caesar ii training

22
CAESAR II STATIC LOAD CASE EDITOR Loren Brown Senior Engineer/Developer CADWorx & Analysis Solutions Intergraph Process, Power, & Marine

Upload: petar-jankovic

Post on 01-Nov-2014

648 views

Category:

Documents


68 download

DESCRIPTION

ggg

TRANSCRIPT

Page 1: caesar ii training

CAESAR II STATIC LOAD CASE EDITOR

Loren BrownSenior Engineer/Developer

CADWorx & Analysis SolutionsIntergraph Process, Power, & Marine

Page 3: caesar ii training

TYPES OF LOADS

• Primary Loads – Force driven, cause catastrophic failure.– Weight, Pressure, Point Loads, Uniform Loads,

Hanger Loads, Wind and Wave loads.

• Secondary Loads – Strain based, cause fatigue failure.– Temperature, Displacements.

Page 4: caesar ii training

AVAILABLE LOAD TYPES IN CAESAR II

• W (Weight), WNC (Weight No Contents)• WW (Water-filled Weight)• P (Pressure), HP (Hydrotest Pressure)• T (Temperature), D (Displacement)• H (Hanger Pre-loads), F (Concentrated Loads)• U (Uniform Loads)• Win (Wind), Wav (Wave and Current)• CS (Cut Short or Cut Long)

Page 5: caesar ii training

Available Stress Types in CAESAR II

• OPE – Operating • SUS – Sustained• EXP – Expansion• OCC – Occasional• HYD – Hydrotest• HGR – Hanger Design• FAT - Fatigue

Page 6: caesar ii training

Load Case Definition

• Operating case contains all loads in the system.– L1 = W+P1+T1+H (OPE) this is called a basic load case

• Sustained Case contains only primary loads.– L2 = W+P1+H (SUS) another basic load case

• Expansion Case is the difference between the operating and sustained cases.– L3 = L1-L2 (EXP) this is called a combination load case

Page 7: caesar ii training

Combination Load Cases

• Used to add or subtract results from previously defined primitive load cases.

• Necessary for proper EXP and OCC code stress definition.

• Not used for restraint or equipment load definition, nor for displacement reporting.

Page 8: caesar ii training

Why subtract SUS from OPE?

• Why not simply use L3 = T1 (EXP)?– Because the restraint configuration may result in

an incorrect solution. – Nonlinear restraints drive the restraint

configuration.– Other loads in the system combine to change the

restraint configuration.

Page 9: caesar ii training

Nonlinear Restraints

• Stiffness of Restraint changes depending on position of pipe or forces on restraint.

• Examples: – Uni-directional Restraints (+Y)– Gaps in restraints– Friction– Large-rotation rods– Bi-linear Restraints

Page 10: caesar ii training

Force vs. Distance in Nonlinear Restraints

Page 11: caesar ii training

Example 1: T1 (EXP)

This is how the line is modeled in Caesar II. The gaps are equal on both sides of the pipe. No loads are yet applied.

The thermal forces have closed the gap on the right side.

L3 = T1 (EXP)

Total Displacement for T1 (EXP) = 1 x Gap

Page 12: caesar ii training

Example 2: L1 – L2 (EXP)L2 = W+P1 (SUS) L1 = W+P1+T1 (OPE)

Weight has caused the pipe to close the gap to the left. This can happen when the pipe pivots about a different restraint.

Operating conditions have caused the pipe to close the gap to the right, even against the weight force trying to hold it on the left.

Page 13: caesar ii training

Example 2 (con’t)

• If we subtract the displacements of the SUS case from OPE we get:– Total Displacement for L1-L2 = 2 x Gap– In a linear system T1 (EXP) = L1 – L2 (EXP)– In a nonlinear system this is not guaranteed.– This represents the effect of temperature in the

presence of other loads.– This is a displacement stress range, not starting

from the neutral position.

Page 14: caesar ii training

Occasional Load Cases

• For most piping codes (not the offshore codes):– Set up an OPE case that includes the occasional

load– Subtract the standard OPE case from the OPE that

includes the occasional load. We call this the segregated occasional load case.

– Add the above load case results to the SUS load case results for the code stress check

Page 15: caesar ii training

Example 3: Occasional Load Cases

• Assume we have a uniform load representing a seismic load, U1.– L1 = W+P1+T1 (OPE) standard operating

– L2 = W+P1 (SUS) – L3 = W+P1+T1+U1 (OPE) operating with occasional load

– L4 = L1-L2 (EXP)– L5 = L3-L1 (OCC) segregated occasional

– L6 = L2+L5 (OCC) * occasional code stress case

* use scalar combination method.

Page 16: caesar ii training

Combination Methods• Algebraic:

– Used for subtracting two load cases.– Takes the displacements from the referenced cases

and subtracts them.– Then computes forces, moments, and resultant stress

from these displacements.• Scalar:

– Used for adding two load cases.– Adds the stresses from the two referenced load cases.– Unlike algebraic the stresses are not recomputed

from displacements.

Page 17: caesar ii training

Notes on combination methods

• Don’t use algebraic for adding two load cases.– You can’t take credit for occasional loads acting

opposite to operating loads.

• Don’t use scalar for subtracting two cases.– This results in a lower code stress than actual.

Page 18: caesar ii training

Output Types

• Displacement– Usually reported only for basic load cases

• Force– Usually reported only for basic load cases

• Stress– Reported based on code requirements.

Page 19: caesar ii training

Example 4 – Restraint Loads

The algebraic difference between these two conditions will result in a positive force on the restraint. This is an impossible condition. But the EXP code stress is correctly computed for this condition.

Page 20: caesar ii training

What to report

• Suppress the HGR cases and the segregated occasional load cases.

• Report displacement, force for all primitive load cases.

• Don’t report stress for the operating load cases.– This is not true for offshore codes, nor FRP codes,

nor buried pipe codes.• Report only stress for combination load cases.

Page 21: caesar ii training

Using the Hot Modulus of Elasticity

• It is required to use the cold modulus of elasticity for stress computation.

• You can reduce restraint loads by use of the hot modulus of elasticity.

• Create identical OPE cases, one with hot modulus for restraint loads, and one with cold modulus for use in the combination with SUS for determining EXP stress.

Page 22: caesar ii training

Using the Friction Multiplier

• Friction Multiplier acts on the Mu value entered on each restraint in the model.

• Input 0.0 for no friction and 1.0 for full friction.

• Create identical load cases, but change the value of Friction Multiplier on one of them.

• Compare the results in the Restraint Summary and report the worst-case results.