)vi mi x, yf(x + y) + g(x y) = h(x)k(y), (2) vi mi x, y

    Nhn xt khi f(x) = 0 th g(x) l mt hm ty Nn ta xt f(x) = 0 ,nn c a sao cho f(a) = 0Trong (1) thay x = a, y = y ta c g(x) l hm s chn. Nh phng php tch f thnh 2hm chn f1 v hm l f2 Wilson thu gn c f1(x) = kg(x),vi k = f1(0) v g tha mnhm dAlembert

    nh l 2. (nh l Wilson.) Nghim tng qut ca phng trnh(1) lf(x) = 0, g(x) ty , hayf(x) = k cos bx + Csin bx vg(x) = cos bx, hayf(x) = k cosh bx + Csinh bx vg(x) = cosh bx, hayf(x) = k + Cx vg(x) = 1

    Nhn xt. Trong phm vi ca bi ny chng ti ch nhm xt phng trnh (1) c nghimdng lng gic, dng (2) c xt tng qut trong bi khc

    Bi ton 13. Nu hm f thaf(x y) = f(x)f(y) + g(x)g(y), x, y R.th cng tha phngtrnh dAlembertf(x + y) + f(x y) = 2f(x)cos y, x, y R.Li gii. Do bi ton 3.5

    Bi ton 14. ( Bnh nh 2009 )Tm tt c cc hm s f xc nh trn R thaf(x + y) + f(x y) = 2f(x)cos y, x, y R

    .

    30

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    31/253

    6 M rng cc phng trnh hm c bn dng

    f[G(x, y)] = F(f(x), f(y))

    Trong bi vit ny, chng ti ch xt trng hp c bit G(x,y)=x+y, tc l dng phngtrnh hm f(x + y) = F(f(x), f(y)) , x , y RTnh cht 4. F c tnh kt hp tc l F[F[u, v], w] = F[u, F[v, w]] = f(x + y + w)Trng hpF(u, v) = Auv + Bu + Bv + C, F l a thc i xng, do tnh kt hp ta c AC = B2 BKhi A = 0 th B = 1 bi ton c dng f(x + y) = f(x) + f(y) + Ct A(x) = f(x) + C, bi ton c a v A(x + y) = A(x) + A(y) (phng trnh Cauchy I)Do f(x) = A(x) C. Khi A=0 , bi ton c dng

    f(x + y) = Af(x)f(y) + Bf(x) + Bf(y) +B2 B

    A=

    [Af(x) + B] [Af(y) + B] BA

    t E(x) = Af(x) + B, bi ton c a v E(x + y) = E(x).E(y) (phng trnh Cauchy II)Do f(x) = E(x)BA

    Mt s bi ton lin quanCc nghim tng qut c a ra y trong lp hm lng gic c xc nh trong cckhong hm s lin tc v n iu trong khong xc nh

    6.1 f1(x + y) =f1(x) + f1(y)

    1 f1(x)f1(y) ,

    6.2 f2(x + y) =f2(x)f2(y) 1f2(x) + f2(y)

    ,

    6.3 f3(x + y) =f3(x) + f3(y) 2f3(x)f3(y)

    1 f3(x)f3(y) ,

    6.4 f4(x + y) =f4(x) + f4(y) 1

    2f4(x) + 2f4(y) 2f4(x)f4(y) 1 ,

    6.5 f5(x + y) =f5(x) + f5(y) 2f5(x)f5(y)cos a

    1 f5(x)f5(y) ,

    6.6 f6(x + y) = f6(x)f6(y)

    1 f2(x)

    1 f2(y)

    C cc nghim ln lt l

    f1 (x) = tan kx,f2 (x) = cot kx,f3 (x)

    =1

    1 + cot kx, f4 (x) =

    1

    1 + tan kx, f5

    (x) =sin kx

    sin(kx + a), f6 (x) = cos kx.

    31

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    32/253

    7 Lng gic ha bi ton phng trnh hmBi ton 15. (Putnam2000) Tm hm f(x) xc nh v lin tc trong [1, 1] v tha mn

    f 2x2 1 = 2xf(x) , x [1.1]Li gii. Ta c x = 1, x = 12 tha mn 2x2 1 = x suy ra f(1) = f(12) = 0Nn f cos 23 + 2n

    = 0.Tf(cos 2a) = 0 ta suy ra f(cos a) = 0

    t x = cos a, Ta c f cos2k 23 + 2n

    = 0, n Z, k NHn na, tp cc s 2k(23 + 2n) tr mt trong R v f(cos x) lin tc suy ra f(cos r) = 0,mir

    Bi ton 16. Tm hmf(x),chn, lin tc trong ln cn im O xc nh

    f(x) 0 khi 0 x /2,f(x) 0 khi/2 x ,

    v tha (*) f(2x) = 1

    2f2 2 - x ,x R, thf(x) = cos x, mi x.Bi ton 17. Tm cc hmf(x) xc nh v lin tc trn [1, 1] v tha mn cc iu kin

    f(x) + f(y) = f

    x

    1 y2 + y

    1 x2

    , x, y [1, 1] (18)

    Li gii. t x = sin u, y = sin v, u, v 2 ,

    2

    Th x

    1 y2 + y1 x2 = sin (u + v)

    Khi c th vit (18) di dng

    g (u + v) = g (u) + g (v) , u , v

    2,

    2

    vi g(u) = f(sin u)

    Suy ra f(x) = aarc sin x,

    x

    [

    1, 1] , a

    R (i)

    Th li ta thy hm f(x) xc nh theo ( i ) tha mn cc iu kin ca bi ton .

    Bi ton 18. Tm cc hm sf(x) xc nh v lin tc trn [1, 1] v tha mn iu kin

    f

    xy

    1 y2

    1 x2

    = f(x) + f(y) , x, y [1, 1]

    Li gii. t x = cos u, y = cos v, u, v [0, ] .Khi sin u 0, sin v 0

    xy

    1 y2

    1 x2 = cos (u + v) , u, v [0, ]Phng trnh hm cho c th vit di dng

    f(cos u) + f(cos v) = f(cos (u + v)) , u, v [0, ]t f(cos u) = g (u) ta c

    g (u + v) = g (u) + g (v) , u, v [0, ]Do vy, g (u) = au,a = const, f(x) = aarccos xTh li, ta thy hm s ny tha mn bi ton .

    32

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    33/253

    Bi ton 19. Tm cc hmf(x) xc nh v lin tc trnR v tha mn cc iu kin

    f(x) + f(y) = f

    x + y1 - xy

    , x,y R : |xy| < 1(17)

    Li gii. t x = tgu,y = tgv,2 < u, v 0 sao cho

    d (f(xy), f(x)f(y)) < , x, y Gv do , tn ti mt ng cu M : G H sao cho

    d (f(x), M(x)) < ,

    x

    G.

    1 Tnh n nh ca phng trnh hm (Cauchy) cngtnh

    Trc ht ta nhc li phng trnh hm (Cauchy) cng tnh (A)

    f(x + y) = f(x) + f(y) (A)

    Gi s hm f : X Y tha mn (A), vi X v Y l hai khng gian Banach. Khi f cgi l hm cng tnh.

    nh l 1. Gi s , hmf : X Y tha mn, vi mi > 0, ta cf(x + y) f(x) f(y) , x, y X. (1)

    Khi tn ti gii hn sauA(x) = lim

    n2nf(2nx) (2)

    vi mix X v tn ti duy nht hm cng tnh A : X Y tha mnf(x) A(x) , x X. (3)

    Chng minh. Thay x = y vo (1) ta c

    1

    2

    f(2x) f(x)

    1

    2

    . (4)

    S dng phng php quy np, ta c

    2nf(2nx) f(x) (1 2n). (5)

    35

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    36/253

    Tht vy, trong (4) ta thay x bi 2x, ta c

    12

    f(22x) f(2x) 12

    .

    Khi [ 1

    2f(22x) 2f(x)] [f(2x) 2f(x)] = 1

    2f(22x) f(2x) 1

    2

    hay

    122

    f(22x) f(x) 12

    f(2x) f(x) 122

    ,

    nn 1

    22f(22x) f(x)

    1

    2+

    1

    22

    ,

    do

    1

    2n

    f(2nx)

    f(x)

    1

    2

    +1

    22

    +

    +

    1

    2n = 1

    1

    2n .

    By gi ta s chng minh dy { 12n f(2nx)} l dy Cauchy vi mi x X. Chn m > n, khi

    12n

    f(2nx) 12m

    f(2mx) = 12n

    12mn

    f(2mn.2nx) f(2nx)

    12n

    1 1

    2mn

    =

    1

    2n 1

    2m

    .

    Do dy { 12n f(2nx)} l dy Cauchy v do Y khng gian Banach nn tn ti A : X Y saocho A(x) := lim

    n2nf(2nx) vi mi x X, hay

    A(x) 12n

    f(2nx) 12n

    .

    Tip theo ta cn chng minh A l hm cng tnh. Thay x, y bi 2nx v 2ny trong (1), ta c

    12n

    f(2n(x + y)) 12n

    f(2nx) 12n

    f(2ny) 12n

    vi n Z+, x , y X. Cho n , ta cA(x + y) A(x) A(y) .

    Vi mi x X, ta cf(x) A(x) = [f(x) 1

    2nf(2nx)] + [

    1

    2nf(2nx) A(x)]

    f(x) 12n

    f(2nx) + 12n

    f(2nx) A(x)]

    1 12n

    +

    1

    2n= .

    36

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    37/253

    Cui cng, ta cn chng minh A duy nht. Gi s tn ti mt hm cng tnh A1 : X Y thamn (3). Khi , vi mi x X,

    A(x) A1(x) = 1n[A(nx) f(nx)] + [A1(nx) f(nx)]

    2

    n theo (3)

    Vy A1 = A.

    nh l 2. Vi mi dy s thc bt kan tha mn

    |an+m an am| < 1, n, m Z+, (6)

    th tn ti gii hn hu hnA := lim

    n

    an

    nv

    an nA < 1, n Z+.

    Chng minh. p dng nh l 1 cho Y = R. C nh x X v t an := ( 1 )f(nx), n Z+.Khi , theo (1) dy (an) tha mn (6). t

    A := limk

    akk

    =

    1

    limk

    f(kx)

    k

    ,

    Theo nh l 1, ta c

    |1

    f(nx) nA(x)| < 1,

    vi mi n Z+ v mi x X hay

    |f(x) nAx

    n

    | < .

    V theo (1), vi mi x, y X ta c

    |A(x + y) A(x) A(y)| = limn

    f(nx + ny)

    n f(nx)

    n f(ny)

    n

    lim

    nn

    = 0,

    Do |f(x) A(x)| < , x X.

    37

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    38/253

    2 Tnh n nh ca phng trnh hm (Cauchy) nhntnh

    Trong phn ny nghin cu phng trnh

    f(xy) = f(x)f(y) (M)

    Gi s hm f : X Y tha mn (M), vi X v Y l hai khng gian Banach. Khi f cgi l hm nhn tnh.

    nh l 3. Gi s > 0, S l mt na nhm vf : S C sao cho

    |f(xy) f(x)f(y)| , x, y S. (1)

    Khi

    |f(x)

    | 1 +

    1 + 4

    2=: ,

    x

    S. (2)

    hocf l hm nhn tnh vi mix, y S.Chng minh. Trong (2), ta c 1+

    1+4

    2 =: hay 2 = v > 1. Gi s (2) khng xy ra,

    tc l tn ti a S sao cho |f(a)| > , hay |f(a)| = + , vi > 0 no . Trong (1), chnx = y = a, ta c

    |f(a2) f(a)2| (3)Khi

    |f(a2)| = |f(a)2 (f(a)2 f(a2))| |f(a)

    2

    | |f(a)2

    f(a2

    )| |f(a)|2 theo (3)= ( + )2 = ( + ) + (2 1) + 2 (do 2 = )> + 2 (do > 1)

    Bng php chng minh quy np, ta c

    |f(a2n)| > + (n + 1), n = 1, 2, . . . .

    Vi mi x,y,z S,|f(xyz) f(xy)f(z)| , v |f(xyz) f(x)f(yz)|

    Ta c

    |f(xy)f(z) f(x)f(yz)| |f(xyz) f(xy)f(z)| + |f(xyz) f(x)f(yz)| 2

    38

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    39/253

    v|f(xy)f(z) f(x)f(y)f(z)| |f(xy)f(z) f(x)f(yz)|

    + |f(x)f(yz) f(x)f(y)f(z)| 2+ |f(x)|

    Suy ra |f(xy) f(x)f(y)|.|f(z)| 2+ |f(x)|.Chn z = a2

    n

    , ta c

    |f(xy) f(x)f(y)| 2+ |f(x)||f(a2n)| .

    vi mi x, y S v mi n = 1, 2 . . . . Cho n , ta c f(xy) = f(x)f(y), x, y S. Vy fl mt hm nhn tnh.

    3 Cc v d p dngV d 1. Nghim ca phng trnh Jensen.Bi ton 1. Tm hm f : R R tha mn phng trnh sau

    f

    x + y

    2

    =

    f(x) + f(y)

    2x, y R (1)

    Thay y = 0 vo (1), ta c

    fx

    2

    =

    f(x) + f(0)

    2x R (2)

    Khi p dng (1) v (2), ta c

    f(x) + f(y)

    2= f

    x + y

    2

    =

    f(x + y) + f(0)

    2

    hayf(x) + f(y) = f(x + y) + f(0), x, y R.

    t A(x) = f(x) f(0). Ta c A(x) + A(y) = A(x + y), x, y R. Vy A l mt hm cngtnh trn R nn f(x) = A(x) + , trong = f(0).Ch . Nu bi ton c thm gi thit: hm f lin tc th nghim tm c s l f(x) = ax+,vi a, l cc hng s ty .

    Tip theo ta xt tnh n nh nghim ca phng trnh (1).

    Mnh 1. Gi s hmf tha mnfx + y2

    f(x) + f(y)

    2

    (3)vi l s dng ty cho trc v vi mix, y R. Khi tn ti duy nht mt hm cngtnhA : R R sao cho

    |f(x) A(x) f(0)| 4, x R.

    39

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    40/253

    Chng minh. Thay y = 0 vo (3), ta cfx2

    f(x) + f(0)

    2

    x R.Do fx + y

    2

    f(x + y) + f(0)2

    x, y R.Ta c f(x) + f(y)

    2 f(x + y) + f(0)

    2

    f(x) + f(y)2

    f(x + y)2

    +

    f(x + y)2

    f(x + y) + f(0)2

    2

    hay |f(x + y) + f(0) f(x) f(y)| 4. (4)t g(x) = f(x) f(0). Thay vo (4), ta c

    |g(x + y) g(x) g(y)| 4Theo tnh n nh ca hm cng tnh, tn ti duy nht hm cng tnh A sao cho

    |g(x) A(x)| 4.Ta c

    |f(x) A(x) f(0)| = |g(x) A(x)| 4.V d 2. Nghim ca phng trnh Cauchy hai n hm.

    Bi ton 2. Tm cp hm f, g : R R tha mn phng trnh sauf(x + y) = g(x) + g(y) x, y R (5)

    Thay y = 0 vo (5), ta c

    f(x) = g(x) + g(0) x R,

    hay f(x) = g(x) + , vi = g(0). Do g(x) = f(x) vi mi x R.Thay vo phng trnh (5), ta cf(x + y) = f(x) + f(y) 2 (6)

    t f(x) = A(x) + 2. Phng trnh (6) tr thnh

    A(x + y) + 2 = A(x) + 2 + A(y) + 2 2

    40

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    41/253

    hayA(x + y) = A(x) + A(y) x, y R.

    Vy A l mt hm cng tnh trn R nn

    f(x) = A(x) + 2g(x) = A(x) + .Ch . Nu bi ton c thm gi thit: hm f, g lin tc th nghim tm c s l

    f(x) = ax + 2g(x) = ax +

    vi a, l cc hng s ty .Tip theo ta xt tnh n nh nghim ca phng trnh (5).

    Mnh 2. Gi s hmf, g : R R tha mn|f(x + y) g(x) g(y)| (7)

    vi l s dng ty cho trc v vi mix, y R. Khi tn ti duy nht mt hm cngtnhA : R R sao cho |f(x) A(x) f(0)| 4

    |g(x) A(x) g(0)| 3vi mix R.Chng minh. Thay y = 0 vo (7), ta c

    |f(x) g(x) g(0)| , x R, (8)suy ra

    |f(0) 2g(0)| . (9)S dng (8), ta c

    |f(x + y) g(x + y) g(0)| , x, y R. (10)Ta c

    |f(x + y) g(x + y) g(0)| = |f(x + y) g(x) g(y) g(x + y) + g(x) + g(y) g(0)|

    nn kt hp (7) v (10) thu c

    |g(x + y) g(x) g(y) + g(0)| |f(x + y) g(x + y) g(0)| + |f(x + y) g(x) g(y)| 2

    hay|[g(x + y) g(0)] [g(x) g(0)] [g(y) g(0)]| 2, (11)

    41

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    42/253

    vi mi x, y R. tG(x) = g(x) g(0), (12)

    vi mi x, y R. Th vo (11) ta c

    |G(x + y)

    G(x)

    G(y)

    | 2,

    x, y

    R.

    Theo nh l v tnh n nh ca hm cng tnh, tn ti duy nht mt hm cng tnh A : R Rsao cho

    |G(x) A(x)| 2, x R. (13)T (12) v (13) ta c

    |g(x) A(x) g(0)| 2, x R. (14)T (8), (9) v (14) ta c

    |f(x) A(x) f(0)| = |f(x) g(x) g(0) + g(x) A(x) g(0) + 2g(0) f(0)|

    |f(x)

    g(x)

    g(0)

    |+

    |g(x)

    A(x)

    g(0)

    |+

    |f(0)

    2g(0)

    | + 2 + = 4.

    V d 3. Nghim ca phng trnh Pexider.

    Bi ton 3. Tm tt c cc hm f , g , h : R R tha mn phng trnh sauf(x + y) = g(x) + h(y) x, y R (15)

    Thay y = 0 vo (15), ta c

    f(x) = g(x) + h(0) x R,hay f(x) = g(x) + , vi = h(0). Do g(x) = f(x) vi mi x R.

    Thay x = 0 vo (15), ta c f(y) = h(x) + , vi = g(0), hay h(x) = f(x) vi mix R.

    Phng trnh (15)tr thnh

    f(x + y) = f(x) + f(y) , x, y R. (16)t f(x) = A(x) + + thay vo phng trnh (16), ta c

    A(x + y) + + = A(x) + + + A(y) + +

    hayA(x + y) = A(x) + A(y) x, y R.

    Vy A l mt hm cng tnh trn R nn

    f(x) = A(x) + + g(x) = A(x) + h(x) = A(x) +

    42

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    43/253

    Ch . Nu bi ton c thm gi thit: hm f , g , h lin tc th nghim tm c s l

    f(x) = ax + + g(x) = ax + h(x) = ax +

    vi a,, l cc hng s ty .Tip theo ta xt tnh n nh nghim ca phng trnh (15).

    Mnh 3. Gi s hmf , g , h : R R tha mn

    |f(x + y) g(x) h(y)| (17)

    vi l s dng ty cho trc v vi mix, y R. Khi tn ti duy nht mt hm cngtnhA : R R sao cho

    |f(x) A(x) f(0)| 6

    |g(x) A(x) g(0)| 4|h(x) A(x) h(0)| 6vi mix R.Chng minh. Thay y = 0 vo (17), ta c

    |f(x) g(x) h(0)| , x R, (18)

    suy ra|f(0) g(0) h(0)| . (19)

    Thay y = 0 vo (17), ta c

    |f(y) h(y) g(0)| , y R, (20)

    T (18) v (20)

    |h(x) g(x) h(0) + g(0)| = |f(x) g(x) h(0) + h(x) + g(0) f(x)| |f(x) g(x) h(0)| + |f(x) h(x) h(0)|

    hay|h(x) g(x) h(0) + g(0)| 2, x R. (21)

    S dng (18), ta c

    |f(x + y) g(x + y) h(0)| , x, y R. (22)

    Ta c

    |f(x + y) g(x + y) h(0)| = |f(x + y) g(x) h(y) g(x + y) + g(x) + h(y) h(0)|

    43

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    44/253

    nn kt hp (17) v (22) thu c

    |g(x + y) g(x) h(y) + h(0)| |f(x + y) g(x + y) h(0)| + |f(x + y) g(x) h(y)| 2

    Mt khc|g(x + y) g(x) h(y) + h(0)| = |g(x + y) g(x) g(y) + g(0) h(y) + g(y) g(0) + h(0)|

    nn t (21)

    |g(x + y) g(x) g(y) + g(0)| |g(x + y) g(x) h(y) h(0)| + |h(y) g(y) + g(0) h(0)| 4

    hay|[g(x + y) g(0)] [g(x) g(0)] [g(y) g(0)]| 4, (23)

    vi mi x, y R. tG(x) = g(x) g(0), (24)

    vi mi x, y R. Th vo (23) ta c

    |G(x + y) G(x) G(y)| 4, x, y R.

    Theo nh l v tnh n nh ca hm cng tnh, tn ti duy nht mt hm cng tnh A : R Rsao cho

    |G(x) A(x)| 4, x R. (25)T (24) v (25) ta c

    |g(x) A(x) g(0)| 4, x R. (26)T (18), (19) v (26) ta c

    |f(x) A(x) f(0)| = |[f(x) g(x) h(0)] + [g(x) A(x) g(0)] + [g(0) + h(0) f(0)]| |f(x) g(x) h(0)| + |g(x) A(x) g(0)| + |f(0) g(0) h(0)| + 4 + = 6

    T (21) v (26) ta c

    |h(x)

    A(x)

    h(0)

    |=

    |[h(x)

    g(x)

    h(0) + g(0)] + [g(x)

    A(x)

    g(0)]

    | |h(x) g(x) h(0) + g(0)| + |g(x) A(x) g(0)| 2 + 4 = 6.

    V d 4. Tm tt c cc hm lin tc f : R R tha mn phng trnh sau

    f(x + y

    2) =

    f(x)f(y), x, y R (27)

    44

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    45/253

    T phng trnh (27), ta c f(x) 0, x R. Gi s tn ti x0 R sao cho f(x0) = 0.Khi

    f(x0 + y

    2) =

    f(x0)f(y) = 0 y R,

    hay f(x) = 0 vi mi x R.Xt f(x) > 0, x R. Khi ly logarit hai v ca phng trnh (27), ta c

    ln f(x + y

    2) =

    ln f(x) + ln f(y)

    2, x, y R

    t g(x) = ln f(x) ta c

    g(x + y

    2) =

    g(x) + g(y)

    2, x, y R

    hay g l mt nghim ca phng trnh Jensen, tc l g(x) = ax + b. Suy ra nghim ca phngtrnh (27) l f(x) = eax+b vi a, b R.

    Tip theo ta xt tnh n nh nghim ca phng trnh (27).

    Mnh 4. Gi s hmf : R R+ tha mn

    |f(x + y2

    )

    f(x)f(y)| (28)

    vi mix, y R v|f(x) f(x)| (29)

    vi, l cc s dng ty cho trc. Gi s tn tif(a)1, khi tn ti mt hmE : RR+ sao cho

    |E(x + y)

    E(x)

    E(y)

    | ,

    x, y

    R (30)

    v|f(x) 1

    2(E(x) E(x))| , x R (31)

    vi, l cc hng s no .

    Chng minh. t m = supxR

    f(x)f(a). T iu kin (29) th m l hu hn. Khi , ta c

    f(x)f(a)

    f(x)f(a) + |

    f(x)f(a)

    f(x)f(a)|

    m + |f(x a2

    ) f(x)f(a)| + |f(x + a

    2) f(x)f(a)|

    + |f(x a2

    ) f(x + a2

    )| m + 2 +

    t h : R R+ thah(x) =

    f(x)f(x), x R.

    45

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    46/253

    Khi h l mt hm chn v

    |h(x) f(x)| =

    f(x)|

    f(x)

    f(x)| 2 m2

    f(a), x R, |h(x)

    f(a)| m. (32)

    t E : RR+ tha mn

    E(x) = h(x) +

    f(a) x Rp dng (32) ta c

    |E(x + y) E(x)E(y)| = |h(x + y) +

    f(a) h(x)h(y) (h(x) + h(y))

    f(a) f(a)| |h(x + y)| + |h(x)h(y)| + |(h(x) + h(y))

    f(a)| + |f(a)|

    |h(x + y) f(x + y)| + |f(x + y)| + |h(x)h(y)f(a)f1(a)|+ |h(x)

    f(a)| + |h(y)

    f(a)| +

    f(a) + |f(a)|

    2

    m2

    f(a)+

    mf(a) +m2

    f(a)+ 2m + f(a) + |f(a)| =

    v

    |f(x) 12

    (E(x) E(x))| =

    |f(x) h(x) + h(x) 12

    (h(x) + h(x))

    f(a)|

    |f(x) h(x)| +

    f(a) 2 m2

    f(a)+

    f(a) = .

    Ti liu tham kho[1] Nguyn Vn Mu, Phng trnh hm, Nh xut bn Gio dc, 1997.

    [2] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer, 2009,295-323.

    46

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    47/253

    MT S LP PHNG TRNH HM A N SINHBI PHI NG THC

    Trn Vit Tng, Trng THPT Trn Ph - Nng

    Trong ton hc ph thng cc bi ton v phng trnh hm l cc loi ton thng mi v rtkh, thng xuyn xut hin trong cc thi hc sinh gii quc gia, Olympic Ton khu vcv Quc t, Olympic sinh vin gia cc trng i hc v cao ng. Lin quan n cc dngton ny l cc bi ton v cc c trng khc nhau ca hm s v cc tnh cht lin quan vichng. h thng cc phng trnh hm, cn thit phi h thng cc kin thc c bn v nng caov cc dng phng trnh hm cng nh cc ng dng ca chng.i vi cc bi ton v phng trnh hm vi nhiu n hm trong cc lp hm c th: lin tc,kh vi, tun hon, li lm,... cn nm c mt s k thut v bin i hm s, kho st cctnh cht c bn ca hm thc v cc php bin hnh trn trc thc.

    1 Phng trnh hm sinh bi phi ng thc a2 + b2 g(a + b)h(a b)

    Bi ton 1. Tm cc hm s f , g , h xc nh v lin tc trn R tha mn iu kin

    f(x2 + y2) = g(x + y).h(x y), x, y R. (1)Gii. Xt trng hp g(0) = 0.

    Cho y = x , phng trnh cho tr thnh

    f(2x2) = 0, x R

    Suy raf(x) = 0, x 0.

    Thay f(x) vo phng trnh cho ta c

    g(x + y).h(x y) = 0, x, y Rg(u).h(v) = 0, u, v R.

    Do g(x) = 0

    h(x) lin tc ty trn Rhoc

    h(x) = 0

    g(x) lin tc ty trn R

    47

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    48/253

    Vy nghim trong trng hp ny l :

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x)

    0

    h(x) l hm lin tc ty

    hoc

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) l hm s lin tc ty v g(0) = 0h(x) 0

    Xt trng hp h(0) = 0

    Cho y = x, phng trnh cho tr thnhf(2x2) = 0, x R

    Suy raf(x) = 0, x 0.

    Th f(x) vo cho ta c

    g(x + y).h(x y) = 0, x, y Rg(u).h(v) = 0, u, v R.

    Do g(x) = 0

    h(x) lin tc ty trn R; h(0) = 0hoc

    h(x) = 0

    g(x) lin tc ty trn R.

    Vy nghim ca phng trnh trong trng hp ny l :

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) l hm lin tc ty

    h(x) 0hoc

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) 0h(x) l hm lin tc ty vi h(0) = 0

    48

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    49/253

    Xt trng hp g(0) = 0 v h(0) = 0 .Ta c f(0) = 0.Cho x = y, phng trnh cho tr thnh

    f(2x2) = g(2x).h(0), g(2x) =f(2x2)

    h(0) , x R, g(x) =f(

    x2

    2

    )

    h(0) , x R.

    Cho x = y, phng trnh cho tr thnh

    f(2x2) = g(0).h(2x), h(2x) =f(2x2)

    g(0), x R, h(x) =

    f(x2

    2)

    g(0), x R.

    Thay g(x) v h(x) vo phng trnh ta c

    f(x

    2

    + y

    2

    ) = f[

    (x + y)2

    2 ].f[

    (x

    y)2

    2 ].

    1

    g(0)h(0), x, y R.

    t

    u =(x + y)2

    2

    v =(x y)2

    2

    .Khi ta c

    f(u + v) = f(u).f(v).1

    g(0)h(0), u, v 0. (2)

    t f(u) = g(0)h(0)F(u), u 0.Phng trnh (3.2) tr thnh

    g(0)h(0)F(u + v) = g(0)h(0)F(u).g(0)h(0)F(v).1

    g(0)h(0), u, v 0

    F(u + v) = F(u)F(v), u, v 0.

    Ta c

    F(u) = au u 0; a > 0f(u) = b.au vi b = g(0)h(0); a > 0

    f(x) = b.a

    x

    , x 0; a > 0, b = 0.

    Suy ra g(x) =f(

    x2

    2)

    h(0), x R = g(0).ax22 x R = m.ax22 vi m = g(0).

    h(x) =f(

    x2

    2)

    g(0), x R = h(0).ax22 , x R = n.ax22 vi n = h(0).

    49

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    50/253

    Vy nghim ca phng trnh trong trng hp ny l :

    f(x) = b.ax vi x 0; a > 0; b = 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) = m.ax2

    2 ,

    xR

    h(x) = n.ax2

    2 , x RTm li nghim ca bi ton l

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) 0h(x) l hm lin tc ty

    hoc

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) l hm s lin tc ty v g(0) = 0h(x) 0

    hoc

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (

    ; 0] v q(0) = 0

    g(x) l hm lin tc ty h(x) 0

    hoc

    f(x) = 0 vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) 0h(x) l hm lin tc ty vi h(0) = 0

    hoc

    f(x) = b.ax vi x 0; a > 0; b = 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) = m.a

    x2

    2 , x R

    h(x) = n.a

    x2

    2 , x R

    50

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    51/253

    Bi ton 2. Tm cc hm s f , g , h xc nh v lin tc trn R tha mn iu kin

    f(x2 + y2) = g(x + y) + h(x y), x, y R. (3)

    Gii. Nghim ca bi ton l

    f(x) = ax + b + c vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) = ax2

    2+ b, x R

    h(x) = ax2

    2+ c, x R

    vi b = g(0); c = h(0)

    Bi ton 3. Tm cc hm s f, g, h xc nh v lin tc trn R tha mn iu kinf(x2 + y2) = g(x2) h(y2), x, y R. (4)

    Gii. Nghim ca bi ton l

    f(x) = ax + b vi x 0f(x) = q(x) vi q(x) lin tc ty trong (; 0] v q(0) = 0

    g(x) = ax + c, x Rh(x) = ax d, x R

    2 Phng trnh hm sinh bi ng thc a2 b2 = (a +b)(a b)

    Bi ton 4. Tm cc hm s f , g , h lin tc v xc nh trn R tha mn iu kin

    f(x2 y2) = (x + y)g(x y), x, y R. (5)

    Gii. Cho y = 0, phng trnh cho tr thnh

    f(x2) = x.g(x), x R.Nu x = 0 th

    f(x) = 0. (6)

    Nu x = 0 , ta cg(x) =

    f(x2)

    x.

    51

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    52/253

    Do , phng trnh cho tr thnh

    f(x2 y2) = (x + y)f[(x y)2]

    x y , x = yf(x2

    y2)

    x + y =

    f[(x

    y)2]

    x y , x = yf(x2 y2)

    x2 y2 =f[(x y)2]

    (x y)2 , x = y.

    t h(x) =f(x)

    xvi x = 0. Khi , ta c

    h(x2 y2) = h[(x y)2].Cho x = y + 1 , ta c

    h(2y + 1) = h(1), y Rh(x) = a, x = 0.

    Do f(x) = ax vi x = 0. (7)

    Kt hp (10) v (7) ta cf(x) = ax, x R.

    Suy ra

    g(x) =ax2

    x

    = ax,

    x

    = 0.

    Vy nghim ca bi ton l

    f(x) = ax

    g(x) = ax

    Bi ton 5. Tm tt c cc hm s f , g , h xc nh v lin tc trn R tha mn iu kin

    f(x2 y2) = g(x y) + h(x + y), x, y R. (8)

    Gii. Nghim ca bi ton l

    f(x) = a, x Rg(x) = b,

    x

    R

    h(x) = c, x Rtrong a,b,c R; a = b + c.

    Bi ton 6. Tm tt c cc hm s f , g , h xc nh v lin tc trn R tha mn iu kin

    f(x2 y2) = g2(x) h2(y), x, y R. (9)

    52

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    53/253

    Gii. Nghim ca bi ton l

    f(x) = mx + a b, x R; a,b,m 0g(x) =

    mx2 + a

    h(x) = mx2 + b

    hoc

    f(x) = mx + a b, x R; a,b,m 0g(x) =

    mx2 + a

    h(x) = mx2 + b

    hoc

    f(x) = mx + a b, x R; a,b,m 0g(x) = mx2 + ah(x) =

    mx2 + b

    hoc

    f(x) = mx + a

    b,

    x

    R; a,b,m

    0

    g(x) = mx2 + ah(x) = mx2 + b

    3 Mt s bi ton phng trnh a n hm khcBi ton 7. Tm cc hm s f , g , h lin tc v xc nh trn R tha mn iu kin

    f(x) g(y) = xh(y) yh(x), x, y R. (10)Gii. Cho x = y, phng trnh cho tr thnh

    f(x) g(x) = 0 f(x) = g(x), x R.Cho y = 0, phng trnh cho tr thnh

    f(x) g(0) = x.h(0), x Rf(x) = x.h(0) + g(0), x Rf(x) = ax + b vi a = h(0); b = g(0).

    Thay f, g vo phng trnh cho ta c

    (ax + b) (ay + b) = xh(y) yh(x), x, y Rax ay = xh(y) yh(x), x, y R

    a

    y a

    x=

    h(y)

    y h(x)

    x, x, y R

    a

    x h(x)

    a=

    a

    y h(y)

    y, x, y R.

    53

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    54/253

    Suy ra

    a

    x h(x)

    x= C vi C l hng s

    h(x) = Cx + ah(x) = cx + a vi c = C.

    Th li phng trnh ta thy f , g , h tha mn.

    Vy nghim ca phng trnh l

    f(x) = g(x) = ax + b

    h(x) = cx + a

    Bi ton 8. Tm tt c cc hm s f, g xc nh v lin tc trn R tha mn iu kin

    f(x) f(y) = (x + y)g(x y), x, y R. (11)

    Gii. Nghim ca bi ton lf(x) = ax2 + b

    g(x) = axvi mi a, b R.

    Bi ton 9. Tm tt c cc hm s f, g xc nh v lin tc trn R tha mn iu kin

    f(x) + f(y) + 2xy = (x + y)g(x + y), x, y R. (12)

    Gii. Nghim ca bi ton l f(x) = x2 + ax v g(x) =

    x + a vi x = 0c vi x = 0

    .

    Bi ton 10. Tm tt c cc hm s f, g xc nh v lin tc trn R tha mn iu kinf(x).g(y) = x2 y2, x, y R. (13)

    Gii. Nu tn ti x0 sao cho f(x0) = 0. Khi ta c

    0 = f(x0).g(y) = x20 y2, y R (v l).

    Suy raf(x) 0, x R.

    Tng t ta cng cg(x) 0, x R.

    Cho x = y, phng trnh (15) tr thnh

    f(x).g(x) = 0 f(x) = 0 hoc g(x) = 0 (loi do f(x) 0; g(x) 0).

    Vy khng tn ti cc hm f, g tha mn bi ton.

    54

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    55/253

    Bi ton 11. Tm tt c cc hm s f , g , h xc nh v lin tc trn R tha mn iu kin

    f(x + y) + g(x y) = h(xy), x, y R. (14)

    Gii. Nghim ca bi ton l

    f(x) =mx2

    4

    + b,

    x

    R

    g(x) = mx2

    4+ a, x R

    h(x) = mx + a + b, x R.

    Bi ton 12. Tm tt c cc hm s dng f , g , h xc nh v lin tc trn R tha mn iukin

    f(x + y).g(x y) = h(xy), x, y R. (15)Gii. Do f , g , h l cc hm s dng nn phng trnh (??) tng ng

    ln f(x + y) + ln f(x y) = ln h(xy), x, y R.

    t

    ln f(x) = F(x)

    ln g(x) = G(x)

    ln h(x) = H(x)

    . Khi ta c F(x + y) + G(x y) = H(xy), x, y R.

    Ta c

    F(x) =mx2

    4+ b, x R

    G(x) = mx2

    4+ a, x R

    H(x) = mx + a + b, x R.

    . Suy ra

    f(x) = emx2

    4 +b, x Rg(x) = e

    mx2

    4+a, x R

    h(x) = emx+a+b, x R.Th li ta thy cc hm f , g , h tha mn iu kin bi ton.

    Vy nghim ca bi ton l

    f(x) = emx2

    4+b, x R

    g(x) = emx2

    4+a, x R

    h(x) = emx+a+b, x R.

    Bi ton 13. Tm tt c cc hm s f, g xc nh v lin tc trn R tha mn iu kinf(x) + g(x) + f(y) g(y) = sin x cos y, x, y R. (16)

    Gii. Nghim ca bi ton l

    f(x) =1

    2(sin x cos x), x R

    g(x) =1

    2(sin x + cos x) + a, x R.

    55

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    56/253

    Ti liu tham kho[1] Nguyn Vn Mu, 1997, Phng trnh hm, NXB Gio Dc

    [2] Nguyn Vn Mu, 2006, Cc bi ton ni suy v p dng, NXB Gio Dc.

    [3] Nguyn Vn Mu, 2009, Phng trnh hm vi nhm hu hn cc bin i phn tuyn tnh,K yu HNKH "Cc phng php v chuyn ton s cp" ti Bc Giang, 27-29/11/2009.

    [4] Christopher G. Small, 2000, Functinal equations and how to solve them, Springer.

    56

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    57/253

    T CNG THC EULER N CC BI TON SPHC

    L Sng, Nguyn inh Huy, Trng THPT chuyn L Qu n - Khnh Ha

    p dng s phc trong hnh hc phng c nhiu ti liu ca tc gi on Qunh,NguynHu in nh l sch gio khoa dng tham kho.Trong bi vit ny chng ti cp n mtphng php rt hiu qu trong gii h phng trnh, chng minh ng thc, hay dng tnhtng c gi l phng php s phc. Trc xt thm khai trin chui Taylor xy dngcng thc Moivre m trong sch gio khoa c c t cng thc nhn s phc dng lng gicv chng minh quy np I Khai trin Taylor v cng thc Moivre

    1 Khai trin Taylor v cng thc MoivreCho z l s phc

    ez = 1 +z

    1!+

    z2

    2!+

    z3

    3!+ .... +

    zn

    n!+ ...

    Trng hp c bit, vi mt gc x, ta c

    eix = 1 + ix

    1! x

    2

    2! ix

    3

    3!+

    x4

    4!+ ....

    Phn thc v phn o ca eix ln lt l

    Re(eix) = 1 x2

    2!+

    x4

    4! x

    6

    6+ , Im(eix) = x

    1! x

    3

    3!+

    x5

    5! x

    7

    7!+

    Hai chui trn l khai trin Taylor ca cos x v sin x.Ta c c cng thc Euler nh sau eix = cos x + i sin x v ta c mt cng thc tuyt p: ei =1 Ngoi ra do einx = (e(ix)n) nn ta suy ra cng thc Moivre: cos nx+i sin nx = (cos x+i sin x)nV d m uTm khai trin Taylor ca hm f(x) = excos cos(x sin ) ti im 0, vi l tham s.Gii. t g(x) = ex cos sin(x sin ) v vit :

    f(x) + ig (x) = ex cos (cos (x sin ) + i sin(x sin ))= ex cos .eix sin = ex(cos +i sin )

    Dng cng thc Moivre v khai trin Taylor:

    1 +x

    1!(cos + sin ) +

    x2

    1!(cos 2 + i sin2) + + x

    n

    n!(cos n + i sin n) +

    57

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    58/253

    Khai trin v rt gn ta thu c

    f(x) = 1 +cos

    1!x +

    cos2

    2!x2 + + cos n

    n!xn +

    Sau y l mt s bi ton p dng phng php s phc

    2 Chng minh ng thcBi ton 1. Chng minh 1

    cos60+ 1

    sin 240+ 1

    sin 480= 1

    sin 120

    Li gii. t z = cos 60 + i sin60. Ta c z15 = iM cos60 = z

    2+12z , sin12

    0 = z41

    2iz2 , sin240 = z

    812iz4 , sin48

    0 = z16112iz8

    ng thc cn chng minh tr thnh chng minh 2zz2+1 2iz2

    z41 +2iz4

    z81 +2iz8

    z161 = 0. Quy ng mus, thu gn Ta c z16 1 iz(z14 + 1) = 0z16 1 iz(z14 + 1) = 0 tc l iz 1 i2 iz = 0iu ny hin nhin ng.Bi ton 2. Cho a,b,c l cc s thc tha cos a + cos b + cos c = sin a + sin b + sin c = 0Chng minh rnga) cos2a + cos 2b + cos 2c = sin 2a + sin 2b + sin 2c = 0b) 3(cos(a + b + c) = cos 3a + cos 3b + cos 3c v 3(sin(a + b + c) = sin 3a + sin 3b + sin 3c

    Li gii. t x = cos a + i sin a, y = cos b + i sin b, z = cos c + i sin cT gi thit ta c x + y + z = x1 + y1 + z1 = 0 suy ra xy + yz + zx = 0a) x2 + y2 + z2 = (x + y + z)2 2(xy + yz+ zx) = 0. Suy ra kt qub) x3 + y3 + z3 = 3xyz. Suy ra kt qu

    Bi ton 3. Chng minh ng thc:1 + i tan t

    1 i tan tn

    =1 + i tan nt

    1 i tan nt, n 1

    Li gii. Nu ta nhn t v mu v bn tri vi cos t, v v bn phi bi cos nt, th ta c ucng thc:

    eit

    eit

    n= e

    int

    eint

    Bi ton 4. Chng minh ng thc

    n0 +n

    k +n

    2k + ... =2n

    k

    k

    i=1 cosnj

    k

    cosnj

    k

    Li gii. Let C1, C2, . . . , C k l k nghim ca cn n v, tc l, Cj = cos 2jk + i sin2jk

    , j =1, 2,..,kNh vy

    kj=1

    (1 + Cj)n =

    ns=0

    ns

    kj=1

    Cj

    = k

    nk

    j=0

    n

    jk

    58

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    59/253

    V 1 + Cj = 2cosjk cosjk + i sin

    jk

    Nn p dng cng thc Moivre

    k

    j=1(1 + Cj)

    n =k

    j=12ncosn

    j

    k cos

    nj

    k+ i sin

    nj

    k So snh phn thc 2 v ta c kt qu

    Bi ton 5. Chng minh ng thc

    1

    n2

    +

    n4

    n6

    + ... = 2

    n2

    cos

    n

    4+ i sin

    n

    4

    , n 1

    Li gii. Dng cng thc Moivre, ta c:

    (1 + i)n =

    2cos

    4

    + i sin

    4n

    = 2n2 cos

    n

    4

    + i sinn

    4 Khai trin (1 + i)n v cho hai v bng nhau bi phn thc,ta c c iu phi chng minhban u.

    3 Tnh tch v tngBi ton 6. Chng minh tngcos 27 + cos

    47 + cos

    67 = 12

    Li gii. Nu z = cos 7 + i sin7 th z

    7 = 1 iu cn chng minh tng ng vi

    12

    z+ 1

    z

    + 1

    2

    z2 + 1

    z2

    + 12

    z3 + 1

    z3

    + 12

    = 0

    Nhn cho 2z3 , sp xp cc s hng z6 + z5 + z4 + z3 + z2 + z+ 1 = z71z1 = 0

    Bi ton 7. Tnh tngT = 3

    cos 29 +3

    cos 49 +

    3

    cos 89

    Li gii. Xt phng trnh z9 1 = 0 c 9 nghim zk, k = 0, 1, . . . , 8 c tng l 0Phng trnh t4 + t3 3t2 2t + 1 = (t + 1) (t3 3t + 1) = 0 c 4 nghim:

    2cos2

    9 , 2cos4

    9 , 2cos6

    9 , 2cos8

    9

    t t = z+ 1z , phng trnh (t3 3t + 1) = 0 c 3 nghim 2cos 29 , 2cos 49 , 2cos 89

    Dng cc biu thc i xng nghim phng trnh bc 3, ta c tng l 3

    3 3

    962

    Bi ton 8. Tnh tch P = cos cos400cos800

    59

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    60/253

    Li gii. . t z = cos 200 + i sin200

    Ta c 2cos200 = z+ 1z

    , 2cos400 = z2 + 1z2

    , 2cos800 = z4 + 1z4

    , z9 = 1Suy ra (z z8) (z2 z7) (z3 z5) = (z z2 + z3 z4 + z5 z6 + z7 z8) = 1Bi ton 9. Tnh tchsin

    2nsin 2

    2nsin 3

    2n sin (n1)

    2n

    Li gii. Xt a thc P(X) = X2n 1C cc nghim xk = cos kn + i sin

    kn , k = 0, 1, , 2n 1, x0 = 1, xn = 1, xk = x2nkkhi 1

    k n 1Khi P(X) = (X2 1)

    n1k=1

    (X xk)(X xk) = (X2 1)n1k=1

    (X2 2cos kn + 1), do xk + xk =2cos kn , xkxk = 1Chia 2 v cho x2 1 , ta c

    x2n2 + x2n4 + x4 + x2 + 1 =n1

    k=1x2 2x cos k

    n+ 1

    .

    Ly x = 1, ta c n = 2n1n1k=1

    1 cos kn

    =2n1n1k=1

    2sin2 k2n , suy ran1k=1

    sin k2n =n

    2n1

    Bi ton 10. Tnh tng:n1

    cos x +

    n2

    cos2x + ... +

    nn

    cos nx

    Li gii. Gi tng cn tm l S1 v cho

    S2 = n

    1

    sin x + n

    2

    sin2x + ... + n

    n

    sin nx.

    Dng cng thc Euler, ta c th vit

    1 + S1 + iS2 =

    n0

    +

    n1

    eix + ... +

    n2

    ei2x

    Nh tnh nhn ca ly tha, ta c:

    n

    k=0

    nk eixk = 1 + eixn = 2cosx2ne ix2

    n

    Tng trong cu hi l mt phn thc ca khai trin lun b hn 1, iu ny dn n kt qutng l

    2ncosnx

    2cos

    nx

    2 1

    60

  • 7/23/2019 CAC-CHUYEN-DE-BD-HSG-NTB-NHATRANG-2013.pdf

    61/253

    Bi ton 11. (USAMO 1999) Tnh (cos )(cos 2)(cos 3) . . . (cos 999)vi = 21999

    Li gii. Xt bi ton tng qut, vi n l s nguyn l, hy tnh:

    S = (cos )(cos 2)(cos 3) . . . (cos n) vi =2

    2n + 1

    Chng ta c th cho = ei...? v S = 2nn

    k=1

    k + k

    .

    Khi k + k = 2n+1k, k = 1, 2,..,n, chng cha: