calculational methods for analysis of postulated ufe...nureg/cr-4360 volume 2 ornl/eng/tm-31jv2...

214
MARTIN MARIETT'A OPERATED BY MARTIN MARlmA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY NUREG/CR-4360 Volume 2 ORNL/ENG/TM-31/V2 Calculational Methods for Analysis of Postulated UFe Releases W. R. Williams Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Division of Risk Analysis Transportation and Materials Risk Branch under Interagency Agreement DOE 40-550-75

Upload: others

Post on 10-Mar-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

MARTIN MARIETT'A

OPERATED BYMARTIN MARlmA ENERGY SYSTEMS, INC.FOR THE UNITED STATESDEPARTMENT OF ENERGY

NUREG/CR-4360Volume 2

ORNL/ENG/TM-31/V2

Calculational Methods for Analysisof Postulated UFe Releases

W. R. Williams

Prepared for theU.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory ResearchDivision of Risk Analysis

Transportation and Materials Risk Branchunder Interagency Agreement DOE 40-550-75

NOTICE

This report was prepared as an account of work sponsored by anagency of the United States Government. Neither the UnitedStates Government nor any agency thereof, or any of theiremployees, makes any warranty, expressed or implied, orassumes any legal liability or responsibility for any third party'suse, or the results of such use, of any information, apparatusproduct or process disclosed in this report, or represents that itsuse by such third party would not infringe privately ownedrights.

Available from

Superintendent of DocumentsU.S. Government Printing Office

Post Office Box 37082Washington. D.C. 20013-7982

and

National Technical Information ServiceSpringfield. VA 22161

NRC FORM 335 1. REPORT NUMeER (Ass;gnedby DOC)

11181>U.S. NUCLEAR REGULATORY COMMISSION NUREG/CR-4360, Vol. 2

BIBLIOGRAPHIC DATA SHEET ORNL/ENG/TM-3l/V24. TITLE AND SUBTITLE (Add Volume No., If tJPprCJP"em) 2. (LellVe bl""k)

Calculational Methods for Analysis of PostulatedUF6 Releases 3. RECIPIENT'S ACCESSION NO.

7. AUTHOR(SI 5. DATE REPORT COMPLETED

MONTH I YEARW. R. Williams August 1984

9. PERFORMING ORGAN!ZATION NAME AND MAILING ADDRESS (Include ZiP Code) DATE REPORT ISSUED

Oak Ridge National Laboratory MONTH I YEAR

September 1985Post Office Box XOak Ridge, TN 37831 6 (Leave bllmk)

8. (Leave blank)

12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include ZiP Code)10. PROJECT/TASK/WORK UNIT NO.

Division of Risk Analysis and OperationsOffice of Nuclear Regulatory Research 11 FIN NO.

U.S. Nuclear Regulatory CommissionWashington, DC 20555 B0495

13 TYPE OF REPORT IPE RIOD COVE RE D (lnc/uslve dates)

Topical

15. SUPPLEMENTARY NOTES 14. (Leave olank)

16. ABSTRACT (200 words or less)

Calculational methods and computer programs for the analysis of source terms forpostulated releases of UF6 are presented. Required thermophysical properties of UF6,HF, and H20 are described in detail. UF6 reacts with moisture in the ambientenvironment to form HF and H2O. The coexistence of HF and H20 significantly alterstheir pure component properties, and HF vapor polymerizes. A release rate model ofUF6 is presented that considers the transient conditions inside containment and theflashing, multiphase flow of UF6 along the release pathway. Transient compartmentmodels for simulating UF6 releases inside rooms ventilated by forced- and induced-draft systems are also described. The basic compartment model mass and energybalances are supported by simple heat transfer, ventilation system, and depositionmodels. A model that can simulate either a closed compartment or a steady-stateventilation system is also discussed. Listings of all main programs (including twoplotting routines) and subroutines are included. Example problems illustrate theanalysis of postulated releases using the described programs.

17. KEY WORDS AND DOCUMENT ANALYSIS 17a DESCRIPTORS

uranium hexafluoride (UF6) cylinder computer codesaccidents cold trap compartment modelsscenarios pigtail release rate modelsreleases fuel cycle physical and thermodynamic propertiesanalysis modeling

"

17l, IDENTIFIERS.OPEN·ENDED TERMS

18 AVAILABILITY STATEMENT 19 SECURITY CLASS ITh,s reporrJ 21 N~O/~Sunlimited unclassified

20. SE CU RI TY CLASS ITh,s page)22 =RI~.,p-, 9 _S·-unclassified

NRCFORM335 111811

NUREG/CR-4360Volume 2

ORNL/ENG/TM-31jV2Dist.Cat.RZ

Martin Marietta Energy Systems) Inc., EngineeringProcess Engineermg

Calculational Methods for Analysis ofPostulated UF6 Releases

W. R. Williams

Manuscript Completed:August 1984

Date of Issue: September 1985

Prepared for theU.S. Nuclear Regulatory Commission

Office of Nuclear Regulatory ResearchDivision of Risk Analysis

Transportation and Materials Risk Branch(T. Clark, Project Manager)

Washington, DC 20555under Interagency Agreement

DOE 40-550-75FIN B0495

Oak Ridge National LaboratoryP.O. Box X

Oak Ridge, Tennessee 37831operated by

MARTIN MARIETTA ENERGY SYSTEMS, INC.for the

U.S. DEPARTMENT OF ENERGYunder Contract No. DE-AC05-840R2l400

, ,II

CONTENTS

Volume 1

Acknowledgement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Vll

Executive Summary . IX

Abstract . XI

1. INTRODUCTION AND SUMMARY .

2. PHYSICAL AND THERMODYNAMIC PROPERTIES MODELS 3

2.1 Uranium Hexafluoride 3

2.Ll Vapor Pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Equation of State and Vapor Compressibility

Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Density............................................................... 6

2.1.4 Viscosity.............................................................. 7

2.1.5 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.6 Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11

2.1.7 Enthalpy.............................................................. 13

2.1.8 Entropy............................................................... 14

2.1.9 Other Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

2.Ll0 UF6 Reaction with H 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

2.1.11 Flashing............................................................... 17

2.Ll2 Subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19

2.2 HF-H20 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

2.2.1 Self-Association of HF Vapor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20

2.2.2 Partial Vapor Pressure of HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23

2.2.3 Partial Vapor Pressure of H 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25

2.2.4 Enthalpy of HF-H20 Vapor Mixtures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29

2.2.5 Enthalpy of HF-H20 Liquid Mixutes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

2.2.6 HF-H20 Vapor-Liquid Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31

2.2.7 Subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

2.3 Other Components .

2.4 Mixture Enthalpies .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

3. RELEASE RATE MODELS .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

37

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 37

3.1 Containment (Cylinder) Subroutines .

3.1.1 Internal Mass and Energy Balance .

III

3.1.2 Liquid-Vapor Interface Level and Phase

Composition of UF6 Leaving Containment 41

3.2 Flow Rate Subroutines 45

3.2.1 Flow Through a Ruptured Piping System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46

3.2.2 Flow Rates Through a Breach in Containment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 52

3.3 Main Program for Evaluating Release Rates from a

Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53

3.4 Cylinder Model Plotting Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57

4. COMPARTMENT MODELS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 59

4.1 Main Program Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 62

4.1.1 Initial Statements 62

4.1.2 Input Data Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67

4.1.3 Steady-State Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69

4.1.4 Transient Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 71

4.1.5 Other Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74

4.2 Ventilation System Subroutines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74

4.2.1 Steady-State Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74

4.2.2 Transient Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 76

4.2.3 Stream Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 77

4.3 Source-Term Subroutine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78

4.4 Condensate Deposition Subroutine 79

4.5 Compartment Mass and Energy Balance Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 79

4.5.1 Initial Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81

4.5.2 Transient Behavior 83

4.6 Compartment Model Main Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86

4.6.1 Forced-Draft Compartment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86

4.6.2 Induced-Draft Compartment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 89

4.6.3 Closed Compartment/Ventilation System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92

4.7 Compartment Model Plotting Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 93

5. EXAMPLE PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95

5.1 Release from a Cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95

5.1.1 Release through a Breach in Containment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95

5.1.2 Release through a Ruptured Piping System 106

5.2 Release Inside a Compartment 112

5.3 Release into a Ventilation System 119

REFERENCES 123

iv

Volume 2

Appendix A. LISTINGS OF MAIN PROGRAMS ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.1 FODRFT - A Forced-Draft Compartment Model. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4A.2 INDRFT - An Induced-Draft Compartment Model , . . . . . .. 19A.3 BATCH - A Closed Compartment/Ventilation System

Model 36A.4 CYLIND - A Cylinder Release Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45A.5 COMPLT - A Plotting Program for FODRFT and

INDRFT Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 55A.6 CYLPLT - A Plotting Program for CYLIND Results . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59

Appendix B. LISTINGS OF SUBROUTINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 67

B.1 BREACH.................................................................. 68B.2 COMPRT.................................................................. 75B.3 CPUF6.................................................................... 81B.4 DENTHL 82B.5 DENUF6.................................................................. 85B.6 DPFLOW.................................................................. 86B.7 EQTUF6 89B.8 FLASH.................................................................... 91B.9 HCOEFF.................................................................. 97B.10 HFPOLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 98B.ll HHFH20 100B.12 HUF6 " 103B.13 HUMID 104B.14 INTMEB 105B.15 LEVEL 109B.16 MIXFLW 114B.17 PHASE.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117B.18 PHFH20 122B.19 PIPSYS 125B.20 REMOVE 134B.21 RESIST 135B.22 ROOM 137B.23 SETRAY 138B.24 SSBLOW 141B.25 STERM 142B.26 SUF6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146B.27 THCUF6 147B.28 TRBLOW 148B.29 VISUF6 149B.30 VPRUF6 150B.31 ZUF6 152

v

Appendix C. EXAMPLE PROBLEM OUTPUT 153

Example 1 154

Case 1 " 154Case 2 156

Case 3 159Case 4 162

Example 2 163Case 1 " 163

Case 3 165Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Case 1 166Case 2 167

Case 3 168Example 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Case 1 169Case 2 176

Case 3 183Case 4 190

Example 5 197

VI

Appendix ALISTINGS OF MAIN PROGRAMS

This appendix contains listings of the main programs described in Chaps. 3 and 4. These pro­grams include the transient compartment model programs FODRFT (Appendix A.I) and INDRFT(Appendix A.2), the closed compartment/ventilation system model BATCH (Appendix A.3), a pro­gram for simulating releases from a cylinder through a breach in containment or a piping system,BYLIND (Appendix A.4), and the plotting programs COMPLT (Appendix A.S) and CYLPLT(Appendix A.6). COMPLT plots output from FODRFT and INDRFT, while CYLPLT plots out­put from CYLIND.

Table A.I lists the subroutines required for the execution of each main program, excluding theplotting programs. COMPLT and CYLPLT require the availability of DISSPLA version 9.0* onthe user's system. These subroutines are listed in Appendix B. Table A.2 identifies the input/outputdevice numbers used in each main program.

-For information on DISSPLA, contact Integrated Software Systems Corporation, 10505 Sorrento Valley Road, SanDiego, CA, 92121.

1

3

Table A.2. I/O device numbers

Output files

Program Input FilesTo othersprograms

For printing/plotting

FODRFT 40,22° 48b,49 41,42,43,44,45,46,47c

INDRFT 40,22° 48b ,40 41,42,43,44,45,46,47c

BATCH 5 6CYLIND 20 22,30,31 30COMPLT 48b ,49 dCYLPLT 30,31 d

°Input device number 22 is an optional input file toFODRFT and INDRFT.

bThe file written to device 48 by FODRFT or INDRFTfor use by COMPLT is unformatted.

CFODRFT and INDRFT output files provide conditionsin the compartment (41), inlet flow conditions (42), sourceterm conditions (43), outlet flow conditions (44), depositionrate information (45), condensate accumulation on the floor(46), and release summary (47).

dCompressed data files are generated via an initial call tothe subroutine COMPRS.

4

A.I FODRFT - A Forced-Draft Compartment Model

COMMON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED.

INLET STREAM NODE NUMBER

COMPONENT MOLECULAR WEIGHTS, LB/LB MOLE

NODE TEMPERATURE, DEG FNODE PRESSURE, PSIANODE HEAT TRANSFER SURFACE TEMPERATURE, DEG F

NODE VOLUME, FT**3RESISTANCE COEFFICIENT, --, OR RESISTANCE TERM,RESISTANCE TERM, PSI-SEC**2/LB-FT**3DEPOSITION AREA, FT**2DEPOSITION VELOCITY, FT/SEC

NODE ENTHALPY, BTU, OR ENTHALPY RATE, BTU/(DELT)HEAT TRANSFER RATE, BTU/SEC OR BTU/(DELT)COOLING RATE, BTU/HR (INPUT) OR BTU/SEC( INTERNAL)HEAT TRANSFER COEFFICIENT, BTU/SEC-FT**2-DEG FHEAT TRANSFER AREA, FT**2

( 9)

COMPARTMENTINLET AIR BLOWERSOURCE TERMFORCED DRAFT EXHAUSTCONDENSATE FALLOUTCOMPARTMENT FLOORAMBIENT

(30,4)

(30)(30)(30)

(30)(30)(30)

(30)(30)

(30,9) NODE MASS, LB, OR MASS FLOW RATE, LB/(DELT)RELATIVE HUMIDITY, % (AS INPUT) OR FRACTION( INTERNAL)

HTCOEF (30)HTAREA (30)

/MOU·JT/

IIN

WMOL

HQRATEQCOOL

MASSRH

VOLKRCOEF

DPAREA (30)DEPVEL

TCPCTSURF

1234567

/ENTHAL/

/COMPTP/

/VOLUME/

/ISTRMS/

/LBMASS/

C THIS PROGRAM MODELS A RELEASE OF UF6 OR HF INTO A COMPARTMENTC HAVING A FORCED DRAFT VENTILATION SYSTEM. NODE NUMBERS ANDC STREAM DEFINITIONS FOR THIS MODEL ARE AS FOLLOWS.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

5

OTHER DIMENSIONED VARIABLES

UNDIMENSIONED VARIABLES

IOL~ (30,4) OUTLET STREAM NODE NUMBER

ICONTRL/

EQUI(jALENCED VARIABLES

VOLUMETRIC FLOW RATE, FT**3/MINFLOW AREA FOR PRESSURE-DROP-CONTROLLEDNODE, FT**2

MAXIMUM NUMBER OF NODES ALLOWED BY CODING OFSUBROUTINESMAXIMUM NUMBER OF INLET STREAMS AND OUTLETSTREAMS

START OF REVERSE FLOW (NOT USED)END OF REVERSE FLOW (NOT USED)

WE IGHT FRACTI ON OF HF MONOMER TO TOTAL HF VAPORWEIGHT FRACTI~~ OF HF TRIMER TO TOTAL HF VAPORWEIGHT FRACTION OF HF HEXAMER TO TOTAL HF VAPORMOLECULAR WEIGHT OF HF MONOMER, LB/LB MOLE

C~1PONENT MASS FLOW RATE, LB/SECINCREMENTAL SOURCE MASS, LBINCREMENTAL RELEASE TIME, SECTEMPERATURE OF INCREMENTAL SOURCE, DEG FPRESSURE OF INCREMENTAL SOURCE, PSIACOMPONENT IDENTIFIERTITLE ARRAYPLOT NUMBER ARRAY

VARIABLE TO SPECIFY TYPE OF RELEASE, SEE CARD 5TOTAL MASS OF RELEASE, LBVARIABLE TO SPECIFY ISENTROPIC OR ISENTHALPICRELEASE, SEE CARD 5

NATURAL LOG OF MINIMUM NUMBER ACCEPTED BY THECOMPUTERCUMULATIVE SIMULATION TIME, SECTIME INTERVAL USED FOR TRANSIENT SIMULATION, SECMAXIMUM SIMULATION TIME, SECFLAG TO CONTROL PRINTING OF OUTPUTTOTAL RELEASE TIME, SEC

ACFM (30)FLAREA (30)

( 9)(5)( 5)(5)( 5)( 9)

(10)(6,4)

INOUT

VOL

INODES

AMINLN

ITYPESOURCEISEN

C1C3C6WMBHF

RATEMSOURCTSOURCTEMPPRESNAMETITLEDWGNUM

TSTART (30)TSTOP (30)

TIMEDELTMAXTIMIFLAGTRELS

/POLYMRI

IMISCEL/

IRVFLOW/

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCCCCCCCC

6

FLAG IN ESTABLISHING INITIAL STEADY STATECONDITIONS ABOUT NODE 2

NUMBER OF INCREMENTAL RELEASES IN TOTAL RELEASE(MAXIMUM OF 5)MOLECULAR WEIGHT, LB/LB MOLEMOLECULAR WEIGHT OF URANIUM, LB/LB MOLETOTAL MASS OF SOURCE MATERIAL RELEASED, LBVAPOR PRESSURE OF SOURCE, PSIAPRINT INTERVAL, SECRATIO OF MOLES OF WATER VAPOR TO TOTAL MOLES OFMOIST AIRPRODUCT OF HEAT TRANSFER COEFICIENT AND AREA,BTU/SEC-DEG FCOUNTER TO CONTROL PRINTING OF OUTPUTCURRENT INCREMENT OF TOTAL RELEASESOURCE TERM INPUT INTERVAL, SECMASS FLOW RATE OF UF6 SOLIDS ONTO THE FLOOR,LB/(DELT)OUTPUT DEVICEENTHALPY PATE, BTU/SECCOMPARTMENT CONCENTRATION OF URANIUM, LB/FT**3CtJo1PARTMENT CONCENTRATI ON OF HF, LB/FT**3CUMULATIVE MASS OF UF6 RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF U02F2 RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF URANIUM RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF HF RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF HF THAT CAN BE FORMED FROMUF6 RELEASED TO THE ATMOSPHERE, LBCUMULATIVE MASS OF HF RELEASED TO OR FORMED INTHE ATMOSPHERE, LB

HFUF6

CHECK

HFTOT

HFREL

UTOT

UOFREL

UA

MWMWURANMRELSPTESTPRINTRATIO

IRELST

ICOUNTIRELSDELTATSOLIDS

IDEVHRATEDENUDENHFUF6REL

LOGICAL VARIABLES

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE CALLED BY FODRFT.CCCCCCCCCCCCCCC

COMPRTDENTHLDPFLOWHCOEFFHUMIDPHFH20REMOVERESISTROOMSETRAYSSBLOWSTERMVPRUF6

7

DENUF6EQTUF6FLASHHFPOLYHHFH20HUF6PHASESUF6ZUF6

C

C THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.CCC

CCCCCCCC***********************************************************************CC INITIAL STATEMENTSC ==================C

IMPLICIT REAL*8 (A-H,J-Z)C

LOGICAL CHECKC

DIMENSION FLAREA(30), ACFM(30), RATE(9), MSOURC(5), TSOURC(5),* TEMP(5), PRES(5)

DIMENSION NAME(9), TITLE(10), DWGNUM(6,4)C

C

C

C

COMMON ILBMASSI MASS(30,9), RHCOMMON ICOMPTPI TC(30), PC(30), TSURF(30)COMMON IMOLWT/ WMOL(9)COMMON IVOLUMEI VOL(30), KRCOEF(30), DPAREA(30), DEPVELCOMMON IENTHALI H(30), QRATE(30), QCOOL(30), HTCOEF(30),

* HTAREA(30)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AMINLN, TIME, DELT, MAXTIM, IFLAG, TRELSCOMMON IPOLYMRI Cl, C3, C6, WMBHFCOMMON IMISCELI ITYPE, SOURCE, ISENCOMMON IRVFLOWI TSTART(30), TSTOP(30)

EQUIVALENCE (VOL(l),ACFH(l),FLAREA(l»

DATA NAME 18HAIR V, 8HH20 L, 8HH20 V, 8HHF L,* 8HHF V, 8HUF6 S, 8HUF6 L, 8HUF6 V, 8HU02F2 S I

CALL SETRAY(INODES, INOUT)CC NODE ASSIGNMENTC ===============C

IIN(l,l) = 2IIN(1,2) = 3IIN(2,1) = 7IIN(4,1) = 1IIN(5,1) = 1IIN(6,1) = 5

C

8

IOUT(l,l) = 4IOUT(1,2) =5IOUT(4,1) = 7IOUT(S,l) =6

CC READ STATEMENTSC ===============CC ALL INPUT DATA EXCEPT THAT ON CARDS 1 AND 9 ARE READ IN FREE FORMAT.C ON CARDS 1 AND 9, COUNT CHARACTERS STARTING IN COLUMN 1.CCC ICI CARD 1. READ TITLE (MAXIMUM OF 80 CHARACTERS).C

READ (40,4000) TITLECCC ICI CARD 2. READ AMBIENT TEMPERATURE (F), PRESSURE (PSIA), AND RELATIVEC HUMIDITY (%).C

READ (40,*) TC(7), PC(7), RHC

IF (RH.GT.l.DO) RH = RH/l.D2CCC ICI CARD 3. READ COMPARTMENT TEMPERATURE (F), PRESSURE (PSIA), VOLUMEC (FT**3), AND FLOOR (DEPOSITION) AREA (FT**2).C

READ (40,*) TC(l), PC(l), VOL(l), DPAREA(l)CCC ICI CARD 4. READ INLET AIR BLOWER FLOW RATE (ACFM).C

READ (40,*) ACFM(2)CCC ICI CARD 5.CCCCCCCC

READ HEAT TRANSFER SURFACE AREA IN COMPARTMENT (FT**2),HEAT TRANSFER SURFACE TEMPERATURE (F), AND COOLING RATE(BTU/HR). A NEGATIVE COOLING RATE IMPLIES A HEATING RATE.WHILE THE VALUE OF THE SURFACE AREA IS NOT PARTICULARLYIMPORTANT BECAUSE THE PRODUCT OF THE SURFACE AREA AND THEHEAT TRANSFER COEFFICIENT TO BE CALCULATED WILL BECONSTANT, A SURFACE TEMPERATURE GREATER THAN THECOMPARTMENT TEMPERATURE MUST BE SPECIFIED.

READ (40,*) HTAREA(l), TSURF(l), QCOOL(l)C

QCOOL(l) = QCOOL(1)/3.6D3C

CC /C/ CARD 6.CCCCCCCCCCCCCCCCCCCC

9

READ SOURCE TYPE, NUMBER OF RELEASES, BASIS FOR FLASH, ANDMOLECULAR WEIGHT. SOURCE TYPE IS GIVEN BY THE FOLLOWING:

4 LIQUID HF5 VAPOR HF7 LIQUID UF6 (VAPOR SOURCE TERM GENERATED)

-7 LIQUID UF6 (VAPOR/SOLID SOURCE TERM GENERATED)8 VAPOR UF6

22 INPUT PROVIDED IN FOR22.DAT

IF SOURCE TYPE 22 IS SPECIFIED, SET NUMBER OF RELEASES TOZERO. NO MORE THAN FIVE RELEASES MAY BE SPECIFIED, WHICHARE TO R~~ CONSECUTIVELY. THE BASIS FOR THE FLASH IS GIVENBY THE FOLLOWING:

o ISENTROPIC1 ISENTHALPI C

THE DEFAULT MOLECULAR WEIGHT FOR UF6 IS 352.025; ENTER AVALUE LESS THAN 100 IF THAT VALUE IS ACCEPTABLE.

READ (40,*) ITYPE, IRELST, ISEN, MWC

IF (MW.LT.l00.DO) GO TO 10C

WMOL(9) = WMOL(9) - WMOL(6) +MWWMOL(6) =MWWMOL(7) =MWWMOL(8) =t1..J

C10 CONTINUE

CMWURAN = WMOL (6) - 113.99DO

CIF (ITYPE.EQ.22) GO TO 30

CCC /C/ CARD 7.CCCCCCCC

-- DO NOT USE "CARD 7" CARDS IF ITYPE = 22. --

READ FOR EACH INCREMENTAL RELEASE THE DURATIcr~ (SEC), MASS(LB), TEMPERATURE (DEG F), AND PRESSURE (PSIA). SPECIFY ASMANY SETS OF DATA AS THE NUMBER OF RELEASES (IRELST). IFTHE PRESSURE GIVEN IS LESS THAN OR EQUAL TO ZERO OR GREATERTHAt~ THE VAPOR PRESSURE, THE PRESSURE IS SET EQUAL TO THEVAPOR PRESSURE FOR THAT INCREMENT.

C

C

READ (40,*) (TSOURC(I), MSOURC(I), TEMP(I), PRES(I), I=l,IRELST)

TRELS = 0.00

MRELS = O.DO

10

CDO 20 I20=1,IRELST

CTRELS = TRELS + TSOURC(I20)

CMRELS = MRELS + MSOURC(I20)

C

C

C

C

IF (ITYPE.EQ.5) CALL PHFH20(TEMP(I20), 1.DO, O.DO, PTEST,* O.DO, O.DO)

IF (ITYPE.EQ.8) CALL VPRUF6(TEMP(I20), PTEST)

IF (PRES(I20).GT.PTEST .OR. PRES(I20).LE.0.DO)* PRES(I20) = PTEST

20 CONTINUE

30 CONTINUECCC /C/ CARD 8.CC

READ TIME INTERVAL FOR CALCULATIONS (SEC), DURATION OFSIMULATION (SEC), AND PRINT INTERVAL (SEC).

READ (40,*) DELT, MAXTIM, PRINTC

IFLAG = IDINT(PRINT/DELT+0.01DO)CCC /CI CARD 9.CCCCCCCCCCC

-- THESE CARDS ARE OPTIONAL. --

READ DRAWING NUMBERS FOR PLOTS (LIMITED TO 20 CHARACTERS-­THE LAST CHARACTER MUST BE A DOLLAR SIGN ($».

1ST CARD 9 = CL~ULATIVE URANIUM RELEASED2ND CAR~ 9 = CUMULATIVE HF RELEASED3RD CARD 9 = URANIUM CONCENTRATION IN COMPARTMENT4TH CARD 9 = HF CONCENTRATION IN COMPARTMENT5TH CARD 9 = TEMPERATURE IN COMPARTMENT6TH CARD 9 = PRESSURE IN COMPARTMENT

DO 40 140=1,6C

C

C

C

READ (40,4010,END=50) (DW&~UM(I40,I), 1=1,4)WRITE (49,4010) (DWGNUM(I40,I), 1=1,4)

40 CONTINUE

50 CONTINUE

WRITE (49,4020)CC***********************************************************************C

11

C STEADY STATE CONDITIONSC =======================CC SET STEADY-STATE CONDITIONS FOR THE COMPARTMENT, EXHAUST, AND INLETC AIR NODES.C

CALL HUMID(7, RH, RATIO)C

VOL( 7) = 1. D9C

C

C

C

C

C

C

C

C

C

CALL ROOM(7, RATIO)

CALL ROOM(1, RATIO)

CALL SSBLOW(2, RATIO)

MASS(4,1) =MASS(2,1)MASS(4,3) =MASS(2,3)

TC(4) =TC(l)PC(4) = PC(1)

KRCOEF(4) = O.DO

CALL RESIST(4)

CALL DENTHL(TC(4), PC(4), 4, H(4»

CALL HCOEFF(1)

UA =HTCOEF(1) * HTAREA(1)C

C***********************************************************************CC TITLE BLOCKSC ============CC WRITE TITLE AND PROGRAM IDENTIFIER.C

DO 60 160=1,7C

IDEV = 40 + 160C

CWRITE (IDEV,4030) TITLE

60 Cl:M"INUECC WRITE NODE NAMES AND IMPORTANT CONSTANTS FOR EACH FILE.C

WRITE (41,4100) VOL(1), UA, TSURF(1), QCOOL(1)C

CWRITE (42,4200) ACFM(4), TC(7), PC(7)

IF (ITYPE.EQ.4) WRITE (43,4304)

C

C

c

c

c

C

c

c

c

C

c

12

IF (ITYPE.EQ.5) WRITE (43,4305)IF (IABS(ITYPE).EQ.7) WRITE (43,4307)IF (ITYPE.EQ.B) WRITE (43,430B)

IF (ITYPE.NE.22) WRITE (43,4310)

IF (ITYPE.EQ.4) WRITE (43,4320) (TSOURC(I), MSOURC(I),* TEMP(I), 1=1,5)

IF (ITYPE.EQ.5) WRITE (43,4330) (TSOURC(I), MSOURC(I),* TEMP(I), PRES(I), 1=1,5)

IF (IABS(ITYPE).EQ.7) WRITE (43,4340) (TSOURC(I), MSOURC(I),* TEMP(I), 1=1,3)

IF (IABS(ITYPE).EQ.7 .At~D. ISEN.EQ.O) WRITE (43,4341) TSOURC(4),* MSOURC(4), TEMP(4)

IF (IABS(ITYPE).EQ.7 .AND. ISEN.EQ.1) WRITE (43,4342) TSOURC(4),* MSOURC(4), TEMP(4)

IF (IABS(ITYPE).EQ.7) WRITE (43,4343) WMOL(6), TSOURC(5),* MSOURC(5), TEMP(5)

IF (ITYPE.EQ.B) WRITE (43,4350) (TSOURC(I), MSOURC(I),* TEMP(I), PRES(I), 1=1,3)

IF (ITYPE.EQ.B .AND. ISEN.EQ.O) WRITE (43,4351) TSOURC(4),* MSOURC(4), TEMP(4), PRES(4)

IF (ITYPE.EQ.B .AND. ISEN.EQ.1) WRITE (43,4352) TSOURC(4),* MSOURC(4), TEMP(4), PRES(4)

IF (ITYPE.EQ.B) WRITE (43,4353) WMOL(6), TSOURC(5), MSOURC(5),* TEMP(5), PRES(5)

CIF (ITYPE.NE.22) WRITE (43,4360) TRELS, MRELS

CIF (,I TYPE . EQ. 7) WRITE (43,4370)

CIF (ITYPE.EQ.22) WRITE (43,4380)

CWRITE (44,4400) KRCOEF(4)

CWRITE (45,4500) DEPVEL, DPAREA(1)

CWRITE (46,4600)

CWRITE (47,4700)

CC WRITE COLUMN HEADINGS.C

WRITE (41,4110) NAMEC

----------------------------------------

13

DO 70 170=2,4C

IDEV = 40 + 170C

WRITE (IDEV,4210) NAMEC

70 CONTINUEC

WRITE (45,4510) NAMEC

WRITE (46,4610) NAMEC

WRITE (47,4710)CC***********************************************************************CC TRANSIENT ANALYSISC ==================CC BEGIN TRANSIENT ANALYSIS.C

TIME = 0.00C

ICOUNT = IFLAGC

IRELS = 1C

TRELS = 0.00CCC ICI OPTIONAL SOURCE TERM INPUT: CARD 1. ENTER TIME INTERVAL FOR SOURCEC TERM INPUT (SEC).C

IF (ITYPE.EQ.22) READ (22,*) DELTATC

80 CONTINUECC EVALUATE SOURCE TERMCC

IF (TIME.LT.TRELS) GO TO 120C

IF (ITYPE.NE.22) GO TO 100CCC ICI OPTIONALCCCCCC

SOURCE TERM INPUT: CARD 2. ENTER INITIAL TIME FOR RELEASEINTERVAL (SEC)j MASS FLOW RATE (LB/SEC) FOR EACH OF THE NINECOMPONENTS IN THE FOLLOWING ORDER: AIR, H20(L), H20(V),HF(L), HF(V), UF6(S), UF6(L), UF6(V), U02F2j SOURCE TERMTEMPERATURE FOR INTERVAL (DEG F)j AND SOURCE TERM PRESSUREFOR THE INTERVAL (PSIA).

14

READ (22,*,END=120) TRELS, (RATE(I),I=1,9),TC(IIN(1,2)),* PC(IIN(1,2))

C

C

C

DO 90 190=1,9

MASS(IIN(1,2),I90) = RATE(I90)*DELT

90 CONTINUEC

CCALL DENTHL(TC(IIN(1,2)),PC(IIN(1,2)),IIN(1,2),H(IIN(1,2)))

TRELS = TRELS + DELTATC

GO TO 120C

100 CONTINUEC

IF (IRELS.GT.IRELST) GO TO 120C

TRELS = TSOURC(IRELS)C

SOURCE = MSOURC(IRELS)C

CTC(3) = TEMP(IRELS)

PC(3) = PRES(IRELS)C

CCALL STERM(3, 1, SOLIDS)

TRELS = O.DOC

CDO 110 I110=1,IRELS

TRELS = TRELS + TSOURC(1110)C

110 CONT INUEC

IRELS = IRELS + 1C

120 CONTI NUEC

IF (TIME.GE.TRELS) IIN(1,2) ~ iNODES

===================

·CALL TRBLOW(2)· -- NOT CALLED SINCE INLET BLOWER PRODUCESCONSTANT FLOW RATES THROUGHOUT TRANSIENTANALYSIS.

CC EVALUATE FLOW RATESCCCCC

CCALL DPFLOW(4)

CIF (PC(1).LE.PC(7)) WRITE (44,4410) TIME

15

CC CALCULATE DEPOSITION RATE.C

CCALL REMOVE(1, 5)

IF (ICOUNT.LT.IFLAG) GO TO 150CC OUTPUT NODE DATAC ================CC WRITE COMPARTMENT DATA.C

WRITE (41,4120) TIME, (MASS(1,I),I=1,9), TC(1), PC(1)CC WRITE DATA FOR FLOWING STREAMS.C

DO 140 1140=2,5C

IF (TIME.GE.TRELS .AND. I140.EQ.3) GO TO 140C

DO 130 1130=1,9C

C

C

C

C

C

RATE(I130) = MASS(I140,I130)/DELT

130 CONTINUE

IDEV = 40 + 1140

HRATE = H(I140)/DELT

IF (I140.LE.4) WRITE (IDEV,4120) TIME, RATE, TC(I140),* PC(I140)

IF (I140.GT.4) WRITE (IDEV,4120) TIME, RATE

140 CONTINUECC WRITE MASSES OF CONDENSED MATERIALS ON FLOOR.C

WRITE (46,4120) TIME, (MASS(6,I),I=1,9)C

ICOUNT = 0CC WRITE SUMMARY DATA ON RELEASE.C

WRITE (47,4720) TIME, UF6REL, UOFREL, UTOT, HFREL, HFUF6, HFTOT,* DENU, DENHF

CC WRITE SUMMARY DATA FOR PLOTTING.C

IF (TIME.GT.TRELS) WRITE (48,*) TIME, UTOT, HFTOT, DENU, DENHF,* TC(1), PC(1)

C150 CONTINUE

C

16

IF (TIME.LE.60.DO .AND. TIME.LE.TRELS) WRITE (48,*) TIME, UTOT,* HFTOT, DENU, DENHF, TC(l), PC(l)

CIF (TIME.GT.60.DO .AND. TIME.LE.TRELS .AND.

* 10*(ICOUNT/10).EQ.ICOUNT)* WRITE (48,*) TIME, UTOT, HFTOT, DENU, DENHF, TC(l), PC(l)

CC EVALl~TE COMPARTMENT CONDITIONSC ===============================C

TIME =TIME + DELTC

IF (TIME.GT.MAXTIM) STOPC

ICOUNT = ICOUNT + 1CC PERFORM MASS AND ENENGY BALANCE FOR THE COMPARTMENT.C

CALL COMPRT(l, 2, INODES)CC CALCULATE COMPARTMENT CONCENTRATIONS OF URANIUM AND HF.C

DENU = «MASS(1,6) + HASS(l,7) + MASS(l,8»/WMOL(6)* + MASS(1,9)/WMOL(9»*MWURAN/VOL(1)

CDENHF = (MASS(l,4) + MASS(l,5»/VOL(1)

CC ACCUMULATE SOLID PARTICLES AND LIQUID DROPLETS ON THE FLOOR.C

DO 160 1160=1,9C

MASS(6,I160) = MASS(6,I160) + MASS(5,I160)C

160 CONTINUEC

IF (ITYPE.EQ.7 .AND. TIME.LE.TRELS) t1ASS(6,6) =HASS(6,6)* + SOLIDS

CC ACCUMULATE TOTAL MASS QUANTITIES OF URANIUM AND HF RELEASED TO THEC ATMOSPHERE.C

C

C

C

C

C

C

UF6REL = UF6REL + MASS(4,6) + MASS(4,7) + t1ASS(4,8)

UOFREL = UOFREL + MASS(4,9)

UTOT = (UF6RELIWMOL(6) + UOFRELIWMOL(9»*MWURAN

HFREL = HFREL + MASS(4,4) + MASS(4,5)

HFUF6 = 4.DO*UF6REL*WMOL(4)IWMOL(6)

HFTOT = HFREL + HFUF6

GO TO 80

_/- ,

17

CC***********************************************************************CC FORMAT STATEMENTSC =================C

4000 FORMAT (10A8)C

4010 FORMAT (4A5)C

4020 FORMAT (6(lH$,/))C

4030 FORMAT (/1 TITLE: / ,10A8,/,/0 DATA GENERATED BY FODRFT* /A FORCED DRAFT VENTILATION SYSTEM TRANSIENT' ,* ' COMPARTMENT MODEL./)

C4100 FORMAT (/0 COMPARTMENT CONDITIONS/ ,T60,/COMPARTMENT VOLUME

* F11.0,/ FT**2/,/,T60,/U*A PRODUCT =/,* 1PE11.3,/ BTU/SEC-DEG F' ,/,T60,/SURFACE TEMPERATURE =/,* OPF11.1,/ DEG F/,I,T60,/COOLING RATE =/ ,lPE11.3,* / BTU/SEC/)

C4110 FORMAT (/0 TIME',42X,/COMPONENT MASS (LB)/,39X,

* /TEMPERATURE PRESSURE/ ,1,/ (SEC)/ ,9(3X,A8),* / (DEG F) (PSIA)/,/,lH)

C4120 FORMAT (F10.1,lP9Ell.3,OP2F10.4)

C4200 FORMAT ('0 INLET AIR BLOWER/ ,T60,/FLOW RATE =/ ,Fll.1,

* / ACFM/ ,/,T60,/AMBIENT TEMPERATURE =/ ,F11.3,/ DEG F/ ,I,* T60,/AMBIENT PRESSURE =/ ,F11.3,/ PSIA/)

C4210 FORMAT (/0 TIME/,35X,/COMPONENT MASS FLOW RATE (LB/SEC)/,

* 32X,/TEMPERATURE PRESSURE/ ,1/ (SEC)/ ,9(3X,A8),* (DEG F) (PSIA)/,/,lH)

C4304 FORMAT ('0 SOURCE TERM: HF LIQUID/ ,T60,

* /INCRE- DURATION MASS TEMPERATURE PRESSURE/)C

4305 FORMAT (/0 SOURCE TERM: HF VAPOR/ ,T60,* /INCRE- DURATION MASS TEMPERATURE PRESSURE')

C4307 FORMAT ('0 SOURCE TERM: UF6 LIQUID/ ,T60,

* 'INCRE- DURATION MASS TEMPERATURE PRESSURE/)C4308 FORMAT (/0 SOURCE TERM: UF6 VAPOR/ ,T60,

* /INCRE- DURATION MASS TEMPERATURE PRESSURE/)C

4310 FORMAT (T60,/ MENT (SEC) (LB) (DEG F) (PSIA)/)C

4320 FORMAT (lHO,T60,/ 1/,F11.1,F8.1,F11.3,/ LIQUID' ,I,* T60,/ 2',Fl1.1,F8.1,F11.3,/ LIQUID/ ,I,* T60,' 3',F11.1,F8.1,F11.3,/ LIQUID/ ,I,* T60,' 4/,F11.1,F8.1,F11.3,/ LIQUID/,/,

18

*C4330 FORMAT (lHO,T60,' l' ,F11.1,F8.1,2Fl1.3,1,

* T60,' 2',F11.1,F8.1,2F11.3,1,* T60,' 3',Fll.l,F8.1,2F11.3,1,* T60,' 4' ,Fl1.1,F8.1,2F11.3,1,* T60,' 5',Fl1.1,F8.1,2F11.3)

C4340 FORMAT (lHO,T60,' l',F11.1,F8.1,F11.3,' LIQUID' ,I,

* T60,' 2' ,F11.1,F8.1,F11.3,' LIQUID' ,I,* T60,' 3' ,F11.1,F8.1,F11.3,' LIQUID')

C4341 FORMAT ('

* T60,'C

4342 FORMAT ('* T60,'

C4343 FORMAT ('

* T60,'

FLASH BASIS: ISENTROPIC',4' ,F11.1,F8.1,Fl1.3,' LIQUID')

FLASH BASIS: ISENTHALPIC',4',F11.1,F8.1,F11.3,' LIQUID')

UF6 MOLECULAR WEIGHT =',F8.3,5' ,F11.1,F8.1,F11.3,' LIQUID')

C4350 FORMAT (lHO,T60,' l',Fl1.1,F8.1,2F11.3,1,

* T60,' 2',F11.1,F8.1,2F11.3,1,* T60,' 3',F11.1,F8.1,2F11.3)

C4351 FORMAT ('

* T60,'C4352 FORMAT ('

* T60,'C

4353 FORMAT ('* T60,'

FLASH BASIS: ISENTROPIC',4' ,F11.1,F8.1,2Fl1.3)

FLASH BASIS: ISENTHALPIC',4',F11.1,F8.1,2Fl1.3)

UF6 MOLECULAR WEIGHT =',F8.3,5',F11.1,F8.1,2Fll.3)

C4360 FORMAT (T60,' TOTAL',F9.1,F8.1)

C4370 FORMAT ('0 SOLIDS FORMED BY FLASHING UF6 LIQUID ARE ASSUMED',

* ' TO ACCUMULATE ON THE FLOOR.',I,' THESE SOLIDS ARE NOT',* 'INVOLVED IN ENERGY BALANCES ABOUT THE COMPARTMENT.')

C4380 FORMAT ('0 SOURCE TERM: SOURCE TERM MASS FLOW RATES,',

* ' TEMPERATURE, AND PRESSURE WERE READ FROM DATA FILE.')C

4400 FORMAT ('0 EXHAUST STREAM (FORCED DRAFT)',T60,* 'RESISTANCE TERM =',lPE11.3,' PSI-SEC**2/LB/FT**3')

C4410 FORMAT (F10.l,' REVERSE FLOW OCCURING')

C4500 FORMAT ('0 CONDENSATE FALLOUT' ,T60,'DEPOSITION VELOCITY =',

* F10.4,' FT/SEC' ,1,T60,'DEPOSITION AREA =',F10.O,' FT**2')C

4510 FORMAT ('0* I,'

C

TIME',35X,'COMPONENT MASS FLOW RATE (LB/SEC), ,(SEC)' ,9(3X,A8),I,lH )

19

4600 FORMAT ('0 CONDENSATE ACCUMULATED ON FLOOR')C

4610 FORMAT ('0 TIME',42X,'COMPONENT MASS (LB)' ,I,* ' (SEC)',9(3X,A8),I,lH)

C4700 FORMAT ('0 URANIUM AND HF RELEASE SUMMARY AND COMPARTMENT',

* ' CONCENTRATIONS')C

4710 FORMAT (lHO,T86,'COMPARTMENT CONCENTRATIONS' ,I,' TIME* 'CUMULATIVE MATERIAL RELEASED OR FORMED FROM RELEASED' ,* ' MATERIAL (LB)' ,T94, , (LB/FT**3) , ,I,' (SEC) ,* UF6 U02F2 TOTAL U HF HF FROM UF6',* 'TOTAL HF URANIUM HF',I,lH)

C4720 FORMAT (F10.l,5X,lP6Ell.3,5X,2E11.3)

CC***********************************************************************C

END

A.2 INDRFT - An Induced-Draft Compartment Model

C THIS PROGRAM MODELS A RELEASE OF UF6 OR HF INTO A COMPARTMENTC HAVING AN INDUCED DRAFT VENTILATION SYSTEM. NODE NUMBERS ANDC STREAM DEFINITIONS FOR THIS MODEL ARE AS FOLLOWS.CC 1 COMPARTMENTC 2 INLET AIRC 3 SOURCE TERMC 4 EXHAUST BLOWERC 5 CONDENSATE FALLOUTC 6 COMPARTMENT FLOORC 7 AMBIENTCC THE FOLLOWING VARIABLES ARE USED.CC COMMON BLOCK VARIABLESCC ILBMASSICC MASS (30,9) NODE MASS, LB, OR MASS FLOW RATE, LB/(DELT)C RH RELATIVE HUMI DITY, % (AS INPUT) OR FRACTI ONC ( INTERNAL)CC ICOMPTPICC TC (30) NODE TEMPERATURE, DEG FC PC (30) NODE PRESSURE, PSIAC TSURF (30) NODE HEAT TRANSFER SURFACE TEMPERATURE, DEG FCC IMOLWTICC ~OL (9) COMPONENT MOLECULAR WEIGHTS, LB/LB MOLE

20

CC /VOLUME/CC VOL (30) NODE VOLUME, FT**3C KRCOEF (30) RESISTANCE COEFFICIENT, --, OR RESISTANCE TERM,C RESISTANCE TERM, PSI-SEC**2/LB-FT**3C DPAREA (30) DEPOSITION AREA, FT**2C DEPVEL DEPOSITION VELOCITY, FT/SECCC /ENTHAL/CC H (30) NODE ENTHALPY, BTU, OR ENTHALPY RATE, BTU/(DELT)C QRATE (30) HEAT TRANSFER RATE, BTU/SEC OR BTU/(DELT)C QCOOL (30) COOLING RATE, BTU/HR (INPUT) OR BTU/SECC ( INTERNAL)C HTCOEF (30) HEAT TRANSFER COEFFICIENT, BTU/SEC-FT**2-DEG FC HTAREA (30) HEAT TRANSFER AREA, FT**2CC /ISTRMS/CC lIN (30,4) INLET STREAM NODE NUMBERC lOUT (30,4) OUTLET STREAM NODE NUMBERCC /CONTRL/CC AMINLN NATURAL LOG OF MINIMUM NUMBER ACCEPTED BY THEC COMPUTERC TIME CUMULATIVE SIMULATION TIME, SECC DELT TIME INTERVAL USED FOR TRANSIENT SIMULATION, SECC MAXTIM MAXIMUM SIMULATION TIME, SECC IFLAG FLAG TO CONTROL PRINTING OF OUTPUTC TRELS TOTAL RELEASE TIME, SECCC /POLYMRICC Cl WEIGHT FRACTION OF HF MONOMER TO TOTAL HF VAPORC C3 WEIGHT FRACTION OF HF TRIMER TO TOTAL HF VAPORC C6 WEIGHT FRACTION OF HF HEXAMER TO TOTAL HF VAPORC ~BHF MOLECULAR WEIGHT OF HF MONOMER, LB/LB MOLECC IMISCEL/CC ITYPE VARIABLE TO SPECIFY TYPE OF RELEASE, SEE CARD 5C SOURCE TOTAL MASS OF RELEASE, LBC ISEN VARIABLE TO SPECIFY ISENTROPIC OR ISENTHALPICC RELEASE, SEE CARD 5CC /RVFLOWCC TSTART (30) START OF REVERSE FLOW IN NODEC TSTOP (30) END OF REVERSE FLOW IN NODECC EQUIVALENCED VARIABLESC

UNDIMENSIONED VARIABLES

OTHER DIMENSIONED VARIABLES

ACFM (30)FLAREA (30)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

VOL

RATEMSOURCTSOURCTEMPPRESNAMETITLEDWGNUM

INODES

INOUT

IRELST

MWMWURANMRELSPTESTPRINTRATIO

MASS2DENSDELPUA

ICOUNTIRELSDELTATSOLIDS

Vi

1.,12

FRAC

IDEVHRATEDENUDENHFUF6REL

( 9)( 5)

(5)( 5)( 5)( 9)(10)

(6,4)

21

VOLUMETRIC FLOW RATE, FT**3IMINFLOW AREA FOR PRESSURE-DROP-CONTROLLEDNODE, FT**2

COMPONENT MASS RELEASE RATE, LB/SECINCREMENTAL SOURCE MASS, LBINCREMENTAL RELEASE TIME, SECTEMPERATURE OF INCREMENTAL SOURCE, DEG FPRESSURE OF INCREMENTAL SOURCE, PSIACOMPONENT IDENT IFI ERTITLE ARRAYPLOT NUMBER ARRAY

MAXIMUM NUMBER OF NODES ALLOWED BY CODING OFSUBROUTINESMAX IMUM NUMBER OF INLET STREAMS AND OUTLETSTREAMSNUMBER OF INCREMENTAL RELEASES IN TOTAL RELEASE(MAXIMUM OF 5)MOLECULAR WEIGHT, LB/LB MOLEMOLECULAR WEIGHT OF URANIUM, LB/LB MOLETOTAL MASS OF SOURCE MATERIAL RELEASED, LBVAPOR PRESSURE OF SOURCE, PSIAPRINT INTERVAL, SECRATIO OF MOLES OF WATER VAPOR TO TOTAL MOLES OFMOIST AIRMASS FLOW RATE THROUGH NODE 2, LB/(DELT)DENSITY, LB/FT**3PRESSURE DROP, PSIPRODUCT OF HEAT TRANSFER COEFICIENT AND AREA,BTU/SEC-DEG FCOUNTER TO CONTROL PRINTING OF OUTPUTCURRENT INCREMENT OF TOTAL RELEASESOURCE TERM INPUT INTERVAL, SECMASS FLOW RATE OF UF6 SOLIDS ONTO THE FLOOR,LB/(DELT)VOLUME OCCUPIED BY CONTENTS OF THE COMPARTMENTAT AMBIENT PRESSURE, FT**3MAXIMUM VOLUME TO BE RELEASED BY REVERSE FLOWTHROUGH NODE 2 OVER A SPECIFIC TIME INTERVAL,FT**3/(DELT)VOLUME FPACTION (-1.,12/1.,11) USED TO OBTAIN MASSFLOW AND ENTHALPY RATES WHEN LIMITING EXHAUSTRATE THROUGH NODE 2OUTPUT DEVICEENTHALPY RATE, BTU/SECCOMPARTMENT CONCENTRATION OF URANIUM, LB/FT**3COMPARTMENT CONCENTRATION OF HF, LB/FT**3CUMULATIVE t1ASS OF UF6 RELEASED TO THEATMOSPHERE, LB

22

FLAG IN ESTABLISHING INITIAL STEADY STATECONDITIONS ABOUT NODE 2

CUMULATIVE MASS OF U02F2 RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF URANIUM RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF HF RELEASED TO THEATMOSPHERE, LBCUMULATIVE MASS OF HF THAT CAN BE FORMED FRct1UF6 RELEASED TO THE ATMOSPHERE, LBCUMULATIVE MASS OF HF RELEASED TO OR FORMED INTHE ATMOSPHERE, LB

COMPRTDENTHLDPFLOWHCOEFFHUMIDPHFH20REMOVERESISTROOMSETRAYSSBL~

STERMTRBLOWVPRUF6

DENUF6EQTUF6FLASHHFPOLYHHFH20HUF6PHASESUF6ZUF6

CHECK

UOFREL

HFTOT

HFUF6

HFREL

UTOT

LOGICAL VARIABLES

CCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE CALLED BY INDRFT.CCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.CCCCCCCCCCCC***********************************************************************CC INITIAL STATEMENTSC ==================C

CIMPLICIT REAL*8 (A-H,J-Z)

LOGICAL CHECKC

23

DIMENSION FLAREA(30), ACFM(30), RATE(9), MSOURC(5), TSOURC(5),* TEMP(5), PRES(5)

DIMENSION NAME(9), TITLE(10), DWGNUM(6,4)C

C

C

COMMON ILBMASSI MASS(30,9), RHCOMMON ICOMPTPI TC(30), PC(30), TSURF(30)COMMON IMOLWTI WMOL(9)COMMON IVOLUMEI VOL(30), KRCOEF(30), DPAREA(30), DEPVELCOMMON IENTHALI H(30), QRATE(30), QCOOL(30), HTCOEF(30),

* HTAREA(30)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AMINLN, TIME, DELT, MAXTIM, IFLAG, TRELSCOMMON IPOLYMRI Cl, C3, C6, WMBHFCOMMON IMISCELI ITYPE, SOURCE, ISENCOMMON IRVFLOW/ TSTART(30), TSTOP(30)

EQUIVALENCE (VOL(l),ACFM(l),FLAREA(l»

DATA NAME 18HAIR V, 8HH20 L, 8HH20 V, 8HHF L,* 8HHF V, 8HUF6 S, 8HUF6 L, 8HUF6 V, 8HU02F2 S I

CCALL SETRAY(INODES, INOUT)

CC NODE ASSIGNMENTC ===============C

IIN(l,l) = 2I IN(1 ,2) =3IIN(2,1) = 7IIN(4,1) =1IIN(5,1) = 1IIN(6,1) =5

CIOUT(l,l) =4IOUT(1,2) = 5IOUT(2,1) =1IOUT(5,1) =6

CC READ STATEMENTSC ===============CC ALL INPUT DATA EXCEPT THAT ON CARDS 1 AND 9 IS READ IN FREE FORMAT.C ON CARDS 1 AND 9, COUNT CHARACTERS STARTING IN COLUMN 1.CCC IC/ CARD 1. READ TITLE (MAXIMUM OF 80 CHARACTERS).C

READ (40,4000) TITLECCC /C/ CARD 2. READ AMBIENT TEMPERATURE (F), PRESSURE (PSIA), AND RELATIVEC HUMIDITY (~).

24

C

CREAD (40,*) TC(7), PC(7), RH

IF (RH.GT.l.DO) RH = RH/l.D2

READ COMPARTMENT TEMPERATURE (F), PRESSURE (PSIA), VOLUME(FT**3), AND FLOOR (DEPOSITION) AREA (FT**2). IF THECOMPARTMENT PRESSURE IS NOT KNOWN AND IS TO BE CALCULATED,SPECIFY A PRESSURE GREATER THAN OR EQUAL TO THE AMBIENTPRESSURE OR LESS THAN OR EQUAL TO ZERO.

READ (40,*) TC(l), PC(l), VOL(l), DPAREA(l)

CCC /C/ CARD 3.CCCCC

CCC /C/ CARD 4.CCCCCCCC

READ EXHAUST FLOW RATE (ACFM), INLET FLOW AREA (FT**2), ANDINLET RESISTANCE COEFFICIENT (--). IF THE PROGRAM IS TOCALCULATE THE RESISTANCE COEFFICIENT, A COMPARTMENTPRESSURE GREATER THAN OR EQUAL TO THE AMBIENT PRESSURE ORLESS THAN OR EQUAL TO ZERO MUST HAVE BEEN ENTERED, ANDAN INLET AREA AND RESISTANCE COEFFICIENT MUST BE GIVEN. ARESISTANCE COEFFICIENT COEFFICIENT OF 1.5 REPRESENTS ASUDDEN CONTRACTION FOLLOWED BY A SUDDEN EXPANSION.

READ (40,*) ACFM(4), FLAREA(2), KRCOEF(2)CCC /C/ CARD 5.CCCCCCCC

READ HEAT TRANSFER SURFACE AREA IN COMPARTMENT (FT**2),HEAT TRANSFER SURFACE TEMPERATURE (F), AND COOLING RATE(BTU/HR). A NEGATIVE COOLING RATE IMPLIES A HEATING RATE.WHILE THE VALUE OF THE SURFACE AREA IS NOT PARTICULARLYIMPORTANT BECAUSE THE PRODUCT OF THE SURFACE AREA AND THEHEAT TRANSFER COEFFICIENT TO BE CALCULATED WILL BECONSTANT, A SURFACE TEMPERATURE GREATER THAN THECOMPARTMENT TEMPERATURE MUST BE SPECIFIED.

CREAD (40,*) HTAREA(l), TSURF(l), QCOOL(l)

QCOOL(l) =QCOOL(1)/3.6D3CCC /C/ CARD 6.CCCCCCCC

READ SOURCE TYPE, NUMBER OF RELEASES, BASIS FOR FLASH, ANDMOLECULAR WEIGHT. SOURCE TYPE IS GIVEN BY THE FOLLOWING:

4 LIQUID HF5 VAPOR HF7 LIQUID UF6 (VAPOR SOURCE TERM GENERATED)

-7 LIQUID UF6 (VAPOR/SOLID SOURCE TERM GENERATED)8 VAPOR UF6

22 INPUT PROVIDED IN FOR22.DAT

CCCCCCCCCCCC

25

IF SOURCE TYPE IS SET EQUAL TO 22, SET NUMBER OF RELEASESTO ZERO. NO MORE THAN FIVE RELEASES MAY BE SPECIFIED, WHICHARE TO RUN CONSECUTIVELY. THE BASIS FOR THE FLASH IS GIVENBY THE FOLLOWING:

o ISENTROPIC1 ISENTHALPI C

THE DEFAULT MOLECULAR WEIGHT FOR UF6 IS 352.025; ENTER AVALUE LESS THAN 100 IF THAT VALUE IS ACCEPTABLE.

C

C

C

C

C

READ (40,*) ITYPE, IRELST, ISEN, MW

IF (MW.LT.l00.DO) GO TO 10

WMOL(9) = WMOL(9) - ~OL(6) +MWWMOL(6) ="""WMOL(7) =MWWMOL(8) =H-J

10 CONTINUE

MWURAN = WMOL(6) - 113.9900

IF (ITYPE. EQ. 22) GO TO 30CCC ICI CARD 7.CCCCCCCC

-- DO NOT USE "CARD 7" CARDS IF ITYPE = 22. --

READ FOR EACH INCREMENTAL RELEASE THE DURATION (SEC), MASS(LB), TEMPERATURE (DEG F), AND PRESSURE (PSIA). SPECIFY ASt~ SETS OF DATA AS THE NUMBER OF RELEASES (IRELST). IFTHE PRESSURE GIVEN IS LESS THAN OR EQUAL TO ZERO OR GREATERTHAN THE VAPOR PRESSURE, THE PRESSURE IS SET EQUAL TO THEVAPOR PRESSURE FOR THAT INCREMENT.

C

C

C

C

C

C

C

READ (40,*) (TSOURC(I), MSOURC(I), TEMP(I), PRES(I), I=l,IRELST)

TRELS = 0.00

MRELS = 0.00

DO 20 I20=1,IRELST

TRELS = TRELS + TSOURC(I20)

MRELS =MRELS + MSOURC(I20)

IF (ITYPE.EQ.5) CALL PHFH20(TEMP(I20), 1.00, 0.00, PTEST,* 0 •DO, O. DO )

IF (ITYPE.EQ.8) CALL VPRUF6(TEMP(I20), PTEST)

26

IF (PRES(I20).GT.PTEST .OR. PRES(I20).LE.0.DO)* PRES(I20) = PTEST

C20 CONTINUE

C30 CONTINUE

CCC /C/ CARD B. READ TIME INTERVAL FOR CALCULATIONS (SEC), DURATION OFC SIMULATION (SEC), AND PRINT INTERVAL (SEC).C

READ (40,*) DELT, MAXTIM, PRINTC

IFLAG = IDINT(PRINT/DELT+0.01DO)CCC /C/ CARD 9.CCCCCCCCCCC

-- THESE CARDS ARE OPTIONAL. --

READ DRAWING NUMBERS FOR PLOTS (LIMITED TO 20 CHARACTERS-­THE LAST CHARACTER MUST BE A DOLLAR SIGN ($».

1ST CARD 9 = CUMULATIVE URANIUM RELEASED2ND CARD 9 = CUMULATIVE HF RELEASED3RD CARD 9 = URANI UM CONCENTRATI ON IN COMPARTMENT4TH CARD 9 = HF CONCENTRATION IN Cct1PARTMENT5TH CARD 9 = TEMPERATURE IN COMPARTMENT6TH CARD 9 = PRESSURE IN COMPARTMENT

DO 40 140=1,6C

READ (40,4010,END=50) (DWGNUM(140,1), 1=1,4)WRITE (49,4010) (DWGNUM(140,1), 1=1,4)

c40 CONTINUE

C50 CONTINUE

CWRITE (49,4020)

CC***********************************************************************CC STEADY STATE CONDITIONSC =======================CC SET STEADY-STATE CONDITIONS FOR THE COMPARTMENT, EXHAUST, AND INLETC AIR NODES.C

CALL HUMID(?, RH, RATIO)C

IF (PC(l).GE.PC(?) .OR. PC(l).LE.O.DO) PC(l) = PC(?)C

CHECK = .TRUE.

27

CVOL( 7) = 1. D9

CCALL ROOM(7, RATIO)

C60 CONTINUE

CCALL ROOM(l, RATIO)

C

C

C

C

C

C

C

C

C

C

CALL SSBLOW(4, RATIO)

MASS(2,1) =MASS(4,1)MASS(2,3) =MASS(4,3)

TC(2) =TC(7)PC(2) = PC(7)

IF (PC(1).LT.PC(7) .AND. CHECK) GO TO 70

IF (CHECK) CALL RESIST(2)

CHECK = .FALSE.

MASS2 =MASS(2,1) + MASS(2,3)

DENS = (MASS(7,1)+MASS(7,3»/VOL(7)

DELP = KRCOEF(2)*MASS2*MASS2/DENS/DELT/DELT

IF (DABS(PC(7)-PC(1)-DELP).LT.l.D-6.AND.PC(1).LT.PC(7»* GO TO 70

CPC(1) = PC( 7) - DELP

CGO TO 60

C70 CONTINUE

CKRCOEF(2) = O.DO

CCALL RESI ST( 2)

CCALL DENTHL(TC(2), PC (2), 2, H(2) )

CCALL HCOEFF(l)

CUA = HTCOEF(l) * HTAREA(l)

CC***********************************************************************CC TITLE BLOCKSC ============CC WRITE TITLE AND PROGRAM IDENTIFIER.

CDO 80 180=1,7

CIDEV = 40 + 180

C

CWRITE (IDEV,4030) TITLE

80 CONTINUECC WRITE NODE NAMES AND IMPORTANT CONSTANTS FOR EACH FILE.C

WRITE (41,4100) VOL(l), UA, TSURF(l), QCOOL(l)C

C

C

C

C

C

C

c

c

c

c

c

c

C

C

WRITE (42,4200) KRCOEF(2), TC(7), PC(?)

IF (ITYPE.EQ.4) WRITE (43,4304)IF (ITYPE.EQ.5) WRITE (43,4305)IF (IABS(ITYPE).EQ.7) WRITE (43,4307)IF (ITYPE.EQ.8) WRITE (43,4308)

IF (ITYPE.NE.22) WRITE (43,4310)

IF (ITYPE.EQ.4) WRITE (43,4320) (TSOURC(I), MSOURC(I),* TEMP(I), 1=1,5)

IF (ITYPE.EQ.5) WRITE (43,4330) (TSOURC(I), MSOURC(I),* TEMP(I), PRES(I), 1=1,5)

IF (IABS(ITYPE).EQ.7) WRITE (43,4340) (TSOURC(I), MSOURC(I),* TEMP(I), 1=1,3)

IF (IABS(ITYPE).EQ.7 .AND. ISEN.EQ.O) WRITE (43,4341) TSOURC(4),* MSOURC(4), TEMP(4)

IF (IABS(ITYPE).EQ.7 .AND. ISEN.EQ.1) WRITE (43,4342) TSOURC(4),* MSOURC(4), TEMP(4)

IF (IABS(ITYPE).EQ.7) WRITE (43,4343) WMOL(6), TSOURC(5),* MSOURC(5), TEMP(5)

IF (ITYPE.EQ.8) WRITE (43,4350) (TSOURC(I), MSOURC(I),* TEMP(I), PRES(I), 1=1,3)

IF (ITYPE.EQ.8 .AND. ISEN.EQ.O) WRITE (43,4351) TSOURC(4),* MSOURC(4), TEMP(4), PRES(4)

IF (ITYPE.EQ.8 .AND. ISEN.EQ.1) WRITE (43,4352) TSOURC(4),* MSOURC(4), TEMP(4), PRES(4)

IF (ITYPE.EQ.8) WRITE (43,4353) WMOL(6), TSOURC(5), MSOURC(5),* TEMP(5), PRES(5)

IF (ITYPE.NE.22) WRITE (43,4360) TRELS, MRELS

29

IF (ITYPE.EQ.7) WRITE (43,4370)C

IF (ITYPE.EQ.22) WRITE (43,4380)C

WRITE (44,4400) ACFM(4)C

WRITE (45,4500) DEPVEL, DPAREA(l)C

WRITE (46,4600)C

WRITE (47,4700)CC WRITE COLUMN HEADINGS.C

WRITE (41,4110) NAMEC

DO 90 190=2,4C

IDEV = 40 + 190C

WRITE (l DEV, 4210) NAMEC

90 CONTINUEC

WRITE (45,4510) NAMEC

WRITE (46,4610) NAMEC

WRITE (47,4710)CC***********************************************************************CC TRANSIENT ANALYSISC ==================CC BEGIN TRANSIENT ANALYSIS.C

TIME = 0.00C

ICOUNT = IFLAGC

IRELS = 1C

TRELS = 0.00CCC /C/ OPTIONAL SOURCE TERM INPUT: CARD 1. ENTER TIME INTERVAL FOR SOURCEC TERM INPUT (SEC).C

IF (ITYPE.EQ.22) READ (22,*) DELTATC

100 CONTINUEC

30

C EVALUATE SOURCE TERMC ====================C

IF (TIME.LT.TRELS) GO TO 140C

IF (ITYPE.NE.22) GO TO 120CCC /C/ OPTIONAL SOURCE TERM INPUT: CARD 2. ENTER INITIAL TIME FOR RELEASEC INTERVAL (SEC); MASS FLOW RATE (LB/SEC) FOR EACH OF THE NINEC COMPONENTS IN THE FOLLOWING ORDER: AIR, H20(L), H20(V),C HF(L), HF(V), UF6(S), UF6(L), UF6(V), U02F2; SOURCE TERMC TEMPERATURE FOR INTERVAL (DEG F); AND SOURCE TERM PRESSUREC FOR THE INTERVAL (PSIA).C

READ (22,*,END=140) TRELS, (RATE(I),I=1,9),TC(IIN(1,2)),* PC(IIN(1,2))

CDO 110 1110=1,9

CMASS(IIN(1,2),I110) = RATE(Ill0)*DELT

C110 CONTI NUE

CTRELS = TRELS + DELTAT

CGO TO 140

C120 CONTINUE

C

C

C

C

C

C

C

C

C

IF (IRELS.GT.IRELST) GO TO 140

TRELS = TSOURC(IRELS)

SOURCE = MSOURC(IRELS)

TC(3) = TEMP(IRELS)

PC(3) = PRES(IRELS)

CALL STERM(3, 1, SOLIDS)

TRELS = 0.00

DO 130 I130=1,IRELS

TRELS = TRELS + TSOURC(I130)C

130 CONTINUEC

IRELS = IRELS + 1C

140 CONTINUE

31

CIF (TIME.GE.TRELS) IIN(1,2) = INODES

CC EVALUATE FLOW RATESC ===================C

CCALL TRBLOW (4)

CALL DPFLOW(2)CC LIMIT REVERSE FLOW EXHAUST RATE THROUGH DOOR.C

C

C

C

C

C

C

C

C

IF (PC(1).LE.PC(7» GO TO 160

Vi = PC(1)*VOL(1)/PC(7)

V2 = Vi - ACFM(4)*DELT/6.Dl - VOL(l)

IF (V2.LT.0.DO) V2 = O.DO

FRAC = -V21V1

IF (DABS(FRAC*MASS(1,1».GE.DABS(MASS(2,1») WRITE (42,4220) TIME

IF (DABS(FRAC*MASS(1,1».GE.DABS(MASS(2,1») GO TO 160

DO 150 1150=1,9

MASS(2,1150) = FRAC*MASS(1,I150)C

150 CONTINUEC

H(2) = FRAC*H(l)C

C

C

TC( 2) = TC(1)

PC(2) = PC(l)

WRITE (42,4230) TIMEC

160 CONTINUECC CALCULATE DEPOSITION RATE.C

CCALL REMOVE(l, 5)

IF (ICOUNT.LT.IFLAG) GO TO 190CC OUTPUT NODE DATAC ================CC WRITE COMPARTMENT DATA.C

WRITE (41,4120) TIME, (MASS(1,I),I=1,9), TC(l), PC(l)

32

CC WRITE DATA FOR FLOWING STREAMS.C

C

C

C

DO 180 1180=2,5

IF (TIME.GE.TRELS .AND. I180.EQ.3) GO TO 180

DO 170 1170=1,9

RATE(I170) = MASS(I180,I170)/DELTC

170 CONTINUEC

IDEV = 40 + 1180C

CHRATE = H(I180)/DELT

IF (I180.LE.4) WRITE (IDEV,4120) TIME, RATE, TC(I180),* PC(I180)

IF (I180.GT.4) WRITE (IDEV,4120) TIME, RATEC

180 CONTINUECC WRITE MASSES OF CONDENSED MATERIALS ON FLOOR.C

WRITE (46,4120) TIME, (MASS(6,I),I=1,9)C

ICOUNT = 0CC WRITE SUMMARY DATA ON RELEASE.C

WRITE (47,4720) TIME, UF6REL, UOFREL, UTOT, HFREL, HFUF6, HFTOT,* DENU, DENHF

CC WRITE SUMMARY DATA FOR PLOTTING.C

IF (TIME.GT.TRELS) WRITE (48,*) TIME, UTOT, HFTOT, DENU, DENHF,* TC(l), PC(l)

C190 CONTI NUE

CIF (TIME.LE.60.DO.AND.TIME.LE.TRELS) WRITE (48,*) TIME, UTOT,

* HFTOT, DENU, DENHF, TC(l), PC(l)C

IF (TIME.GT.60.DO.AND.TIME.LE.TRELS.AND.l0*(ICOUNT/l0).EQ.ICOUNT)* WRITE (48,*) TIME, UTOT, HFTOT, DENU, DENHF, TC(l), PC(l)

CC EVALUATE COMPARTMENT CONDITIONSC ===============================C

TIME = TIME + DELTC

IF (TIMLGT .MAXTIM) STOPC

33

ICOUNT = ICOUNT + 1CC PERFORM MASS AND ENENGY BALANCE FOR THE COMPARTMENT.C

CALL COMPRT(l, 2, INODES)CC CALCULATE COMPARTMENT CCNCENTRATI ONS OF URANI lt1 AND HF.C

DENU = «MASS(1,6) + MASS(1,7) + MASS(1,8»JWMOL(6)* + MASS(1,9)IWMOL(9»*MWURANVVOL(1)

CDENHF = (MASS(1,4) + MASS(1,5»IVOL(1)

CC ACCUMULATE SOLID PARTICLES AND LIQUID DROPLETS ON THE FLOOR.C

CDO 200 1200=1,9

MASS(6,I200) = MASS(6,I200) + MASS(5,I200)C

200 CONTINUEC

IF (ITYPE.EQ.7 .AND. TIME.LE.TRELS) MASS(6,6) = MASS(6,6)* + SOLIDS

CC ACCUMULATE TOTAL MASS QUANTITIES OF URANIUM AND HF RELEASED TO THEC ATMOSPHERE.C

UF6REL = UF6REL + MASS(4,6) + MASS(4,7) + MASS(4,8)* + DABS(MASS(2,6) + MASS(2,7) + MASS(2,B»

C

C

C

C

C

C

UOFREL = UOFREL + MASS(4,9) + DABS(MASS(2,9»

UTOT = (UF6RELJWMOL(6) + UOFRELlWMOL(9»*MWURAN

HFREL = HFREL + MASS(4,4) + MASS(4,5)* + DABS(MASS(2,4) + MASS(2,5»

HFUF6 = 4.DO*UF6REL*WMOL(4)JWMOL(6)

HFTOT = HFREL + HFUF6

GO TO 100CC***********************************************************************CC FORMAT STATEMENTSC =================C

4000 FORMAT (10AB)C

4010 FORMAT (4A5)C

4020 FORMAT (6(lH$,/»C

4030 FORMAT ('1 TITLE: ',10A8,1,'0 DATA GENERATED BY INDRFT* 'AN INDUCED DRAFT VENTILATION SYSTEM TRANSIENT' ,* ' COMPARTMENT MODEL.')

C4100 FORMAT ('0 COMPARTMENT CONDITIONS' ,T60,'COMPARTMENT VOLUME

* Fll.0,' FT**2' ,1,T60,'U*A PRODUCT =',* lPEll.3,' BTU/SEC-DEG F' ,1,T60,'SURFACE TEMPERATURE =',* OPFll.l,' DEG F' ,1,T60,'COOLING RATE =',lPEll.3,* ' BTU/SEC')

C4110 FORMAT ('0 TIME' ,42X,'COMPONENT MASS (LB)' ,39X,

* 'TEMPERATURE PRESSURE' ,I,' (SEC)' ,9(3X,A8),* (DEG F) (PSIA)' ,1,1H

C4120 FORMAT (Fl0.1,lP9Ell.3,OP2Fl0.4)

C4200 FORMAT ('0 INLET AIR STREAM (INDUCED DRAFT)',T60,

* 'RESISTANCE TERM =',lPEll.3,' PSI-SEC**2/LB/FT**3',* I,T60,'AMBIENT TEMPERATURE =' ,OPF11.3,' DEG F' ,I,* T60,'AMBIENT PRESSURE =' ,Fll.3,' PSIA')

C4210 FORMAT ('0 TIME' ,35X,'COMPONENT MASS FLOW RATE (LB/SEC), ,

* 32X,'TEMPERATURE PRESSURE' ,I' (SEC)' ,9(3X,A8),* (DEG F) (PSIA)',I,lH )

-,- ,

C4220 FORMAT (F10.l,' REVERSE FLOW OCCURING')

C4230 FORMAT (Fl0.l,' REVERSE FLOW OCCURING FLOW RATES LIMITED')

C4304 FORMAT ('0 SOURCE TERM: HF LIQUID',T60,

* 'INCRE- DURATION MASS TEMPERATURE PRESSURE')C4305 FORMAT ('0 SOURCE TERM: HF VAPOR' ,T60,

* 'INCRE- DURATION MASS TEMPERATURE PRESSURE')C4307 FORMAT ('0 SOURCE TERM: UF6 LIQUID' ,T60,

* 'INCRE- DUPATION MASS TEMPERATURE PRESSURE')C4308 FORMAT ('0 SOURCE TERM: UF6 VAPOR' ,T60,

* 'INCRE- DURATION MASS TEMPERATURE PRESSURE')C

4310 FORMAT (T60,' MENT (SEC) (LB) (DEG F) (PSIA)')C

4320 FORMAT (lHO,T60,' l' ,Fl1.1,F8.1,Fll.3,' LIQUID' ,I,* T60,' 2' ,Fl1.l,F8.1,Fll.3,' LIQUID' ,I,* T60,' 3' ,Fl1.l,FB.1,F11.3,' LIQUID' ,I,* T60,' 4' ,Fll.1,F8.1,Fl1.3,' LIQUID',I,* T60,' 5',F11.1,F8.1,Fll.3,' LIQUID')

C4330 FORMAT (lHO,T60,' l' ,Fll.l,F8.1,2Fl1.3,1,

* T60,' 2' ,Fll.l,F8.1,2Fll.3,1,* T60,' 3' ,Fll.1,F8.1,2Fll.3,1,* T60,' 4' ,Fll.1,F8.1,2Fl1.3,1,* T60,' 5' ,F11.1,F8.1,2Fll.3)

35

C4340 FORMAT (1HO,T60,' l' ,F11.1,F8.1,F11.3,' LIQUID',I,

* T60,' 2',F11.1,F8.1,F11.3,' LIQUID' ,I,* T60,' 3',F11.1,F8.1,F11.3,' LIQUID')

C4341 FORMAT ('

* T60,'C4342 FORMAT ('

* T60,'C4343 FORMAT ('

* T60,'

FLASH BASIS: ISENTROPIC' ,4' ,F11.1,F8.1,F11.3,' LIQUID')

FLASH BASIS: ISENTHALPIC',4' ,Fl1.1,F8.1,Fl1.3,' LIQUID')

UF6 MOLECULAR WEIGHT =' ,F8.3,5',Fl1.1,F8.1,F11.3,' LIQUID')

C4350 FORMAT (lHO,T60,' l' ,Fll.l,F8.1,2Fll.3,1,

* T60,' 2',Fll.l,F8.1,2Fl1.3,1,* T60,' 3',F11.1,F8.1,2F11.3)C

4351 FORMAT ('* T60,'

C4352 FORMAT ('

* T60,'C4353 FORMAT ('

* T60,'

FLASH BASIS: ISENTROPIC',4',F11.1,F8.1,2F11.3)

FLASH BASIS: ISENTHALPIC',4' ,F11.1,F8.1,2Fl1.3)

UF6 MOLECULAR WEIGHT =',F8.3,5' ,Fl1.1,F8.1,2F11.3)

C4360 FORMAT (T60,' TOTAL',F9.1,F8.1)

C4370 FORMAT ('0 SOLIDS FORMED BY FLASHING UF6 LIQUID ARE ASSUMED',

* ' TO ACCUMULATE ON THE FLOOR.' ,I,' THESE SOLIDS ARE NOT',* 'INVOLVED IN ENERGY BALANCES ABOUT THE COMPARTMENT.')

C4380 FORMAT ('0 SOURCE TERM: SOURCE TERM MASS FLOW RATES,',

* ' TEMPERATURE, AND PRESSURE WERE READ FROM DATA FILE.')

TIME',42X,'COMPONENT MASS (LB)' ,I,(SEC)',9(3X,A8),I,lH)

C4400 FORMAT ('0

C4500 FORMAT ('0

* FlO.4,'C4510 FORMAT ('0

* I,'C

4600 FORMAT (' 0C

4610 FORMAT ('0* '

EXHAUST BLOWER',T60,'FLOW RATE =',F10.1,' ACFM')

CONDENSATE FALLOUT',T60,'DEPOSITION VELOCITY =',FT/SEC',I,T60,'DEPOSITION AREA =',FIO.O,' FT**2')

TIME',35X,'COMPONENT MASS FLOW RATE (LB/SEC), ,(SEC)',9(3X,A8),I,lH)

CONDENSATE ACCUMULATED ON FLOOR')

C4700 FORMAT ('0 URANIUM AND HF RELEASE SUMMARY AND COMPARTMENT',

* ' CONCENTRATIONS')C

4710 FORMAT (lHO,T86,'COMPARTMENT CONCENTRATIONS',I,' TIME* 'CUMULATIVE MATERIAL RELEASED OR FORMED FROM RELEASED',

36

* ' MATERIAL (LB)' ,T94,'(LB/FT**3)',I,' (SEC) "* UF6 U02F2 TOTAL U HF HF FROM UF6' ,* 'TOTAL HF URANIUM HF' ,1,1H )

C4720 FORMAT (Fl0.l,5X,lP6Ell.3,5X,2Ell.3)

CC***********************************************************************C

END

A.3 BATCH - A Oosed Compartment/Ventilation System Model

COMMON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED.

NODE VOLUME, FT**3

COMPONENT MOLECULAR WEIGHTS, LB/LB MOLE

NODE ENTHALPY, BTU, OR ENTHALPY RATE, BTU/(DELT)

NODE TEMPERATURE, DEG FNODE PRESSURE, PSIA

CLOSED COMPARTMENTAHB IENT CONDITIONSSOURCE TERMOPEN COMPARTMENT (FINAL PRESSURE =AHBI ENT PRESSURE)

(30,9) NODE MASS, LB, OR MASS FLOW RATE, LB/(DELT)( INTERNAL)

MASS

ICOMPTPI

TC (30)PC (30)

IMOLWTI

WMOL (9)

/vOLUMEI

VOL (30)

lENTHALl

H (30)

1234

ILBMASSI

C THIS PROGRAM MODELS A RELEASE OF UF6 OR HF INTO A CLOSED COMPARTMENTC OR A CONSTANT RELEASE OF UF6 OR HF INTO A CONSTANT VOLUME FLOW. INC THE LATTER CASE, THE REQUESTED COMPARTMENT VOLUME IS CONS IDERED AC VOLUMETRIC FLOW RATE BASED ON THE SAME TIME UNIT AS THE SOURCE TERM.C IF THE MODEL IS USED IN THE LATTER STEADY-STATE MODE, AN OPTION ISC AVAILABLE TO PERMIT THE EVALUATION OF THE FINAL TEMPERATURE AND PHASEC COMPOSITION AT AMBIENT PRESSURE (WHICH ASSUMES RELEASE TO THE AMBIENTC SURROUNDINGS). THIS MODEL MAKES USE OF SUBROUTINES DEVELOPED FORC TRANSIENT ANALYSIS OF UF6 AND HF RELEASES IN BUILDINGS. NODE NUMBERSC AND DEFINITIONS ARE AS FOLLOWS.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

37

CC IISTRMSICC lIN (30,4) INLET STREAM NODE NUMBERC lOUT (30,4) OUTLET STREAM NODE NUMBERCC ICCNfRLICC AMINLN NATURAL LOG OF MINIMUM NUMBER ACCEPTED BY THEC COMPUTERC TIME CUMULATIVE SIMULATION TIME, SECC DELT TIME INTERVAL USED FOR TRANSIENT SIMULATION, SECC MAXTIM MAXIMUM SIMULATION TIME, SEC, EQUALS DELT FORC BATCH ANALYSISC IFLAG FLAG TO CONTROL PRINTING OF OUTPUTC TRELS TOTAL RELEASE TIME, SEC, EQUALS DELT FOR BATCHC ANALYSIS

CC IPOLYMRICC C1 WEIGHT FRACTION OF HF MONOMER TO TOTAL HF VAPORC C3 WEIGHT FRACTION OF HF TRIMER TO TOTAL HF VAPORC C6 WEIGHT FRACTION OF HF HEXAMER TO TOTAL HF VAPORC WMBHF MOLECULAR WEIGHT OF HF MONOMER, LB/LB MOLECC IMISCEUCC ITYPE VARIABLE TO SPECIFY TYPE OF RELEASE, SEE CARD 5C SOURCE TOTAL MASS OF RELEASE, LBC ISEN VARIABLE TO SPECIFY ISENTROPIC OR ISENTHALPICC RELEASE, SEE CARD 5CC OTHER DIMENSIONED VARIABLESCC NAME (9) COMPONENT IDENT IFIERC TITLE (6) TITLE ARRAYCC UNDIMENSIONED VARIABLESCC INODES MAXIMUM NUMBER OF NODES ALLOWED BY CODING OFC SUBROUTINESC INOUT MAXIMUM NUMBER OF INLET STREAMS AND OUTLETC STREAMSC RH RELATIVE HUMIDITY, % (AS INPUT) OR FRACTIONC ~ MOLECULAR WEIGHT, LB/lB MOLEC IWRITE CONTROL VARIABLE TO SPECIFY OUTPUT BASED ON THEC ASSUMPT ION OF AN OPEN COMPARTMENTC RATIO RATIO OF MOLES OF WATER VAPOR TO TOTAL MOLES OFC MOIST AIRC SOLIDS MASS FLOW RATE OF UF6 SOLIDS ONTO THE FLOOR,C LB/(DELT)C MSSTOT FINAL TOTAL MASS IN COMPARTMENT, LBC DENS DENSITY AT FINAL TEMPERATURE, PRESSURE, AND

38

VOLl~E (SPECIFIC VOLUME OF CONDENSATE ISNEGLECTED), LB/FT**3

COMPRTHUMIDMIXFLWROOMSETRAYSTERM

DENTHLDENUF6EQTUF6FLASHHFPOLYHHFH20HUF6PHASEPHFH20SUF6VPRUF6ZUF6

CCCC THE FOLLOWING SUBROUTINES ARE CALLED BY BATCH.CCCCCCCCC THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.CCCCCCCCCCCCCCC***********************************************************************CC INITIAL STATEMENTSC ==================C

IMPLICIT REAL*B (A-H,J-Z)C

DIMENSION NAME(9) , TITLE(6)C

COMMON /LBMASS/ MASS(30,9), DUMlCOMMON /COMPTP/ TC(30), PC(30), DUM2(30)COMMON /MOLWT/ WMOL(9)COMMON /VOLUME/ VOL(30), DUM3(61)COMMON /ENTHAL/ H(30), DUM4(120)COMMON /ISTRMS/ IIN(30,4), IOUT(30,4)COMMON ICONTRL/ AMINLN, TIME, DELT, MAXTIM, IFLAG, TRELSCOMMON IPOLYMR/ Cl, C3, C6, WMBHFCOMMON /MISCEL/ ITYPE, SOURCE, ISEN

CDATA NAME /8HAIR V ,BHH20 L ,BHH20 V ,BHHF L,

* 8HHF V ,BHUF6 S ,8HUF6 L ,BHUF6 V,* BHU02F2 S /

CC SET PARAMETERS.C

CALL SETRAY(INODES, INOUT)C

39

INOUT =1IFLAG =1I IN(1 ,1) = 3IIN(4,1) =1IOUT(l,l) = INODESlOUT( 4 , 1) = 2DELT = 6.D1MAXTIM = DELTTRELS =DELT

CC READ STAMENTSC =============CC BATCH IS WRITTEN FOR INTERACTIVE EXECUTION.CC ALL INPUT DATA EXCEPT THAT ON CARD 1 ARE READ IN FREE FORMAT.C ON CARD 1, COlNf CHARACTERS STARTING IN COLlJt1'.l 1.CC WARNING: OUTPUT APPEARS IN FOR06.DATC

WRITE (5,5000)CCC /C/ CARD 1.CC ENTER TITLE (MAXIMUM OF 48 CHARACTERS).C

CWRITE (5,5010)

READ (5,5015) (TITLE(I5015), 15015=1,6)CCC /C/ CARD 2.CC ENTER COMPARTMENT TEMPERATURE (F), PRESSURE (PSIA), ANDC VOLUME (FT**3).C

CWRITE (5,5020)

READ (5,*) TC(l), PC(l), VOL(l)CCC /C/ CARD 3.CC ENTER AMBIENT TEMPERATURE (F), PRESSURE (PSIA), AND RELATIVEC HUMIDITY (%)C

C

C

WRITE (5,5030)

READ (5,*) TC(2), PC(2), RH

40

RH = RH/1.D2

IF (ITYPE.EQ.4 .OR. ITYPE.EQ.5) GO TO 10

WRITE (5,5040)

READ (5,*) ITYPE, TC(3), PC(3)

ENTER SOURCE TYPE (4=HF LIQUID, 5=HF VAPOR, 7=UF6 LIQUID WITH VAPORSOURCE TERM AND SOLIDS IGNORED IN HEAT BALANCE, -7=UF6 LIQUID WITHVAPOR PLUS SOLID SOURCE TERM, B=UF6 VAPOR), TEMPERATURE (F), ANDPRESSURE (PSIA--A NEGATIVE PRESSURE OR A LIQUID RELEASE DEFAULTSTO THE VAPOR PRESSURE CORRESPONDING TO THE SOURCE TEMPERATURE).

C

C

CCC /C/ CARD 4.CCCCCCC

CCC /C/ CARD 5.CCENTER UF6 MOLECULAR WEIGHT (A VALUE LESS THAN 100 DEFAULTS TOC 352.025) AND BASIS FOR FLASH (O=ISENTROPIC, 1=ISENTHALPIC).C

WRITE (5,5050)C

READ (5,*) MW, ISENC

C

C

IF (MW.LT.1.D2) GO TO 10

WMOL(9) = WMOL(9) - WMOL(6) + MWWHOL(6) = MWWHOL(7) = MWWHOL( B) = t1.J

10 CCNTINUECCC /C/ CARD 6.CC ENTER MASS OF SOURCE TERM (LB).C

CWRITE (5,5060)

READ (5,*) SOURCECCC /C/ CARD 7.CC ENTER OUTPUT BASIS (l=CLOSED Cct1PARTMENT, 4=OPEN Cct1PARTMENT WITHC FINAL PRESSURE EQUAL TO AMBIENT PRESSURE).

41

c

cWRITE (5,5070)

READ (5,*) IWRITEcC***********************************************************************CC BATCH ANALYSISC ==============C

WRITE (6,6000) (TITLE( 16000) , 16000=1,6)CC EVALUATE INITIAL CONDITIONS.C

CALL HUMID(2, RH, RATIO)C

WRITE (6,6010)WRITE (6,6020) TC(2)WRITE (6,6030) PC(2)WRITE (6,6040) RH, RATIO

CCALL ROOM(l, RATIO)

CWRITE (6,6050)WRITE (6,6020) TC(l)WRITE (6,6030) PC(1)WRITE (6,6060) VOL(l)

CDO 20 120=1,9

CIF (MASS(1,I20).GT.0.DO) WRITE (6,6070) NAME(I20),

* MASS(1,I20)C

20 CONTINUECC El~LUATE SOURCE TERM.C

C

C

C

C

C

IF (ITYPE.EQ.4) WRITE (6,6090)IF (ITYPE.EQ.5) WRITE (6,6100)IF (IABS(ITYPE).EQ.7) WRITE (6,6110)IF (ITYPE.EQ.8) WRITE (6,6120)

WRITE (6,6020) TC(3)

CALL STERM(3, 1, SOLIDS)

IF (ITYPE.EQ.5.0R.ITYPE.EQ.8) WRITE (6,6030) PC(3)WRITE (6,6130) SOURCE

IF (IABS(ITYPE).EQ.7.0R.ITYPE.EQ.8) WRITE (6,6140) WHOL(6)

IF (IABS(ITYPE).EQ.7.AND.ISEN.EQ.0) WRITE (6,6150)IF (IABS(ITYPE).EQ.7.AND.ISEN.EQ.1) WRITE (6,6160)IF (ITYPE.EQ.8.Ar~D.ISEN.EQ.0) WRITE (6,6170)

C

C

C

C

C

42

IF (ITYPE.EQ.8.AND.ISEN.EQ.1) WRITE (6,6180)

IF (ITYPE.EQ.7) WRITE (6,6190) SOLIDS

IF (IABS(ITYPE).EQ.7) WRITE (6,6200) TC(3)IF (ITYPE.EQ.8) WRITE (6,6210) TC(3)

DO 30 130=1,9

IF (MASS(3,I30).GT.0.DO) WRITE (6,6070) NAME(I30),* MASS(3,I30)

30 CONTINUECC EVALUATE CLOSED COMPARTMENT FINAL CONDITIONS.C

CALL COMPRT(l, INOUT, INODES)C

IF (IWRITE.EQ.1) GO TO 40CC EVALUATE OPEN COMPARTMENT FINAL CONDITIONS.C

CALL MIXFLW(4, 1, INODES)C

40 CONTINUEC

C

C

C

C

C

c

C

c

C

IF (IWRITE.EQ.1) WRITE (6,6220)IF (IWRITE.EQ.4) WRITE (6,6230)

WRITE (6,6020) TC(IWRITE)WRITE (6,6030) PC(IWRITE)WRITE (6,6060) VOL(IWRITE)

MSSTOT = O.DO

DO 50 150=1,9

MSSTOT = MSSTOT + MASS(IWRITE,150)

IF (MASS(IWRITE,I50).GT.0.DO) WRITE (6,6070) NAME(150),* MASS(IWRITE,I50)

50 C~~TINUE

DENS = MSSTOT/VOL(IWRITE)

WRITE (6,6240) DENS

STOPCc***********************************************************************cC FORMAT STATEMENTSC =================

C5000 FORMAT (II, 41H

* II)

43

WARNING: OUTPUT APPEARS IN FOR06.DAT,

C5010 FORMAT (' ENTER TITLE (MAXIMUM OF 48 CHARACTERS).')

C5015 FORMAT (6A8)

C5020 FORMAT (46H ENTER COMPARTMENT TEMPERATURE (F), PRESSU,

* 14HRE (PSIA), AND, I, 20H VOLUME (FT**3).)C5030 FORMAT (46H ENTER AMBIENT TEMPERATURE (F), PRESSURE (,

* 19HPSIA), AND RELATIVE, I, 17H HUMIDI~( (~»

C5040 FORMAT (46H ENTER SOURCE TYPE (4=HF LIQUID, 5=HF VAPO,

* 2HR" 24H 7=UF6 LIQUID WITH VAPOR, I, llH SOURCE,* 16H TERM AND SOLIDS, 28H IGNORED IN HEAT BALANCE, -7,* 16H=UF6 LIQUID WITH, I, 10H VAPOR, 10H PLUS SOLI,* 49HD SOURCE TERM, 8=UF6 VAPOR), TEMPERATURE (F), AND,* I, 46H PRESSURE (PSIA--A NEGATIVE PRESSURE OR A ,* 6HLIQUID, 17H RELEASE DEFAULTS, I, 14H TO THE VA,* 12HPOR PRESSURE, 32H CORRESPONDING TO THE SOURCE TEM,* 10HPERATURE).)

C5050 FORMAT (46H ENTER UF6 MOLECULAR WEIGHT (A VALUE LESS ,

* 20HTHAN 100 DEFAULTS TO, I, 17H 352.025) AND,* 16H BASIS FOR FLASH, 24H (O=ISENTROPIC, l=ISENTH,* 7HALPIC).)

C5060 FORMAT (36H ENTER MASS OF SOURCE TERM (LB).)

C5070 FORMAT (46H ENTER OUTPUT BASIS (l=CLOSED COMPARTMENT,

* 24H 4=OPEN COMPARTMENT WITH, I, 17H FINAL PRESSU,* 11HRE EQUAL TO, 19H AMBIENT PRESSURE).)

C6000 FORMAT ('1 CASE:' ,6A8)

C6010 FORMAT ('- AMBIENT CONDITIONS',I,lH )

C6020 FORMAT (' TEMPERATURE

* 'DEG F')C

6030 FORMAT (' PRESSURE* 'PSIA')

, ,F13.3,5X,

, ,F13.3,5X,

C6040 FORMAT (' RELATIVE HUMIDITY ',2PFll.l,7X,

* '~' ,1,1H ,I,' WATER VAPOR MOIST AIR ',OPF15.5,* 3X,'MOLE/MOLE')

C6050 FORMAT ('0 INITIAL COMPARTMENT C~IDITIONS' ,1,1H )

C6060 FORMAT (' VOLUME ',Fl1.l,7X,

* 'FT**3',I,lH)C

44

6070 FORMAT (8X,~MASS OF ~ ,A8,11X,Fl1.1,7X,~LB~)

C6080 FORMAT (lH ,I,~ TOTAL ENTHALPY

* ~BTU~,I,lH )~ ,Fll .1 , 7X ,

C6090 FORMAT (~O SOURCE TERM: HF LI QU ID~ ,I , 1H )

C6100 FORMAT eo SOURCE TERM: HF VAPOR~,I,lH )

C6110 FORMAT (~O SOURCE TERM: UF6 LIQUID~,I,lH )

C6120 FORMAT (~o SOURCE TERM: UF6 VAPOR~ ,I ,1H )

C6130 FORMAT ( ~ TOTAL MASS OF SOURCE ~ ,Fll .1 ,7X ,

* ~LB~ ,1,1H )C6140 FORMAT (~ MOLECULAR WEIGHT ~ ,F13.3,5X,

* ~LB/LB MOLE~ ,1,1H )C

6150 FORMAT (~ BASIS FOR FLASHING OF LIQUID~,

* ~ ISENTROPIC~,I,lH )C

6160 FORMAT (~ BASIS FOR FLASHING OF LIQUID~,

* ISENTHALPIC~ ,1,1H )C6170 FORMAT (~

* ~

BASIS FOR EXPANSION OF VAPOR~,

ISENTROPIC~,I,lH )C6180 FORMAT (~ BASIS FOR EXPANSION OF VAPOR~,

* ~ ISENTHALPIC~,I,lH)

C6190 FORMAT (~ SOLID UF6 DUMPED ON FLOOR ~,F11.1,7X,

* ~LB~ ,I ,1HC6200 FORMAT (~ TEMPERATURE AFTER FLASHING ~,F13.3,5X,

* ~DEG F~,I,lH )C6210 FORMAT (~ TEMPERATURE AFTER EXPANSION~,F13.3,5X,

* ~DEG F~,I,lH )C

6220 FORMAT (~O FINAL CONDITIONS (CLOSED COMPARTMENT)~ ,1,1HC

6230 FORMAT (~O FINAL CONDITIONS (OPEN COMPARTMENT)~,I,lH )C

6240 FORMAT (~O DENSITY OF FINAL MIXTURE ~ ,F15.5,3X,* ~LB/FT**3~)

C

C***********************************************************************C

END

MODEL NUMBER SA 8A 12B 30B 48X 48Y

VALUE OF ICYL 1 2 3 4 5 6

DATA TOTM / 55.DO, 255.DO, 460.00, 5020.00, 21030.00, 27560.00/OATA TOTV /0.28400, 1. 31900, 2.3800, 26.00, 108.900, 142.7DO/DATA CYLO / 5.00, 8.00, 12.00, 29.00, 48.00, 48.00/OATA CYLL /24.9900, 45.3400, 36.3600, 68.0200, 103.9900, 136.2700/DATA HOLR /1.37500, 1.37500, 1.375DO, 9.00, 17.DO, 17.DO/DATA HOLO /0.375DO, 0.37500, 0.37500, 0.875DO, 0.87500, 0.875DO/

45

A.4 CYLIND - A Cylinder Release Model

C THIS PROGRAM CALCULATES THE MASS FLOW RATE FROM A UF6 CYCLINDERC TO THE SURROUNDINGS TI1ROIIGH EITHER A BREACH OR HOLE IN THEC CYLINDER OR THROUGH A PIGTAIL CONSISTING OF A KNOWN LENGTH OFC PIPE AND FIXTURES. THE PROGRAM AND ALL SUBROUTINES ARE WRITTENC IN DOUBLE PRECISION.CC***********************************************************************CC INITIAL STATEMENTSC ==================C

IMPLICIT REAL*8 (A-H,J-Z)CC COMMON BLOCKS TRANSFER INFORMATION ON THE STATE OF UF6 ANDC ON THE OPTIONS TO BE USED.C

COMMON /ICQMONI ISEN,IPIG,IBRCH,IGEXITCOMMON /CONCYL/ PCYL,TCYL,XVCYL,XLCYL,MWCOMMON /CONENT/ PENT,TENT,XVENT,XLENT,VNTBARCOMMON /GMTRY / PIGRAYCOMMON /CONIN / PIN,TIN,XVIN,XLINCOMMON /CONVOL/ PVOL,TVOL,XVOL,XLVOLCOMMON /PARAM / VOL,DELT,QCOMMON /MASS / MSFLRT,MIN,MTOTCOMM~1 /CYLIND/ DIACYL,LCYL,RHOLE,DHOLE,ALPHA,IVERTCOMMON /TRIPLEI TTRIPL,PTRIPL

CDIMENSION TITLE(16)DIMENSION PIGRAY(99,3),0~(99)

OIMENSION TOTM(6) ,TOTV(6) ,CYLO(6),CYLL(6) ,HOLR(6),HOLD(6)DIMENSION DWGNUM(4,4)

CC THE FOLLOWING OATA STATEMENTS PROVIOE OEFAULT VALUES FOR VARIABLESC REQUIREO BY THE SUBROUTINE LEVEL. THE USER MAY SPECIFY A COMPLETEC SET OF VALUES BY SPECIFYING ICYL = 0 THEN ENTERING THE REQUIREOC INFORMATION ON THE FOLLOWING LINE OF INPUT.CCCCC

CC ANY PROGRAM USING THE BREACH AND PIGTAIL SUBROUTINES OR THEC LIQUIO LEVEL ANO MASS/O~ERGY BALANCE SUBROUTINES USED HEREC MUST SUPPLY SIMILAR DATA AND TRANSFER BLOCK COMMON STATEMENTS.C

46

C READ STATEMENTSC ===============CCC /C/ CARD 1. READ TITLE (LIMITED TO 80 CHARACTERS).C

READ (20,2000) TITLECCC /C/ CARD 2.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

READ FLASH BASIS, CYLINDER TYPE, CYLINDER ORIENTATION,AND NUMBER OF ELEMENTS IN RELEASE PATHWAY.

FLASH BASIS (ISEN)

o ISENTROPIC1 ISENTHALPIC

ISEN = 1 IS RECOMMENDED SINCE THE FLASHING PROCESS WASASSUMED TO BE ISENTHALPIC IN THE DERIVATION OF THECORRELATION USED IN THE SUBROUTINE PIPSYS FOR PRESSUREDROP IN A PIPE.

CYLINDER TYPE (ICYL)

o USER SPECIFIED1 TYPE SA CYLINDER2 TYPE SA CYLINDER3 TYPE 12B CYLINDER4 TYPE 30B CYLINDER (2.5 TON)5 TYPE 48X CYLINDER (10 TON)6 TYPE 48Y CYLINDER (14 T~~)

IF A NEGATIVE VALUE OF ICYL IS READ (-1, -2, -3, -4, -5,-6), THE USER MAY SUBSEQUENTLY SPECIFY A TOTAL MASS OF UF6DIFFERENT FROM THE DEFAULT VALUE (SEE CARD 4).

CYLINDER ORIENTATION (IVERT)

-1 CYLINDER STANDS ON END -- RELEASE FROM TOP ENDo CYLINDER LIES ON SIDE -- RELEASE FROM END1 CYLINDER STANDS ON END -- RELEASE FROM BOTTOM END

NUMBER OF ELEMENTS IN RELEASE PATHWAY (IPIG)

IF IPIG = 2, THE RELEASE PATHWAY IS A BREACH IN THECYLINDER. IF THE RELEASE PATHWAY IS A PIPING SYSTEM, IPIGIS GREATER 1HAN 2.

READ (20,*) ISEN, ICYL, It...'ERT, IPIGC

IF(ICYL.GE.-6.AND.ICYL.LE.6) GO TO 10c

47

WRITE (5,500) ICYLC

STOPC

10 CONTINUEC

IF (IABS(ICYL).GT.O) GO TO 20CCC ICI CARD 3.CCCCCC

-- USE THIS CARD ONLY IF ICYL = 0 --

READ MASS OF UF6 IN THE CYLINDER (LB); VOLUME (FT**3),INTERNAL DIAMETER (IN), AND INTERNAL LENGTH (IN) OF THECYLINDER; RADIUS FROM THE CYLINDER CENTERLINE TO THE VALVE(BREACH) (IN); AND THE VALVE (BREACH) DIAMETER (IN).

READ (20,*) MTOT, VOL, DIACYL, LCYL, RHOLE, DHOLEC

GO TO 30C

20 CCNrINUEC

MTOT =TOTM(IABS(ICYL»VOL =TOTV(IABS(ICYL»DIACYL = CYLD(IABS(ICYL»LCYL =CYLL(IABS(ICYL»RHOLE = HOLR(IABS(ICYL»DHOLE = HOLD(IABS(ICYL»

CCC ICI CARD 4. -- USE THIS CARD ONLY IF ICYL IS NEGATIVE -­CC READ MASS OF UF6 IN CYLINDER (LB).C

CIF (ICYL.LT.O) READ (20,*) MTOT

30 CONTINUECCC IC/ CARD 5.CCCCCCCCCCC

READ PRESSURE (PSIA), TEMPERATURE (DEG F), LIQUID MASSFRACTION OF THE NONVAPOR FRACTION (--), MOLECULAR WEIGHT(LB/LB MOLE), AND THE ANGLE MEASURED FROM A VERTICAL VECTORPASSING THROUGH THE CENTER OF THE END AND A VECTOR FROM THECENTER OF THE END AND THE ENTRANCE TO THE RELEASE PATHWAY(DEG). IF PRESSURE IS SPECIFIED AS ZERO AND/OR TEMPERATUREIS SPECIFIED AS NONZERO, THEN THE PRESSURE WILL BE SET EQUALTO THE VAPOR PRESSURE. IF PRESSURE IS SPECIFIED AS NONZEROAND TEMPERATURE IS SPECIFIED AS ZERO, THEN THE EQUILIBRIUMTEMPERATURE CORRESPONDING TO THE SPECIFIED PRESSURE WILL BECALCULATED. IF THE TRIPLE POINT TEMPERATURE IS SPECIFIED(147.306561 DEG F), THEN A NONZERO VALUE FOR THE LIQUID MASS

CCCCCC

48

FRACTION OF THE NONVAPOR FRACTION CAN BE SPECIFIED;OTHERWISE, THE VALUE READ AS INPUT WILL BE SET BY THEPROGRAM TO THE APPROPRIATE VALUE. THE DEFAULT VALUE FORMOLECULAR WEIGHT IS 352.025 -- IF THIS VALUE IS ACCEPTABLE,A ZERO MAY BEPECIFIED FOR THIS VARIABLE.

READ (20,*) PVOL, TVOL, XLVOL, MW, ALPHACC CHECK SPECIFIED VALUES OF PVOL AND TVOL. TERMINATE EXECUTION IF ANC ERROR IS FOUND; OTHERWISE, CALCULATE THE APPROPRIATE VAPOR PRESSUREC OR EQUILIBRIUM TEMPERATURE.C

IF (PVOL.GE.O.DO.AND.TVOL.GE.O.DO.AND.(PVOLtTVOL).GT.O.DO)* GO TO 40

CWRITE(5,510) PVOL, TVOL

CSTOP

C40 CONTINUE

CIF (TVOL.GT.O.DO) CALL VPRUF6 (TVOL,PVOL)

CIF (TVOL.EQ.O.DO) CALL EQTUF6 (PVOL,TVOL)

CC SET THE TRIPLE POINT CONDITIONS AND CHECK THE VALUE OF THEC LIQUID/SOLID SPLIT.C

PTRIPL = 22.04226474DOC

TTRIPL =147.306561DOC

IF (TVOL.LT.TTRIPL) XLVOL = O.DOC

IF (TVOL.GT.TTRIPL) XLVOL = 1.DOC

IF (XLVOL.GE.O.DO.AND.XLVOL.LE.l.DO) GO TO 50C

WRITE (5,520) XLVOLC

STOPC

50 CONTINUEC

IF (MW.EQ.O.DO) MW = 352.025DOC

IF (IPIG.GT.2) GO TO 60CCC /C/ CARD 6. -- USE THIS CARD ONLY IF IPIG = 2 -­CC READ AMBIENT PRESSURE (PSIA). A ZERO VALUE DEFAULTS TOC 14.7 PSIA.

49

CREAD (20,*) PAMB

CC SET UP ELEMENTS OF PIGRAY FOR A BREACH CALCULATION.C

C

C

C

C

CC

PIGRAY(l,l) = 1.00PIGRAY(1,2) = 0.500PIGRAY(1,3) = DHOLE/12.DO

PIGRAY(2,1) = 2.DOPIGRAY(2,2) = 1.DOPIGRAY(2,3) =14.7DO

IF (PAMB.GT.O.DO) PIGRAY(2,3) = PAMB

GO TO 80

60 CONTINUE

C /C/ CARD 7.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

-- USE ONLY IF IPIG IS GREATER THAN 2 --

READ AS MANY CARDS AS THE VALUE OF IPIG TO SPECIFY THEPIPING SYSTEM. EACH CARD CONTAINS (1) A VALUE SPECIFYINGELEMENT TYPE, (2) ELEMENT LENGTH (FT) OR RESISTANCECOEFFICIENT (--), AND (3) DIAMETER (IN), EXCEPT FOR THE LASTCARD. THE THIRD VALUE ON THE LAST OF THE "CARD 7" CARDS ISTHE AMBIENT PRESSURE (PSIA).

ELEMENT TYPE (PIGRAY(I,1»

1 SPECIFIES A PIPE SEGMENT (EXCEPT FIRST -CARD 7" WHEREIT SPECIFIES THE ENTRANCE)

2 SPECIFIES A PIPING SYSTEM FEATURE (SUDDEN EXPANSI~~,

VALVE, BEND, ETC.) FOR WHICH A RESISTANCE COEFFICIENTIS SUPPLIED

3 SPECIFIES A SUDDEN CONTRACTION FOR WHICH A RESISTANCECOEFFICIENT IS SUPPLIED

RESISTANCE COEFFICIENT (PIGRAY(I,2»

THIS VALUE MUST BE CALCULATED BY THE USER.

DIAMETER (PIGRAY(I,3»

(NOTE: PIGRAY(IPIG,3) IS THE EXHAUST PRESSURE, PSIA.)

FOR A SUDDEN CONTRACTION, SPECIFY THE DOWNSTREAM DIAMETERFOI.LOW ING THE CONTRACTI ON . FOR A SUDDEN EXPANS ION, SPEC IFYTH.: UPSTREAM DIAMETER BEFORE THE EXPANS ION.

DO 70 170 ~ 1,IPIGC

50

READ (20,*) (PIGRAY(I70,I), 1=1,3)CC CONVERT DIAMETER FROM INCHES TO FEET FOR EACH ELEMENT OF THEC PIGTAIL WHICH HAS A DIAMETER VALUE.C

C

C

C

IF (I70.LT.IPIG) PIGRAY(I70,3) = PIGRAY(I70,3)/12.DO

70 CONTINUE

80 CONTINUE

PFIN = PIGRAY(IPIG,3)CCC IC/ CARD 8. READ SIMULATION TIME INTERVAL (SEC) AND MAXIMUMC SIMULATION TIME (SEC).C

READ (20,*) DELT, MAXTIMCCC IC/ CARD 9.CCCCCCCCCCCC

-- THESE CARDS ARE OPTIONAL --

ENTER DRAWING NUMBERS (LIMITED TO 20 CHARACTERS--THE LASTCHARACTER MUST BE A DOLLAR SIGN ($». THESE NUMBERS AREENTERED IN A FILE FOR CYLPLT PROCESSING.

1ST CARD 9 = PHASE MASSES AND TOTAL MASS OF UF6 INSIDECYLINDER

2ND CARD 9 = PHASE AND TOTAL MASS RELEASE RATES FROMCYLINDER

3RD CARD 9 = TEMPERATURE AND PRESSURE INSIDE CYLINDER4TH CARD 9 = EXHAUST TEMPERATURE

DO 90 190=1,4C

READ (20,2010,END=100) (DHGNL~(I90,I), 1=1,4)WRITE (31,2010) (DHGNUM(I90,I), 1=1,4)

C90 CONTINUE

C100 C~JTINUE

CWRITE(31,2020)

CC***********************************************************************CC INITIAL CONDITIONSC ==================CC DENUF6 WILL CALCULATE DENSITIES OF UF6 PHASES IN THE CYLINDERC

CALL DENUF6 (TVOL,PVOL,t1H,DENSOL,DENLIQ,DENVAP)

51

CC THE VAPOR MASS FRACTION IN THE CYLINDER CAN NOW BE DETERMINEDC

XVOL = (VOL/MTOT - XLVOL/DENLIQ - (l.DO-XLVOL)/DENSOL)* l(l.DO/DENVAP - XLVOL/DENLIQ - (l.DO-XLVOL)/DENSOL)

CC THIS ARGUMENT TO THE LEVEL SUBROUTINE SAVES PREVIOUS VALUES OFC LIQUID LEVEL FOR USE AS INITIAL GUESSES. IT IS INITIALLY SET EQUALC TO CYLINDER DIAMETER.C

VLFACE = DIACYLCC THIS DRIVER ROUTINE DOES NOT CONSIDER AN INLET STREAM TO THEC CYLINDER. THE LEVEL AND INTMEB SUBROUTINES ARE WRITTEN TOC HANDLE SUCH A STREAM. THEREFORE SET MASS OF THE STREAM TOC ZERO AND OTHER STREAM PARAMETERS TO MATCH THE CYLINDERC CCJ-ITENTS.C

MIN = O.DOC

PIN = PVOLC

TIN =TVOLC

XVIN = XVOLC

XLIN = XLVOLC

ITRIPL = 0CC SET TIME STEP AND HEAT TRANSFERC

DELTSM = O.DOC

Q = O.DOC

WRITE (30,3000) TITLEC

WRITE (30,3010)C

WRITE (22,2200) DELTC

C***********************************************************************CC TRANSIENT ANALYSISC ==================C

110 CONTINUECC FROM THIS POINT ON THE PROGRAM SOLVES EACH TIME STEP USINGC VALUES FROM THE PREVIOUS STEP AI\ID FROM THE MASS AI\ID ENERGYC BALANCE ABOUT THE CYLINDER. STARTING VALUES FOR THE STREAMC LEAVING THE CYLINDER DURING THE COMING TIME STEP ARE INPUT ANDC THE LEVEL SUBROUTINE IS CALLED IF NEEDED TO MODIFY THESE

52

C PARAMETERS AS REQUIRED. TCYL IS ALWAYS EQUAL TO TVOL, BUTC XVCYL, XLCYL, AND PCYL MAY BE CHANGED AS THE VAPOR/LIQUIDC INTERFACE DROPS.C

XVCYL =1.DOC

XLCYL = XLVOLC

PCYL = PVOLC

TCYL =TVOLCC PHASE INTERFACE LEVELC =====================C

IF (IVERT.NE.-l) CALL LEVEL (DENVAP,VLFACE)CC BREACH FLOW RATE ANALYSISC =========================CC THE BREACH SUBROUTINE CALCULATES A MASS VELOCITY AND A SET OFC CONDITIONS FOLLOWING THE ENTRANCE PRESSURE DROP. THOSEC CONDITIONS ARE TRANSFERRED TO PIPSYS IF THE PIGTAILC SUBROUTINE IS CALLED.C

IF (DELTSM.GT.O.DO .AND. IPIG.GT.2) GO TO 120C

CALL BREACH (G)CC THE BREACH SUBROUTINE HAS CALCULATED A MAXIMUM VALUE OF MASSC VELOCITY.C

IF(IPIG.EQ.2) GO TO 130CC PIPING SYSTEM FLOW RATE ANALYSISC ================================CC THE PIGTAIL SUBROUTINE CALCULATES NEW VALUES OF G FOR RELEASESC OF UF6 THROUGH PIGTAILS CONSISTING OF LENGTHS OF PIPE ANDC FIXTURES SUCH AS ELBOWS AND VALVES.C

120 CONTINUEC

CIF (TCYL.EQ.TTRIPL .AND. XVCYL.EQ.1 .AND. ITRIPL.EQ.l) GO TO 130

CALL PIPSYS (G)CC SET BASIS FOR SUBSEQUENT EVALUATIONS OF G IN PIPSYS.C

IBRCH = 3CC SET FLAG FOR SKIPPING CALL TO PIPSYS.C

ITRIPL = 0

53

CIF (TCYL.EQ.TTRIPL .AND. XVCYL.EQ.1.DO) ITRIPL = 1

C130 CONTINUE

CC OUTPUT DATAC ===========CC PHASE COMPOSITION INSIDE CYLINDERC

MSOL = MTOT*(l.DO - XVOL)*(l.DO - XLVOL)MLIQ =MTOT*(l.DO - XVOL)*XLVOLMVAP =MTOT*XVOL

CC PHASE COMPOSITION ENTERING RELEASE PATHWAYC

PHASE = 'IF (XVCYL.EQ.1.DO) PHASE = ' VAPOR'IF (XVCYL.LT.l.DO.AND.XVCYL.GT.O.DO.AND.XLCYL.EQ.l.DO)

* PHASE = 'LIQ-vAP'IF (XVCYL.LT.1.DO.AND.XVCYL.GT.0.DO.AND.XLCYL.LT.1.DO.

* AND.XLCYL.GT.O.DO) PHASE = '3-PHASE'IF (XVCYL.EQ.0.DO.AND.XLCYL.EQ.1.DO) PHASE = 'LIQUID'IF (XVCYL.EQ.0.DO.AND.XLCYL.LT.1.DO.AND.XLCYL.GT.0.DO)

* PHASE = 'SOL-LIQ'CC CONDITIONS OF UF6 EXHAUSTED AT FINAL PRESSUREC

CALL FLASH (TVOL,PVOL,MW,XVCYL,XLCYL,PFIN,ISEN,XVFIN,XLFIN,TFIN)C

MSFLRT = G*(PIGRAY(1,3)**2)*3.14159DO/4.DO

MSSRTS =MSFLRT*(l.DO - XVFIN)*(l.DO - XLFIN)MSSRTL =MSFLRT*(l.DO - XVFIN)*XLFINMSSRTV =MSFLRT*XVFIN

CC BASIS FOR FLOW RATE CALCULATIONC

BASIS = 'CHOKE'IF (IPIG.EQ.2.AND.IBRCH.EQ.2) BASIS = ' PDC 'IF (IPIG.GT.2.AND.IGEXIT.EQ.2) BASIS = ' PDC '

CC OUTPUT TO TERMINAL FOR MONITORING PROGRESS OF PROGRAM EXECUTIONC

WRITE (5,530) DELTSM,MTOT,MSFLRTCC PROGRAM OUTPUTC

WRITE (30,3020) DELTSM,MSOL,MLIQ,MVAP,MTOT,TVOL,PVOL ,PHASE ,* PCYL,BASIS,MSSRTS,MSSRTL,MSSRiV,MSFLRT,PFIN,TFIN

CC OUTPUT TO DATA FILE FOR INPUT TO FODRFT OR INDRFTC

WRITE (22,2210) DELTSM,MSSRTS,MSSRTL,MSSRTV,TFIN,PFIN

54

CC CYL INDER INTERNAL MASS AND ENERGY BALANCEC =========================================C

CALL INTMEBC

DELTSM = DELTSM+DELTC

CALL DENUF6 (TVOL,PVOL,MW,DENSOL,DENLIQ,DEt~P)

CIF (TVOL.LT.TTRIPL .OR. MTOT.LT.(MSFLRT*DELT).OR.

* DELTSM.GE.MAXTIM) STOPC

GO TO 110CC***********************************************************************CC FORMAT STATEMENTSC =================C

500 FORMAT(' VALUE OF ICYL =1,13,* I NOT RECOGNIZED -- EXECUTION TERMINATED. I)

C

C

C

510 FORMAT ( I

***

520 FORMAT( I

* I

* I

PVOL =',F8.3,' AND TVOL =',F8.3,' NOT ALLOWED __ 1,/,

EITHER PVOL OR TVOL MUST BE GREATER THAN 0 __1,/,NEITHER PVOL OR TVOL CAN BE LESS THAN 0 __ 1,/,

EXECUTION TERMIt~TED./)

TRIPLE POINT SPECIFIED __ 1,/,

SPECIFIED VALUE OF XLVOL =',F6.2,' OUT OF BOUNDS __1,/,

EXECUTION TERMINATED/)

530 FORMAT (3F15.5)C

2000 FORMAT(16A5)C

2010 FORMAT (4A5)C

2020 FORMAT(4(lH$,/»C

2200 FORMAT (lPE15.7)C

2210 FORMAT (lPE15.7,' 0 0 0 0 0 ',3E15.7,' 0 ',2E15.7)C

3000 FORMAT(lHl,T22,/TITLE: ',16A5)C

3010 FORMAT(/O ******* CONDITI~~ OF UF6 IN C~~AINMENT/,

* I ******* PATHWAY INLET ********* CONDITION OF / ,* I UF6 EXHAUSTED **********1 ,/,T76,/FLOW' ,/,1 TIME *****1,* 1***** MASS (LB)/,* I ********** TEMP PRES RELEASE PRES RATE ****1 ,* I RELEASE RATE (LB/SEC) **** TEMP PRES/,/,' (SEC)/,* SOLID LIQUID VAPOR TOTAL (DEG F) (PSIA)',* PHASE (PSIA) BASIS SOLID LIQUID VAPOR TOTAL / ,

* (DEG F)

55

(PSIA) ~ ,I ,1H )C

3020 FORMAT(F7.0,1X,4FB.1,2FB.3,2X,A7,FB.3,2X,A5,1X,6FB.3)CC***********************************************************************C

END

A.5 COMPLT - A Plotting Program for FODRFT and INDRFT Results

C THIS PROGRAM PLOTS OUTPUT FROM FODRFT AND INDRFT.CC THIS PROGRAM USES DISSPLA (VERSION 9.0) SUBROUTINES FOR PLOTTING.C DISSPLA IS A PRODUCT OF INTEGRATED SOFTWARE SYSTEMS CORPORATION OFC SAN DIEGO, CALIFORNIA. DOCUMENTATION WAS COPYRIGHTED IN 19B1.CC***********************************************************************CC INITIAL STATEMENTSC ==================C

CIMPLICIT REAL*4 (A-H,J-Z)

DIMENSION TIME(1000), UTOT(1000), HFTOT(1000), DENU(1000),* DENHF(1000), T(1000), P(1000)

DIMENSION DWGNUM(6,4), NUMBER(4)CC***********************************************************************CC READ STATEMENTSC ===============C

IMAX = 0CC CODING BETWEEN 810 CONTINUE" AND "30 CONTINUE" READS AND DEVELOPSC DATA FOR PLOTTINGC

10 CONTINUEC

IMAX = IMAX + 1CC INPUT IS READ FROM AN ~FORMATTED OUTPUT FILE GENERATED BY EITHERC FODRFT OR INDRFT.C

C

C

C

READ (4B,*,END=30) TIME(IMAX), UTOT(IMAX), HFTOT(IMAX),* DENU(IMAX), DENHF(IMAX), T(IMAX), P(IMAX)

IF (DENU(IMAX).LT.1.E-20) DENU(IMAX) = 1.E-20IF (DENHF(IMAX).LT.1.E-20) DENHF(IMAX) = 1.E-20

IF (IMAX.GT.1) GO TO 20

DLtlAX = DENU(1)

56

DUMIN = DENU(l)C

DHFMAX = DENHF(l)DHFMIN = DENHF(l)

CTMAX =Hl)THIN = T(l)

cPMAX = P(1)PHIN = pel)

cGO TO 10

C20 CCNTINUE

CIF (DENU(IMAX).GT.DUHAX) DUMAX = DENU(IMAX)IF (DENU(IMAX).LT.DUMIN) DlttlN = DENU( lMAX)

c

c

c

c

c

IF (DENHF(IMAX).GT.DHFMAX) DHFMAX = DENHF(IMAX)IF (DENHF(IMAX).LT.DHFMIN) DHFMIN = DENHF(IMAX)

IF (T(IMAX).GT.TMAX) TMAX =T(IMAX)IF (T(IMAX).LT.TMIN) TMIN = T(IMAX)

IF (POMAX).GT.PMAX) PMAX = P(IMAX)IF (P(IMAX).LT.PMIN) PMIN = P(IMAX)

GO TO 10

30 CONTINUEcC READ DRAWING NUMBERS.C

C

C

C

C

C

C

C

C

DO 40 140=1,6

READ (49,4900) (DWGNUM(140,1), 1=1,4)

40 CONTINUE

lMAX = lMAX - 1

TIMMAX =TIME(IMAX)

UMAX =UTOT(IMAX)

HFMAX = HFTOT(IMAX)

DUMIN =AMAX1(DUMIN,5.07E-B)

DHFMIN =AMAX1(DHFMIN,6.24E-B)C

c***********************************************************************CC PLOTTING COMMANDS

57

C =================C

CALL COMPRSC

DO 80 180=1,6CC SET UP AXES.C

CALL RESET('ALL')CALL NOBRDRCALL GRACE (0.)CALL AREA2D(S.,S.)CALL FRAMECALL DUPLXCALL XREVTKCALL YREVTKCALL YAXANG(O.O)

C

C

C

CALL MXIALF('STANDARD','!')CALL MX2ALF('L/CSTD' ,'@')CALL MX3ALF('INSTRUCTION' ,'&')

CALL XINTAXCALL XNAME ('CUMULATIVE TIME OF TRANSIENT@ (SEC)!$' ,100)CALL AXSPLT (O.,TIMMAX,S.,XORIG,XSTEP,XAXIS)XMAX = XORIG + XSTEP*XAXIS

IF(I80.EQ.3.0R.180.EQ.4) GO TO SOCC PLOT LINEAR AXES FOR PLOTS 1, 2, S, AND 6.C

IF (l80. EQ.l)

* 100)IF (I80.EQ.l)

CIF (180.EQ.2)IF (l80 .EQ .2)

C

CALL YNAME ('CUMULATIVE URANIUM RELEASED@ (LB)!$',

CALL AXSPLT (0.,~1AX,5.,YORIG,YSTEP,YAXIS)

CALL YNAME ('CUMULATIVE HF RELEASED@ (LB)!$' ,100)CALL AXSPLT (O.,HFMAX,S.,YORIG,YSTEP,YAXIS)

IF (I80.EQ.S) CALL YNAME* ('TEMPERATURE IN COMPARTMENT@ (&EH.S@0&EXHX!F@)!$',100)

IF (180.EQ.S) CALL AXSPLT (TMIN,TMAX,S.,YORIG,YSTEP,YAXIS)C

IF (180.EQ.6) CALL YNAME ('PRESSURE IN COMPARTMENT@ (PSIA)!$',* 100)

IF (I80.EQ.6) CALL AXSPLT (PMIN,PMAX,5.,YORIG,YSTEP,YAXIS)C

YMAX = YORIG + YSTEP*YAXISC

CALL YINTAXCALL GRAF (XORIG,XSTEP,XMAX,YORIG,YSTEP,YMAX)

CGO TO 60

CSO CONTINUE

58

CC PLOT SEMI LOG AXES FOR PLOTS 3 AND 4.C

CALL YTICKS (0)CALL YAXEND ('NOENDS')CALL RESET ('YINTAX')CALL RESET ('YNAME')CALL GRAF (XORIG,XSTEP,XMAX,O,l,l)CALL RESET ('YAXEND')CALL YTICKS(l)

CIF (I80.EO.3) CALL ALGPLT (DUMIN,DUMAX,5.,YORIG,YCYCLE)IF (I80.EQ.3) CALL YLGAXS (YORIG,YCYCLE,5.,

* 'URANIUM CONCENTRATION IN COMPARTMENT@ (LB/FT&EH.8@3&EXHX@)!$',* 100,0,0)

CIF (I80.EO.4) CALL ALGPLT (DHFMIN,DHFMAX,5.,YORIG,YCYCLE)IF (I80.EQ.4) CALL YLGAXS (YORIG,YCYCLE,5.,

* 'HF CONCENTRATION IN COMPARTMENT@ (LB/FT&EH.8@3&EXHX@)!$',* 100,0,0)

C60 CONTINUE

CCALL THKCRV (0.05)CALL NOCHEK

CC PLOT 1. CUMULATIVE URANIUM RELEASED (LB) VS CUMULATIVE TIME OFC TRANSIENT (SEC).C

IF (I80.EO.l) CALL CURVE (TIME,UTOT,IMAX,O)CC PLOT 2. CUMULATIVE HF RELEASED (LB) VS CUMULATIVE TIME OF TRANSIENTC (SEC).C

IF (I80.EQ.2) CALL CURVE (TIME,HFTOT,IMAX,O)CC PLOT 3. URANI LIM CONCENTRATI ON IN COMPARTMENT (LB/FT**3) VSC CUMULATIVE TIME OF TRANSI ENT (SEC).C

IF (I80.EO.3) CALL CURVE (TIME,DENU,IMAX,O)CC PLOT 4. HF CONCENTRATION IN COMPARTMENT (LB/FT**3) VS CL~ULATIVE

C TIME OF TRANSIENT (SEC).C

IF (I80.EO.4) CALL CURVE (TIME,DENHF,IMAX,O)CC PLOT 5. TEMPERATURE IN COMPARTMENT (DEG F) VS CUMULATIVE TIME OFC TRANSIENT (SEC).C

IF (I80.EO.5) CALL CURVE (TIME,T,IMAX,O)CC PLOT 6. PRESSURE IN COMPARTMENT (PSIA) VS CUMULATIVE TIME OFC TRANS IENT (SEC).C

59

IF (I80.EQ.6) CALL CURVE (TIME,P,IMAX,O)CC DRAWING NUMBERS.C

DO 70 170=1,4C

C

C

C

C

C

C

NUMBER(I70)=DWGNUM(I80,I70)

70 CONTINUE

CALL HEIGHT (0.1)CALL MESSAG (NUMBER,lOO,3.2,5.1)

CALL ENDPL(O)

80 C(l>.lTINUE

CALL DONEPL

STOPCc***********************************************************************CC FORMAT STATEMENTSC =================C

4900 FORMAT (4AS)CC***********************************************************************C

END

A.6 CYLPLT - A Plotting Program for CYLIND Results

C THIS PROGRAM PLOTS OUTPUT FROM CYLIND.CC THIS PROGRAM USES DISSPLA (VERSION 9.0) SUBROUTINES FOR PLOTTING.C DISSPLA IS A PRODUCT OF INTEGRATED SOFTWARE SYSTEMS CORPORATION OFC SAN DIEGO, CALIFORNIA. DOCUMENTATION WAS COPYRIGHTED IN 1981.CC***********************************************************************CC INITIAL STATEMENTSC ==================C

IMPLICIT REAL*4 (A-H,J-Z)C

DIMENSION TIME(1000), MSOL(1000), MLIQ(1000), MTOT(lOOO),* TCYL(1000), PCYL(lOOO), MSSRTS(1000), MSSRTL(lOOO),* MSFLRT(1000), TFIN(lOOO), BSLNX(2), BSLNY(2), AX(2),* AY(2), BX(2), BY(2), CX(2), CY(2), DX(2), DY(2)

DIMENSION DWGNUM(4,4), NUMBER(4)C

60

C***********************************************************************CC READ STATEMENTSC ===============CC THE FOLLOWING DO LOOP BYPASSES HEADINGS IN THE INPUT FILE WHICH ISC THE PRIMARY CYLIND OUTPUT FILE.C

DO 10 110=1,6C

READ (30,3010) IDUMC

10 CONTINUEC

IMAX = 0CC CODING BETWEENC TO BE PLOTTED.C

20 C~TINUE

C

-20 CONTINUE" AND -40 CONTINUE- READS OR DEVELOPS DATA

IMAX = IMAX + 1C

READ (30,3020,END=40) TIME(IMAX), MSOL(IMAX), MLIQ(IMAX),* MTOT(IMAX), TCYL(IMAX), PCYL(IMAX), MSSRTS(IMAX),* MSSRTL(IMAX), MSFLRT(IMAX), PFIN, TFIN(IMAX)

CMLIQ(IMAX) = MSOL(IMAX) + MLIQ(IMAX)

CMSSRTL(IMAX) = MSSRTS(IMAX) + MSSRTL(IMAX)

CIF (IMAX.NE.1) GO TO 30

CTMIN = TFIN(IMAX)TMAX = TFIN(IMAX)

CGO TO 20

C30 CONTINUE

CIF (TFIN(IMAX).LT.TMIN) TMIN = TFIN(IMAX)IF (TFIN(IMAX).GT.TMAX) TMAX = TFlN( IMAX)

CGO TO 20

C40 CONTINUE

CC READ DRAWING NUMBERS.C

DO 50 150=1,4C

READ (31,3110 ) (DWGNUM(I50,I), 1=1,4)C

50 CONTINUE

61

CIMAX = IMAX - 1

CBSLNX(l) = O.BSLNX(2) = TIME(IMAX)BSLNY(l) = o.BSLNY(2) = o.

CC***********************************************************************CC PLOTTING COMMANDSC =================C

CALL COMPRSC

DO 160 1160=1,4CC SET UP AXES.C

CALL RESET ('ALL')CALL NOBRDRCALL GRACE (0.)CALL AREA2D(5.,5.)CALL FRAMECALL DUPLX

CCALL XREVTKCALL YREVTKCALL YAXANG(O.O)

CCALL MX1ALF('STANDARD' ,'!')CALL MX2ALF('L/CSTD' ,'@')CALL MX3ALF('INSTRUCTION' ,'&')

CCALL INTAXS

CCALL XNAME ('CUMULATIVE TIME OF TRANSIENT@ (SEC)!$' ,100)CALL AXSPLT (0.,TIME(IMAX),5.,XORIG,XSTEP,XAXIS)XMAX = XORIG + XSTEP*XAXIS

CIF (I160.NE.1) GO TO 60

CCALL YNAME ('MASS OF UF&LH.8@6&LXHX! IN CYLINDER@ (LB)!$' ,100)CALL AXSPLT (O.,MTOT(1),5.,YORIG,YSTEP,YAXIS)

CGO TO 90

C60 CONTINUE

CIF (I160.NE.2) GO TO 70

CCALL YNAME ('MASS RELEASE RATE OF UF&LH.8@6&LXHX@ (LB/SEC)!$' ,100)CALL AXSPLT (0.,MSFLRT(1),5.,YORIG,YSTEP,YAXIS)

c

62

GO TO 90C

70 Ce:t-JTINUEC

C

C

C

C

C

C

C

C

C

C

C

C

C

IF (I160.NE.3) GO TO SO

CALL YNAME (/UF&LH.S@6&LXHX! TEMPERATURE IN CYLINDER@* (&EH.5@0&EXHX!F@)!$' ,100)

CALL AXSPLT (TCYL(IMAX) ,'TCYL(1) ,5. ,YORIG,YSTEP,YAXIS)

GO TO 90

SO CCflITINUE

CALL YNAME (/UF&LH.S@6&LXHX! EXHAUST TEMPERATURE@* (&EH.5@0&LXHX!F@)!$' ,100)

IF (ABS(TMAX-TMIN).LT.l.) TMIN =FLOAT(IFIX(TMIN»IF (ABS(TMAX-TMIN).LT.l.) TMAX =FLOAT(IFIX(TMAX + 2.»

CALL AXSPLT (TMIN,TMAX,5.,YORIG,YSTEP,YAXIS)

90 Ce:t-JTINUE

~1AX =YORIG + YSTEP*YAXIS

CALL GRAF (XORIG,XSTEP,XMAX,YORIG,YSTEP,YMAX)

XFACT = (XMAX-XORIG)/5.YFACT = (YMAX-YORIG)/5.

CALL THKCRV (0.03)

CALL NOCHEK

IF (I160.NE.l) GO TO 100CC PLOT 1. MASS OF UF6 IN CYLINDER (LB) VS CUMULATIVE TIME OF TRANSIENTC (SEC).C

CALL CURVE (TIME,MTOT,IMAX,O)CALL RESET ('THKCRV/)

CCALL DOTCALL CURVE (TIME,MLIQ,IMAX,O)

CCALL CI-tmOTCALL CURVE (TIME,MSOL,IMAX,O)CALL RESET (/CHNDOT/)

CCALL SHDPAT (45350)CALL SHDCRV (BSLNX, BSl}IY, 2, TIME, MSOL, IMAX)CALL SHDPAT (135190)CALL SHDCRV (TIME, MSOL, IMAX , TIME, MLIQ, IMAX)

63

CALL SHDPAT (45590)CALL SHDCRV (TIME, MLIQ, IMAX , TIME, MTOT, IMAX)

CGO TO 110

C100 CONTINUE

CIF (I160.NE.2) GO TO 120

CC PLOT 2. MASS RELEASE RATE OF UF6 (LB/SEC) VS CUMULATIVE TIME OFC TRANSIENT (SEC).C

CALL CURVE (TIME,MSFLRT,IMAX,O)CALL RESET ('THKCRV')

cCALL DOTCALL CURVE (TIME,MSSRTL,IMAX,O)

CCALL CHNDOTCALL CURVE (TIME,MSSRTS,IMAX,O)CALL RESET ('CHNDOT')

CCALL SHDPAT (45350)CALL SHDCRV (BSLNX, BSLNY,CALL SHDPAT (135190)CALL SHDCRV (TIME, MSSRTS,CALL SHDPAT (45590)CALL SHDCRV (TIME, MSSRTL,

C110 CONTI NUE

CC LEGEND FOR PLOTS 1 AND 2.C

AX(l) = 2.5*XFACTAX(2) = 3.4*XFACTAY(1) = 4.90*YFACTAY(2) =AY(l)

CBX(l) = AX (1 )BX(2) =AX(2)BY(l) = 4.62*YFACTBY(2) =BY(1)

CCX(1) = AX (1 )CX(2) =AX(2)CY(1) = 4.34*YFACTCY(2) =CY(l)

CDX(l) =AX(l)DX(2) =AX(2)DY(1) = 4. 06*YFACTDY(2) = DY(1)

C

2, TIME, MSSRTS, IMAX)

IMAX , TIME, MSSRTL, IMAX)

IMAX , TIME, MSFLRT, IMAX)

CALL THKCRV (0.03)

64

CALL CURVE (AX, AY, 2, 0)CALL RESET (/THKCRV/)CALL CURVE (DX, DY, 2, 0)CALL DOTCALL CURVE (BX, BY, 2, 0)CALL CHNDOTCALL CURVE (CX, CY, 2, 0)

CCALL RESET (/CHNDOT/)

CCALL SHDPAT (45350)CALL SHDCRV (DX, DY, 2, CX, CY, 2)CALL SHDPAT (135190 )CALL SHDCRV (CX, CY, 2, BX, BY, 2)CALL SHDPAT (45590)CALL SHDCRV (BX, BY, 2, AX, AY, 2)

CCALL MESSAG (/UF&LH.B@6&LXHX! VAPOR$/,100,3.5,4.69)CALL MESSAG (/UF&LH.B@6&LXHX! LIQUID$/,100,3.5,4.41)CALL MESSAG (/UF&LH.B@6&LXHX! SOLID$/,100,3.5,4.13)

CGO TO 140

C120 CONTINUE

CIF (I160.NE.3) GO TO 130

CC PLOT 3. CURVE 1: TEMPERATURE IN CYLINDER (DEG F) VS CUMULATIVE TIMEC OF TRANSIENT (SEC).C

CALL CURVE (TIME,TCYL,IMAX,O)CC LEGEND FOR PLOT 3 (CURVE 1).C

AX(l) = 2.5*XFACTAX(2) = 3.4*XFACTAY(l) = 4.79*YFACT + YORIGAY(2) =AY(1)

CCALL CURVE (AX, AY, 2, 0)

CCALL MESSAG (/TEMPERATURE$/ ,100,3.5,4.72)

CC PLOT 3. CURVE 2: VAPOR PRESSURE OF UF6 IN CYLINDER (PSIA) VSC CUMULATIVE TIME OF TRANSIENT(SEC).C

CALL AXSPLT (PCYL(IMAX),PCYL(1),5.,YORIG,YSTEP,YAXIS)C

YMAX =YORIG + YSTEP*YAXISC

CALL YGRAXS (YORIG,YSTEP,YMAX,5.,/VAPOR PRESSURE OF* UF&LH.B@6&LXHX! IN CYLINDER@ (PSIA)!$/,-100,5.,O.)

CCALL CI-t-lDOT

65

CCALL CURVE (TIME,PCYL,IMAX,O)

CC LEGEND FOR PLOT 3 (CURVE 2).C

AY(l) = 4. 61*(YMAX-YORIG)/5. + YORIGAY(2) = AY(l)

CCALL CURVE (AX, AY, 2, 0)

CCALL MESSAG ('PRESSURE$',100,3.5,4.51)

CGO TO 140

C130 CONTINUE

CC PLOT 4. EXHAUST TEMPERATURE (DEG F) VS CL~ULATIVE TIME OF TRANSIENTC (SEC).C

CALL CURVE (TIME,TFIN,l~~V.~O)

cCALL MESSAG ('EXHAUST PRESSURE$' ,100,3.0,4.72)CALL MESSAG (' = $' ,100,3.0,4.51)CALL REALNO (PFIN,2,'ABL~','ABUT')

CALL MESSAG ('@ PSIA!$' ,100,'ABUT','ABUT')C

140 CONTINUECC DRAWING NUMBERS.C

DO 150 1150=1,4C

NUMBER(I150) = DWGNUM(I160,I150)C

150 CONTINUEC

CALL HEIGHT (0.1)CALL MESSAG (NUMBER, 100, 3.2, 5.1)

CCALL ENDPL(O)

C160 CONTINUE

CCALL DONEPL

CSTOP

CC***********************************************************************CC FORMAT STATEMENTSC =================C

3010 FORMAT (11)C

66

3020 FORMAT (F7.0,lX,2F8.1,8X,F8.1,2F8.3,25X,2F8.3,8X,3F8.3)C

3110 FORMAT (4A5)CC**********************************************~k***********************c

END

Appendix BLISTINGS OF SUBROUTINES

This appendix contains listings of all subroutines required by the main programs, FODRFT,INDRFT, BATCH, and CYLIND. These subroutines are arranged alphabetically by subroutinename. Several UF6 physical properties subroutines described in the text but not required by theaforementioned main programs are also included in this appendix. Table B.I is a summary ofSTOPs that may occur during execution of programs using these subroutines. Note that subroutinescalled by COMPLT and CYLPLT are DISSPLA version 9.0 subroutines.·

·For information on DISSPLA, contact Integrated Software Systems Corporation, 10505 Sorrento Valley Road, SanDiego, CA, 92121.

Table B.l. Causes for program termination

STOP Subroutine Cause

STOPOI COMPRT 100 iterations without temperature-enthalpyconvergence in compartment

STOP02 INTMEB New estimate of temperature inside cyclinderexceeds 250°F (upper limit based on DOEregulations, see Table 8) or is less thanthe triple point when UF6 condensate isknown to be liquid

STOP03 INTMEB 20 iterations without temperature-enthalpyconvergence; UF6 condensate is liquid

STOP04 INTMEB 20 iterations without temperature-enthalpyconvergence; UF6 condensate is solid

STOP05 INTMEB New estimate of temperature inside cyclinderis less than O°F (arbitrary lower limit)or is greater than the triple point whenUF6 condensate is known to be solid

STOP06 LEVEL 100 iterations without convergence on UF6

vapor-liquid interface level (not bounded)

STOP07 LEVEL 100 iterations without convergence on UF6

vapor-liquid interface level (bounded)

STOPII LEVEL UF6 solid-vapor interface level above hole

STOP12 LEVEL HF-H20 equilibrium partitioning did notconverge in 100 iterations

STOP13 PIPSYS Pressure drop-pipe length calculation did notconverge within 100 iterations

STOP14 PIPSYS Pressure drop calculation across a contractiondid not converge within 100 iterations

STOP15 STERM ITYPE (release type identifier) not recognized

67

68

B.1 BREACH

SUBROUTINE BREACH (G)

INPUT VARIABLES, VALUES PROVIDED BY CALLING PROGRAM.

INTERNAL VARIABLES, USED ONLY IN BREACH AND ITS SUBROUTINES.

EPSLN IS A CONVERGENCE CRITERION ALSO SET HERE AND PASSEDTHROUGH THE LABELED BLOCK COMMON /CNSTNT/.

ALPHA, BETA, DELTA, GAMMA ARE CONSTANTS USED IN DIFFERENTFORMS OF THE BASIC PRESSURE DROP EQUATION RELATING CHANGEIN PRESSURE TO MASS VELOCITY AND TO SPECIFICVOLUME. THEY ARE SET IN BREACH AND PASSED TO THE CALLINGPROGRAM FOR USE IN OTHER SUBROUTINES THROUGH THE LABELEDBLOCK COMMON /CNSTNT/.

INTERMEDIATE PRESSURE, PRESSURE-DROP-CONTROLLEDFLOW, PSIAINTERMEDIATE TEMPERATURE, PDC FLOW, DEGREES FVAPOR MASS FRACTI~~ AT INTERMEDIATE CONDITIONSIN PDC FLOWMASS FRACTION OF THE NON-VAPOR PHASE WHICH ISLIQUID AT INTERMEDIATE CONDITIONS IN PDC FLOW

INDEX FOR CONSTANT ENTROPY/CONSTANT ENTHALPYISEN=O, ASSUME CONSTANT ENTROPY FLASHISEN=l, ASSUME CONSTANT ENTHALPY FLASH

NUMBER OF ELEMENTS IN RELEASE PAT~Y:

IPIG=2, PATHWAY IS A BREACH OR HOLE.IPIG>2, PATHWAY IS A PIPE AND FIXTURE SYSTEM.

ARRAY OF VALUES DESCRIBING THE RELEASE PATHWAY.EACH PATHWAY ELEMENT CORRESPONDS TO ONE ROW OFTHE ARRAY. SPECIAL VALUES INCLUDEPIGRAY(IPIG,3), THE AMBIENT PRESSURE IN PSIA.PIGRAY IS MORE FULLY DESCRIBED IN THECALLING PROGRAM AND INPUT DATA FILES.PRESSURE OF MASS ENTERING RELEASE PATHWAY, PSIATEMPERATURE OF MASS ENTERING PATHWAY, DEGREES FPRESSURE IN PSIA AND TEMPERATURE IN DEGREES F,RESPECTIVELY, FOR THE TRIPLE POINT CONDITION,INPUT FROM THE CALLING PROGRAMVAPOR MASS FRACTION ENTERING PATHWAYMASS FRACTION OF THE NON-VAPOR MASSWHICH IS LIQUID ENTERING PATHWAYMOLECULAR WEIGHT OF UF6, LB MASS/LB-MOLE

XLI NT

IPIG

ISEN

PINT

PI GRAY

XVCYLXLCYL

TINTXVINT

PCYLTCYLPTRIPL,TTRIPL

CC THIS SUBROUTINE CALCULATES THE MASS VELOCITY, IN UNITS OF LBS/SEC/C FT**2, OF UF6 ESCAPING FROM A VESSEL THROUGH A BREACH OR HOLE IN THEC VESSEL WALL. THE INSIDE TEMPERATURE (DEG F) AND PRESSURE (PSIA), THEC OUTSIDE PRESSURE (PSIA), AND THE INITIAL MASS FRACTIONS OF VAPOR,C LIQUID, AND SOLID UF6 ARE KNOWN. THE MASS VELOCITY IS CALCULATED.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

69

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** NOTE! PRESSURE-DROP-CONTROLLED MASS VELOCITY (PDC G) ** IS A FUNCTION OF CONDITIONS IN THE CYLINDER, ** INTERMEDIATE CONDITIONS, AND AMBIENT CONDITIONS. ** CHOKED FLOW G IS DETERMINED BY MATCHING CRITERIA FOR ** PDC G FROM CYLINDER CONDITIONS TO THE CHOKED FLOW ** CONDITIONS WITH THE CHOKED FLOW EQUATION, WHICH ** RELATES MAXIMUM G TO THE DERIVATIVE OF PRESSURE WITH ** RESPECT TO SPECIFIC VOLUME AT CHOKED FLOW CONDITIONS. ** THE SMALLER VALUE, PDC G OR CHOKED FLOW G, IS THEN ** OUTPUT AS THE BREACH MASS VELOCITY. ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

MASS VELOCITY THROUGH THE HOLE, LB MASS/S/FT**2

TEMPERATURE IN DEGREES F CORRESPONDING TO THEINTERMEDIATE OR CHOKED FLOW CONDITIONSPRESSURE IN PSIA CORRESPONDING TO THEINTERMEDIATE OR CHOKED FLOW CONDITIONSVAPOR MASS FRACTION AT Ti, PiMASS FRACTION OF THE NON-vAPOR PHASE AT Ti, PiWHICH IS LIQUIDSPECIFIC VOLUME AT Ti, Pi

DENSITIES OF VAPOR, LIQUID, AND SOLID,RESPECTIVELY, AT INTERMEDIATE CONDITIONS,LB MASS/FT**3SPECIFIC VOLUME OF MASS IN RELEASE PATHWAY ATINTERMEDIATE CONDITIONS, FT**3/LB MASSINTEGER VARIABLE WHICH CONTROLS PROGRAM FLOWUPPER AND LOWER LIMITS ON PRESSURE IN PSIAFOR INTERVAL HALVING SEARCH TECHNIQUEPRESSURE IN PSIA ONLY SLIGHTLY LOWER THANTHE CHOKED FLOW PRESSURE. THE SMALL PRESSUREDIFFERENCE AND THE CORRESP~~DING SMALLDIFFERENCE IN SPECIFIC VOLUME ARE USED TOAPPROXIMATE THE DERIVATIVE OF PRESSURE WITHRESPECT TO SPECIFIC VOLUME AT CHOKED FLOWCONDITIONS.TEMPERATURE IN DEGREES F CORRESPONDING TO P2VAPOR MASS FRACTION CORRESPONDING TO P2MASS FRACTION OF THE NON-VAPOR PHASE WHICH ISLIQUID AT P2, T2SPECIFIC VOLUME IN FT**3/LB MASS CORRESPONDINGTO P2CHOKED FLOW MASS VELOCITY, LB MASS/S/FT**2,EVALUATED AT CURRENT GUESS FOR Pi, Ti CONDITIONSPRESSURE IN PSIA PREDICTED WHEN CHOKED FLOW MASSVELOCITY IS USED IN PDC FLOW EQUATION BETWEENCYLINDER CONDITIONS AND Pi, Ti CONDITIONS. WHENGMAX CORRESPONDS TO Pi, Ti CONDITIONS, PCHECKEQUALS Pi.

ViBAR

G

Pi

V2BAR

GMAX

PCHECK

XViXLi

RHOVI,RHOLI,RHOSI

VIBAR

Ti

ICHECKPUPPER,

PLOWERP2

T2XV2XL2

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC OUTPUT VARIABLES, VALUES SET BY BREACH FOR CALLING PROGRAM.CCCCCCCCCCCCCCCCCCCCCCCC

70

INDEX OUTPUT CHARACTERIZING BREACH MASS VELOCITY=1, CHOKED FLOW CONTROLS THE MASS VELOCITY=2, PDC FLOW CC~TROLS THE MASS VELOCITY

IBRCHCCCCC THIS SUBROUTINE IS WRITTEN IN DOUBLE PRECISION. ALL INTEGER VARIABLEC NAMES START WITH II'.C

IMPLICIT REAL*8 (A-H,J-Z)CC NAMED COMMON BLOCKS TRANSFER MOST INPUTS FROM THE CALLING PROGRAM ANDC MOST OUTPUTS CALCULATED BY THE BREACH SUBROUTINE.C

COMMON IICOMON/ ISEN, IPIG, IBRCH, IGEXITCOMMON IGMTRY I PIGRAYCOMMON ICONCYLI PCYL,TCYL,XVCYL,XLCYL,MWCOMMON ICONENTI Pl,Tl,XV1,XL1,V1BARCOMMON ICNSTNTI ALPHA, BETA, DELTA, GAMMA,EPSLNCOMMON ITRIPLEI TTRIPL,PTRIPL

CC AN ARRAY IS DIMENSIONED WHICH CONTAINS DESCRIPTIVE VALUES FOR THEC RELEASE PATHWAY, MODELED AS AN INFINITESIMAL LENGTH BETWEEN ENT~~CE

C AND EXIT PRESSURE LOSSES.C

DIMENSION PIGRAY(99,3)CC FOUR RELATED CONSTANTS ARE USED IN THE VARIOUS PRESSURE DROPC CORRELATIONS.C

ALPHABETADELTAGAt11A

=4633.100=ALPHA*4.DO/3.DO=ALPHA*2.DO=ALPHA*4.DO

CC DEFINE A SMALL NUMBER FOR CONVERGENCE TOLERANCE.C

EPSLN = 1.D-6(;

C AN INTERMEDIATE PRESSURE INSIDE THE BREACH IS CALCULATED.C

PINT = (PCYL*2.DO+PIGRAY(IPIG,3))/3.DOCC IN THE PRESENCE OF LIQUID, THIS INTERMEDIATE PRESSURE MUST BEC AT OR ABOVE THE TRIPLE POINT. ADJUST PINT UPWARD IF NECESSARY.C

IF (XVCYL.NE.l.DO.AND.* XLCYL.NE.O.DO.AND.* PINT.LT.PTRIPL) PINT = PTRIPL

CC AT THIS PRESSURE A FLASH CALCULATION IS MADE TO DETERMINE THEC INTERMEDIATE TEMPERATURE AND MASS FRACTIONS.r"

CALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,PINT,ISEN,* XVINT,XLINT,TINT)

C

71

C CALCULATE THE INTERMEDIATE SPECIFIC VOLUME.CC THE DENSITIES OF EACH PHASE ARE REQUIRED.C

CALL DENUF6 (TINT,PINT,MW,RHOSI,RHOLI,RHOVI)C

VIBAR =XVINT/RHOVI+(l.DO-XVINT)*XLINT/RHOLI* +(l.DO-XVINT)*(l.DO-XLINT)/RHOSI

CC CALCULATE THE MASS VELOCITY LIMITED BY PRESSURE DROP.C

G = SQRT(DELTA*(PCYL-PIGRAY(IPIG,3))/l.5DO/VIBAR)CC THE t1ASS VELOCITY MIGHT BE LIMITED BY CHOKED FLOW. EQUATION 119 MAYC BE USED TO EVALUATE THE CHOKED FLOW MASS VELOCITY. USE THEC INTERMEDIATE CONDITIONS AS FIRST GUESSES FOR THE CHOKED FLOWC CONDITIONS. ONCE THE CHOICE BETWEEN PDC FLOW AND CHOKED FLOW ISC MADE, THE STORAGE LOCATIONS FIRST DEFINED HERE WILL BE UPDATED WITHC THE CORRECT BREACH CONDITIONS FOR OUTPUT TO THE CALLING PROGRAM.C

T1PiXViXL1V1BAR

=TINT= PINT= XVINT= XLINT= \,,JI BAR

CC THE ITERATION BELOW CLOSES TO A VALUE OF P1 EQUAL TO PCHECK. THEC METHOD USED IS CHANGED AS REQUIRED FROM DIRECT SUBSTITUTION TOC INTERVAL HALVING TO REGULA FALSI. THE FOLLOWING PARAMETERS AREC INITIALIZED FOR BOOKKEEPING IN THE ITERATION.CC INDICES FOR PROGRAM LOGIC CONTROLC

ICHECK = 0IPLUS = 0

CC UPPER AND LOWER BOUNDS ON PRESSURE FOR INTERVAL HALVING.C

CCALL VPRUF6 (TCYL, PCYLEQ)

PUPPER = PCYLEQPLOWER = O.DO

CC UPPER AND LOWER BOUNDS ON PRESSURE FOR REGULA FALSI.C

PUCHK =O.DOPLCHK =O.DO

C10 CONTINUE

CC THE PROGRAM BEGINS THE DETERMINATION OF GMAX, THE CHOKED FLOW MASSC VELOCITY, BY SETTING A SMALL (APROXIMATELY INFINITESIMAL) PRESSUREC DIFFERENCE, STARTING FROM THE MOST RECENT GUESS FOR THE CHOKED FLOWC PRESSURE.

72

CP2 =Pl-l.D-3

CC AT THIS PRESSURE A FLASH CALCULATION IS MADE TO DETERMINE THEC DIFFERENTIAL TEMPERATURE AND MASS FRACTIONS.CC FLASH BASIS FOR CHOKE FLOW CONDITION IS ISENTROPIC.C

ISNGMX = 0C

CALL FLASH (Tl,Pl,MW,XV1,XL1,P2,ISNGMX,XV2,XL2,T2)CC CALCULATE THE DIFFERENTIAL SPECIFIC VOLUME. THE DENSITIES OF EACHC PHASE ARE REQUIRED.C

CALL DENUF6 (T2,P2,MW,RHOS2,RHOL2,RHOV2)C

V2BAR =XV2/RHOV2+(1.DO-XV2)*XL2/RHOL2* +(1.DO-XV2)*(1.DO-XL2)/RHOS2

CC THE CHOKED FLOW MASS VELOCITY CORRESPONDING TO THE LATEST GUESSES FORC CHOKED FLOW TEMPERATURE AND PRESSURE IS CALCULATED.C

GMAX = SQRT(ALPHA*(PI-P2)/(V2BAR-VIBAR»CC A CHECK IS REQUIRED TO SEE IF THE GUESSED PRESSURE FOR CHOKED FLOWC CORRESPONDS TO THE PDCPRESSURE CALCULATED USING GMAX, THE CYLINDERC PRESSURE, AND THE SPECIFIC VOLUME AT THE GUESSED PRESSURE. WHEN THEC GUESSED PRESSURE AND THE PDC PRESSURE DIFFER BY LESS THAN SOMEC TOLERANCE CRITERION, THE CLCULATION OF GMAX IS COMPLETE.C

PCHECK = PCYL-(GMAX**2.DO*V1BAR/GAMMA)C

IF (PCHECK.GT.PCYLEQ) PCHECK = PCYLEQC

IF (DABS(PCHECK-P1).LT.(100.DO*EPSLN)* .OR.DABS(PUPPER-P1).LT.(EPSLN» GO TO 40

CC IF THE MAXIMUM MASS VELOCITY FOR CHOKED FLOW IS NOT COMPATIBLE WITHC THE PREVIOUSLY CALCULATED CHOKED FLOW CONDITIONS, AN ITERATION ISC NECESSARY TO FIND THE ACTUAL CHOKED FLOW CONDITIm~S OF PRESSURE,C TEMPERATURE, AND MASS VELOCITY.C

IF (PCHECK.GT.Pl) GO TO 20C

ICHECK =1C

C

C

C

IF (PCHECK.GT.O.DO.AND.PLCHK.GT.O.DO) ICHECK = 3

20 CONTINUE

IF (ICHECK.GT.O) GO TO 60

PLOWER = P1

73

PLCHK = PCHECKPi = PCHECK

C30 CONTINUE

CCALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,Pl,ISEN,XV1,XL1,Tl)

CCALL DENUF6(Tl,Pl,MW,RHOS1,RHOLi,RHOV1)

CV1BAR =XV1/RHOV1+(1.DO-XV1)*XLl/RHOLl

* +(1.DO-XV1)*(1.DO-XL1)/RHOSlC

GO TO 10C

40 C~TINUE

CC NOW THAT THE CHOKED FLOW MASS VELOCITY HAS BEEN CALCULATED THE LOWERC OF THE TWO VALUES FOR MASS VELOCITY WILL BE RETURNED TO THE CALLINGC PROGRAM.C

IF (GMAX-G) 50,120,120C

50 CONTINUECC CHOKED FLOW CONTROLS THE MASS VELOCITY. THE CHOKED FLOW CONDITIONSC ARE THE INTERMEDIATE CONDITIONS, SO Pi, ETC., NEED NOT BE CHANGED.C

G = GMAXC

IBRCH =1C

GO TO 130C

60 CONTINUEC

IF (ICHECK.GT.l) GO TO 70C

PUPPER = PiPUCHK = PCHECK

CPi = (PUPPER+PLOWER)/2.DO

CICHECK =2

CGO TO 80

C70 CONTINUE

CIF (I CHECK. GT. 2) GO TO 90

CPLOWER =PiPLCHK =PCHECK

CPi = (PLOWER+PUPPER)/2.DO

74

C80 CONTINUE

CGO TO 30

C90 CONTINUE

CIF (P1.GT.PCHECK) GO TO 100

CPLOWER =PiPLCHK = PCHECK

CIF (ICHECK.EQ.4) IPLUS =1

CICHECK =4

CGO TO 110

C100 CONTINUE

CPUPPER =PiPUCHK = PCHECK

C110 CONTINUE

CPi = (PUPPER*PLCHK-PLOWER*PUCHK)

* /(PUPPER+PLCHK-PLOWER-PUCHK)c

P1PLUS = 2.DO*P1-PLOWERC

IF (IPLUS.EQ.1.AND.P1PLUS.LT.PUPPER) Pi = P1PLUSC

IPLUS = 0C

GO TO 30C

120 CONTINUECC PDC FLOW CONTROLS THE MASS VELOCITY. THE INTERMEDIATE CONDITIONS AREC THE BREACH CONDITIONS. Pi, ETC., ARE RESET FOR OUTPUT.C

T1 = TINTP1 = PINTXVi =XVINTXLi = XLINTV1BAR =VIBAR

CIBRCH = 2

C130 CONTINUE

RETURNEND

75

D.2 COMPRT

SUBROUTINE COMPRT (IC, INOUT, INODES)

COMMON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED.

ESTIMATED FINAL TEMPERATURE, DEG FDIFFERENCE BETWEEN ENTHALPY AT ESTIMATED FIt~L

TEMPERATURE AND THE ACTUAL FINAL ENTHALPY, BTUHEAT RELEASED BY REACTION, BTUFINAL ENTHALPY, BTUINDEX FOR ITERATION VARIABLES T AND HDIFCOUNTER TO LIMIT NUMBER OF ITERATIONSABSOLUTE TEMPERATURE, DEG R

COMPONENT MASS OR MASS RATE, LB OR LB/(DELT)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIAHEAT TRANSFER SURFACE TEMPERATURE, DEG FCOMPONENT MOLECULAR WEIGHT, LB/LB MOLENODE VOLUME, FT**3NODE ENTHALPY OR ENTHALPY RATE, BTU ORBTU/(DELT)HEAT TRANSFER RATE TO COMPARTMENT ATMOSPHEREFROM HEAT TRANSFER SURFACES, BTU/(DELT)COOLING RATE, BTU/SECHEAT TRANSFER COEFFICIENT, BTU/SEC-FT**2-DEG FSURFACE AREA FOR HEAT TRANSFER, FT**2INLET STREAM NODE N~1BERS

OUTLET STREAM NODE NUMBERSNATURAL LOG OF MINIMUM NUMBER ACCEPTABLE TO THECOMPUTERCUMULATIVE TIME OF TRANSIENT SIMULATION, SECTIME INTERVAL FOR TRANSIENT SIMULATION, SEC

NODE NUMBER OF COMPARTMENTMAXIMUM NUMBER OF THE NUMBER OF INLET STREAMSAND THE NUMBER OF OUTLET STREAMS (LESS THAN OREQUAL TO 4)MAXIMUM NUMBER OF NODES ALLOWED, CORRESPONDINGTO THE NULL VECTOR

( 3)( 3)

(30)(30 )(30)(30,4)(30,4)

(30)

(30,9)(30 )(30)(30)( 9)( 30)(30)

THDIF

QRATE

QCOOLHTCOEFHTAREAIINlOUTAMINLN

INODES

HRXNHAVAILITEMPI COUNTTR

ICINOUT

TIMEDELT

MASSTCPCTSURFWMOLVOLH

INTERNAL VARIABLES

INPUT VARIABLES

CC THIS SUBROUTINE PERFORMS A MASS AND ENERGY BALANCE FOR NODE IC. ITC DETERMINES THE TEMPERATURE, PRESSURE, AND PHASE COMPOSITION AT THEC END OF A TIME STEP. THE MASS AND ENERGY OF INLET AND OUTLET STREAMSC ARE ADDED OR SUBTRACTED TO THE MASS AND ENERGY OF THE COMPARTMENTC NODE, THEN COMPONENTS WITHIN THE NODE ARE ALLOWED TO REACT BEFORE THEC FINAL CONDITIONS ARE EVALUATED.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

76

THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED TO USE COMPRT.

VAPOR PRESSURE OF UF6, PSIAMAXIMUM AMOUNT OF UF6 THAT CAN BE CONTAINED ASVAPOR IN THE COMPARTMENT VOLUME AT THE ASSUMEDTEMPERATURE BASED ON THE VAPOR PRESSURE OF UF6MOLES OF AIRMOLES OF WATER VAPORMOLES OF HF VAPOR BASED ON THE EFFECTIVEMOLECULAR WEIGHT OF THE POLYMERIZED VAPORMOLES O~ UF6 VAPORTOTAL MOLES OF VAPOR IN THE COMPARTMENTTOTAL PRESSURE IN THE COMPARTMEtiT, PSIAENTHALPY AT THE ESTIMATED FINAL TEMPERATURE, BTUAPPROXIMATE SLOPE OF HDIF VS T, BTU/DEG F

DENTHLPHASEVPRUF6

DENUF6HFPOLYHHFH20HUF6PHFH20ZUF6

PUF6MAXVAP

NAIRNH20NHF

NUF6NTOTPTOTHTESTM

CCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE CALLED BY COMPRT.CCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

DIMENSION T(3), HDIF(3)C

COMMON ILBMASSI MASS(30,9), DUMlCOMMON ICOMPTPI TC(30), PC(30), TSURF(30)COMMON IMOLWTI WMOL(9)COMMON /vOLUMEI VOL(30), DUM2(61)COMMON IENTHALI H(30), QRATE(30), QCOOL(30), HTCOEF(30),

* HTAREA(30)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AMINLN, TIME, DELT, DUM3, IDUM1, DUM4

CC SUM INLET AND OUTLET STREAM MASSES AND ENTHALPIES FOR THE TIME STEP.C

DO 20 120 =1,INOUTC

IF «IIN(IC,I20)+IOUT(IC,I20».EQ.(2*INODES» GO TO 30c

DO 10 110 =1,9

10 CctITINUE

C

C *MASS(IC,Il0) =MASS(IC,Il0) + MASS(IIN(IC,I20),Il0)

- MASS(IOUT(IC,I20),Il0)

77

C

C

C

H(IC) = H(IC) + H(IIN(IC,I20» - H(IOUT(IC,I20»

20 CONTINUE

30 CONTINUE

C

CC PLACE ALL COMPONENTS IN THE VAPOR PHASE.C

MASS(IC,3) =MASS(IC,2) + MASS(IC,3)MASS(IC,5) =MASS(IC,4) + MASS(IC,5)MASS(IC,8) =MASS(IC,6) + t1ASS(IC,7) + MASS(IC,8)

MASS(IC,2) = 0.00MASS(IC,4) =0.00MASS(IC,6) = 0.00MASS(IC,7) = 0.00

CC REACT UF6 WITH H20 TO THE EXTENT POSSIBLE.CC UF6(V) + 2 H20(V) --> U02F2(S) + 4 HF(V)CC HRXN = 25,199 BTU/LB MOLE H20 AT 77 F AND 1 ATMC

HRXN = O.DOC

IF (MASS(IC,8).EQ.0.DO.OR.MASS(IC,3).EQ.0.DO) GO TO 50·C

IF «MASS(IC,8)/MASS(IC,3».LT.(WMOL(8)/(2.DO*WMOL(3»» GO TO 40CC THE FOLLOWING MASS AND ENERGY BALANCE IS BASED ON H20 CONTROLLING THEC EXTENT OF REACTION.C

C

C

C

C

MASS(IC,8) =MASS(IC,8) - MASS(IC,3)*HMOL(8)/(2.DO*WMOL(3»MASS(IC,9) =MASS(IC,9) + MASS(IC,3)*WMOL(9)/(2.DO*WMOL(3»MASS(IC,5) =MASS(IC,5) + t1ASS(IC,3)*2.DO*~~OL(4)/WMOL(3)

HRXN = 25.199D3*MASS(IC,3)/WMOL(3)

MASS(IC,3) =O.DO

GO TO 50

40 Crn~TINUE

CC THE FOLLOWING MASS AND ENERGY BALANCE IS BASED ON UF6 CONTROLLING THEC EXTENT OF REACTION.C

MASS(IC,3) = MASS(IC,3) - MASS(IC,8)*2.DO*WMOL(3)/WMOL(8)MASS(IC,9) =MASS(IC,9) + MASS(IC,8)*WMOL(9)/HMOL(8)MASS(IC,5) = MASS(IC,5) + MASS(IC,8)*4.DO*WMOL(4)/~~OL(8)

CHRXN = 50.398D3*MASS(IC,8)/WMOL(8)

C

CMASS(IC,8) = 0.00

50 CONTINUE

78

CC EVALUATE HEAT TRANSFER TO THE COMPARTMENT ATMOSPHERE FROM HOTC SURFACES.C

QRATE(IC) = HTCOEF(IC)*HTAREA(IC)*(TSURF(IC) - TC(IC»*OELTCC CALCULATE THE TOTAL ENTHALPY IN THE COMPARTMENT AT THE END OF THEC TIME STEP.C

HAVAIL = HRXN + H(IC) + QRATE(IC) - (QCOOL(IC)*OELT)CC BEGIN ITERATIVE PROCEDURE TO FIND FINAL TEMPERATURE, PRESSURE, ANDC PHASE COMPOSITIONS. TEMPERATURE IS VARIED UNTIL ENTHALPY AGREES WITHC HAVAIL.C

ITEMP =1C

C

C

C

C

T(ITEMP) =TC(IC)

HDIF(2) = 0.00

ICOUNT = 0

60 CONTINUE

ICOUNT = ICOLNT + 1

C

CC PLACE ALL COMPONENTS IN THE VAPOR PHASE.C

MASS(IC,3) =t1ASS(IC,2) + MASS(IC,3)MASS(IC,5) =MASS(IC,4) + MASS(IC,5)MASS(IC,8) =MASS(IC,6) + MASS(IC,7) + MASS(IC,B)

MASS(IC,2) = 0.00MASS(IC,4) = 0.00MASS(IC,6) = 0.00MASS(IC,7) = 0.00

CTR =T(ITEMP) + 459.6700

CC DETERMINE IF At{Y UF6 C~~OENSES.

C

C

C

C

C

IF (MASS(IC,8).LE.0.DO) GO TO 70

CALL VPRUF6 (T(ITEMP), PUF6)

MAXVAP =WMOL(B)*PUF6*VOL(IC)/l0.73DO/TR

IF (MASS(IC,8).LE.MAXVAP) GO TO 70

IF (T(ITEMP).GT.147.306561DO) MASS(IC,7) =MASS(IC,B) - MAXVAP

79

CIF (T(ITEMP).LE.147.306561DO) MASS(IC,6) =MASS(IC,8) - MAXVAP

CMASS(IC,8) =MAXVAP

C70 CONTINUE

CC DETERMINE IF HF AND/OR H20 CONDENSE.C

C

C

IF (MASS(IC,3).EQ.0.DO.AND.MASS(IC,5).EQ.0.DO) GO TO 80

CALL PHASE (T(ITEMP), IC)

80 CONTINUECC ESTIMATE FINAL COMPARTMENT PRESSURE.C

C

C

NAIR =MASS(IC,l)/WMOL(l)NH20 =MASS(IC,3)/WMOL(3)NHF =MASS(IC,5)IWMOL(5)NUF6 =MASS(IC,B)/WMOL(8)

NTOT =NAIR + NH20 + NHF + NUF6

PTOT = NTOT*10.73DO*TR/VOL(IC)CC EVALUATE ENTHALPY CORRESPONDING TO ESTIMATED TEMPERATURE AND COMPAREC TO HAVAIL.C

CALL DENTHL (T(ITEMP), PTOT, IC, HTEST)C

C

C

HDIF(ITEMP) = HTEST - HAVAIL

IF (DABS(HDIF(ITEMP».LT.DMAX1(1.D-3,DABS(HAVAIL*1.D-3»)* GO TO 140

IF (ICOUNT.EQ.I00) STOPOlCC ESTIMATE NEW TEMPERATURE TO COI'frINUE ITERAT ION.C

C

C

C

C

C

C

IF (ITEMP.EQ.3) GO TO 120IF (ITEMP.EQ.2) GO TO 100

IF (HDIF(1).LT.0.DO.AND.HDIF(2).GT.0.DO) GO TO 110

IF (HDIF(l).GT.O.DO) GO TO 90

ITEMP = 2

T(2) =T(l) + 5.DO

GO TO 60

90 COI'frINUE

80

CT(2) = T(l)HDIF(2) = HDIF(l)T(1) = T(2) - 5.DO

CGO TO 60

C100 CONTINUE

CIF (HDIF(2).GT.0.DO) GO TO 110

CHDI F(1) = HDIF(2)T( 1) = T(2)T(2) = T(1) + 5.DO

CGO TO 60

C110 CONTINUE

CITEMP = 3

CM = (HDIF(2) - HDIF(1»/(T(2) - T(l»)T(3) =T(2) - HDIF(2)/M

CGO TO 60

C120 CONTINUE

CIF «T(2) - T(1»).LT.l.D-3) GO TO 140

CIF (HDIF(3).GT.0.DO) GO TO 130

CHDIF(l) = HDIF(3)T(l) = T(3)

CGO TOllO

C130 CONTINUE

CHDIF(2) = HDIF(3)T(2) = T(3)

CGO TOllO

C140 CONTINUE

CC THE MATERIAL AND ENERGY BALANCE HAS BEEN CLOSED FOR COMPARTMENT IC.C

TC(IC) =T(ITEMP)PC(IC) = PTOTH(I C) = HAVAI L

CRETURN

CEND

81

B.3 CPUF6

SUBROUTINE CPUF6 (TF, PSIA, MW, CPSOL, CPLIQ, CPVAP, CVVAP,* C~OCV)

CC THIS SUBROUTINE CALCULATES THE CONSTANT PRESSURE HEAT CAPACITIES OFC UF6 SOLID, LIQUID, AND VAPOR, AS WELL AS THE CONSTANT VOLUME HEATC CAPACITY AND THE HEAT CAPACITY RATIO FOR THE VAPOR. THE FOLLOWINGC VARIABLES ARE USED.C

THE HEAT CAPACITY CORRELATIONS ARE BASED ON INFORMATION IN R. DEWITT,"URANIUM HEXAFLUORIDE: A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,"GAT-280, GOODYEAR ATOMIC CORP., PORTSMOUTH, OHIO, JAN. 29, 1960,PAGES 56 - 64. THE HEAT CAPACITY OF THE VAPOR GIVEN BY THE CORRELA­TION IN GAT-280 IS FOR A PRESSURE OF 1 ATM. THE VAPOR CORRELATIONGIVEN BELOW HAS BEEN MODIFIED USING THE MAGNUSON EQUATION OF STATE(SEE GAT-280, PAGES 97 - 101) AND THE DEPARTURE FUNCTION CORRELATIONSGIVEN IN R. C. REID, J. M. PRAUSNITZ, AND T. K. SHERWOOD, THEPROPERTIES OF GASES AND LIQUIDS, 3RD ED., MCGRAW-HILL BOOK COMPANY,1977, PAGE 93, SO THAT BOTH SATURATED AND UNSATURATED VAPOR HEATCAPACITIES CAN BE CALCULATED.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RTR**2PRESSURE, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLECONSTANT PRESSURE HEAT CAPACITY OF THE SOLID,BTU/LB MASS-DEG FCONSTANT PRESSURE HEAT CAPACITY OF THE LIQUID,BTU/LB MASS-DEG FCONSTANT PRESSURE HEAT CAPACITY OF THE VAPOR,BTU/LB MASS-DEG FCONSTANT VOLUME HEAT CAPACITY OF THE VAPOR,BTU/LB MASS-DEG FHEAT CAPACITY RATIOVAPOR COMPRESSIBILITY FACTOR AT TF AND PSIAVAPOR COMPRESSIBILITY FACTOR AT TF AND 14.696 PSIA

CVVAP

CPLIQ

CPVAP

ZUF6

TFTRTRSQPSIAMWCPSOL

CPTOCVZPSIAZlATMZTZP

CCCCCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINE IS CALLED.CCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

TR =TF + 459.67DOC

TRSQ =TR**2CC THE HEAT CAPACITY OF THE SOLID IS GIVEN BY THE FOLL~~ING CORRELATIONC WHICH IS ACCURATE WITHIN 1~ BETWEEN -10 DEG F AND THE TRIPLE POINTC (147.3 DEG F).

82

CCPSOL = ( -5.70531D-2 + 2.55019D-4*TR

* + ( 9.64563D3/TRSQ ) ) * ( 3.52D2/MWCC THE HEAT CAPACITY OF THE LIQUID IS GIVEN BY THE FOLLOWING CORRELATIONC WHICH IS REPORTED TO HAVE AN ACCURACY OF 0.6% BETWEEN 147.3 AND 206.3C DEG F.C

CPLIQ = ( 5.10057D-2 + 1.02633D-4*TR* + ( 6.13934D3/TRSQ ) ) * ( 3.52D2/MW

CC CALCULATE THE VAPOR COMPRESSIBILITY FACTOR AT 14.696 PSIA AND ATC "PSIA" AS I.JELL AS ZP AND ZT AT "PSIA."C

CALL ZUF6 (TF, 14.696DO, ZlATM, O.ODO, O.ODO)C

CALL ZUF6 (TF, PSIA, ZPSIA, ZP, ZT)CC THE CONSTANT PRESSURE HEAT CAPACITY OF THE VAPOR IS GIVEN BY THEC FOLLOWING CORRELATION.C

CPVAP

***

= (9.21307D-2 + 1.25253D-5*TR- ( 2.95171D3/TRSQ )+ 3.0939D-3 * ( (4.DO*ZPSIA-3.DO*ZPSIA**2)- (4.DO*ZlATM-3.DO*ZlATM**2) ) ) * ( 3.52D2/MW

CC THE CONSTANT VOLUME HEAT CAPACITY OF THE VAPOR IS GIVEN BY THEC FOLLOWING CORRELATION.C

ClJVAP = CPVAP - ( 1.9872DO * ZT**2 )/( MW * ZP )CC THE HEAT CAPACITY RATIO FOR THE VAPOR IS GIVEN BYC

CPTOCV = CPVAP / CVVAPC

RETURNC

END

B.4 DENTHL

SUBROUTINE DENTHL (T, P, I, H)

VAPORVAPORt1ONOMER IC VAPORlJAPORSOLID

AIRH20HFUF6U02F2

CC THIS SUBROUTINE DETERMINES THE ENTHALPY OF A MIXTURE AT A GIVENC TEMPERATURE WITH RESPECT TO A REFERENCE TEMPERATURE OF 77 F ANDC THE FOLL~~ING REFERENCE STATES:CCCCCCC

83

ENTHALPY OF A MULTI COMPONENT MIXTURE WITHRESPECT TO THE REFERENCE TEMPERATURE AND STATES,BTU OR BTU/(DELT)

MOLECULAR WEIGHT OF HF MONOMER, LB/LB MOLE

COMPONENT MASS OR MASS FLOW RATE WITHIN A NODE,LB (COMPARTMENT) OR LB/(DELT) (STREAM)COMPONENT MOLECULAR WEIGHT, LB/LB MOLEWEIGHT FRACTION OF HF MONOMER TO HF VAPORWEIGHT FRACTI~~ OF HF TRIMER TO HF VAPORWEIGHT FRACTION OF HF HEXAMER TO HF VAPOR

ENTHALPY OF AIR WITH RESPECT TO THE REFERENCETEMPERATURE AND STATE, BTU OR BTU/(DELT)ENTHALPY OF HF AND H20 WITH RESPECT TO THEREFERENCE TEMPERATURE AND STATES, BTU ORBTU/( DELT)COMBINED MASS OF LIQUID HF AND LIQUID H20, LBOR LB/(DELT)COMBINED MASS OF HF VAPOR AND H20 VAPOR, LBOR LBI(DELT)WEIGHT FRACTION OF HF LIQUID IN A LIQUID MIXTUREOF HF AND H20WEIGHT FRACTI~~ OF HF VAPOR IN A VAPOR MIXTUREOF HF AND H20ENTHALPY OF THE HF-H20 LIQUID PHASE, BTU ORBTU/(DELT)ENTHALPY OF THE HF-H20 VAPOR PHASE, BTU ORBTU/(DELT)COMBINED MASS OF HF AND H20, LB OR LB/(DELT)WEIGHT FRACTION OF HF LIQUID AND VAPOR IN A TWO

TEMPERATURE, DEG FTOTAL PRESSURE, PSIANODE NUMBER

( 9)

(30,9)

HA

HFH20V

HMX

HFH20L

H

HMXLT

TPI

MASS

WMBHF

I-t1XVT

WHFL

WHFV

WMOLClC3C6

HFH20TWHFTOT

******************************************************************* ** WARNING! THIS SUBROUTINE RESETS THE VALUES OF Cl, C3, AND ** C6. BE SURE THAT SUBSEQUENT CODING YIELDS APPROPRIATE VALUES ** OF Cl, C3, AND C6 FOR LATER USE. ** *******************************************************************

OUTPUT VARIABLE

INPUT VARIABLES

INTERNAL VARIABLES

COMMON BLOCK VARIABLES

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C THE FOLLOWING VARIABLES ARE USED:CCCCC

OTHER SUBROUTINES REQUIRED TO USE DENTHL ARE:

PHASE MIXTURE OF HF AND H20REFERENCE ENTHALPY FOR THE HF-H20 SYSTEM,BTUOR BTU/(DELT)COMBINED MASS OF UF6 SOLID, LIQUID, AND VAPOR,ILB OR LB/(DELT)ENTHALPY OF SOLID UF6, BTU OR BTU/(DELT)ENTHALPY OF LIQUID UF6, BTU OR BTU/(DELT)ENTHALPY OF VAPOR UF6, BTU OR BTU/(DELT)REFERENCE ENTHALPY FOR UF6, BTU OR BTU/(DELT)ENTHALPY OF UF6 WITH RESPECT TO THE REFERENCETEMPERATURE AND STATE, BTU OR BTU/(DELT)ENTHALPY OF U02F2 WITH RESPECT TO THE REFERENCETEMPERATURE AND STATE, BTU OR BTU/(DELT)

HHFH20HUF6

DENUF6VPRUF6ZUF6

~77

UF6TOT

HUF2

H6STH6LTH6VTH6V77HHUF6

CCCCCCCCCCCCCCC SUBROUTINES CALLED BY DENTHL ARE:CCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

COMMON I LBMASS I MASS(30,9)COMMON I MOLWT I WMOL(9)COMMON I POLYMR I Cl, C3, C6, WMBHF

CC CALCULATE THE ENTHALPY OF AIR WITH RESPECT TO THE REFERENCEC TEMPERATURE AND STATE.C

HA =MASS(I,1)*0.24073DO*(T-77.DO)CC CALCULATE THE ENTHALPY OF THE HF-H20 SYSTEM WITH RESPECT TO THEC REFERENCE TEMPERATURE AND STATES.C

HMX = 0.00C

C

C

C

C

c

C

HFH20L =MASS(I,2) + MASS(I,4)HFH20V =MASS(I,3) + MASS(I,5)

IF «HFH20L+HFH2OV) .LE. 0.00) GO TO 30

IF (HFH20L.LE.0.DO) GO TO 10

WHFL =MASS(I,4)/HFH20L

10 CONTINUE

IF (HFH2OV.LE.0.DO) GO TO 20

85

WHFV =MASS(I,5)/HFH2OVC

20 CONTINUEC

CALL HHFH20 (T,WHFL,WHFV,HMXLT,HMXVT)C

HFH20T = HFH20L + HFH20VC

C

C

C

C

WHFTOT = (MASS(I,4) + MASS(I,5»/HFH20T

C1 = 1.00C3 = 0.00C6 = 0.00

CALL HHFH20 (77.DO,0.DO,WHFTOT,O.DO,HMXV77)

HMX = (HFH20L*HMXLT + HFH20V*HMXVT) - HFH20T*HMXV77

30 CONTINUECC CALCULATE THE ENTHALPY OF UF6 WITH RESPECT TO THE REFERENCEC TEMPERATURE AND STATE.C

UF6TOT =MASS(I,6) + MASS(I,7) + MASS(I,8)C

CALL HUF6 (T,P,WMOL(8),H6ST,H6LT,H6VT)C

CALL HUF6 (77.DO,14.696DO,WMOL(8),O.DO,O.DO,H6V77)C

HHUF6 = (MASS(I,6)*H6ST* + MASS(I,7)*H6LT + MASS(I,8)*H6VT)* -UF6TOT*H6V77

CC CALCULATE THE ENTHALPY OF U02F2 WITH RESPECT TO THE REFERENCEC TEMPERATURE AND STATE.C

HUF2 =MASS(I,9)*0.0821DO*(T-77.DO)CC CALCULATE THE ENTHALPY FOR NODE I WITH RESPECT TO THE REFERENCEC TEMPERATURE AND STATES.C

H = HA + HMX + HHUF6 + HUF2C

RETURNC

END

D.5 DENUF6

SUBROUTINE DENUF6 (TF, PSIA, MW, DENSOL, DENLIQ, DENVAP)CC THIS SUBROUTINE CALCULATES THE DENSITIES OF UF6 SOLID, LIQUID, ANDC VAPOR. THE FOLLOWING VARIABLES ARE USED.

86

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RPRESSURE, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLECOMPRESSIBILITY FACTOR FOR THE VAPORDENSITY OF SOLID, LB MASS/FT**3DENSITY OF LIQUID, LB MASS/FT**3DENSITY OF VAPOR, LB MASS/FT**3

TFTRPSIAMWZDENSOLDENLIQDENVAP

CCCCCCCCCCC THE DENSITY CORRELATIONS USED ARE BASED ON R. DEWITT, ·URANIUMC HEXAFLUORIDE: A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,· GAT-280,C GOODYEAR ATOMIC CORP., PORTSMOUTH, OHIO, JAN. 29, 1960, PAGES 17 ­C 24. A CORRELATION FOR SOLID DENSITY, BASED ON TABLE 7 OF GAT-280C (EXCLUDING PRELIMINARY VALUES), WAS DERIVED BY W. R. WILLIAMS.C

CIMPLICIT REAL*8 (A-H,J-Z)

TR =TF + 459.6700CC THE DENSITY OF THE SOLID IS GIVEN BY THE FOLLOWING CORRELATION WHICHC IS BASED ON DATA REPORTED OVER THE TEMPERATURE RANGE OF 69 TO 145C DEG F.C

DENSOL = ( 3.300D2 - 1.800D-1*TF ) * ( MW / 3.5202 )CC THE DENSITY OF THE LIQUID IS GIVEN BYC

DENLIQ = ( 2.506D2 - ( 1.241D-1 + 2.620D-4 * TF ) * TF )* * ( MW / 3.52D2 )

CC EVALUATE THE COMPRESSIBILITY FACTOR FOR UF6 VAPOR.C

CALL ZUF6 (TF, PSIA, Z, ZP, ZT)CC THE DENSITY OF THE VAPOR IS GIVEN BYC

DENVAP = ( MW * PSIA * Z ) / ( 10.7300 * TRC

RETURNC

END

B.6 DPFLOW

SUBROUTINE DPFLOW (IC)CC THIS SUBROUTINE EVALUATES THE MASS FLOW THROUGH A PRESSURE-DROP-C C~~TROLLED PATHWAY ~)ER A TIME STEP DELT. THE ENTHALPY CHANGE ASSOCI­C ATED WITH THIS MASS FLOW IS ALSO DETERMINED. IF REVERSE FLOW OCCURSC (WITH RESPECT TO THE NORMAL DIRECTION OF FLlli~), THEN THE MASS ISC TAKEN FROM THE PROPER NODE AND THE INDIVIDUAL COMPONENTS ARE ASSIGNEDC NEGATIVE VALUES.

87

COMMON BLOCK VARIABLES

THIS SUBROUTINE USES THE FOLLOWING VARIABLES:

NOTE THAT THIS SUBROUTINE IDENTIFIES THE TIME WHEN REVERSE FLOWBEGINS AND WHEN IT ENDS. PREVIOUS FLOW REVERSAL START AND STOP TIMESFOR A NODE ARE OVERWRITTEN AS SUBSEQUENT REVERSALS OCCUR.

NODE NUMBER FOR STREAM BEING EVALUATED

LOGICAL VARIABLE USED IN DETERMINING TSTART ANDTSTOPPRESSURE DIFFERENCE BETWEEN NORMAL INLET ANDOUTLET NODES, PSIACTUAL INLET NODE TO STREAMTOTAL MASS CONTAINED IN ACTUAL INLET NODE, LBDENSITY OF ACTUAL INLET STREAM, LB/FT**3TOTAL MASS FLOW RATE THROUGH STREAM, LB/(DELT)RATIO OF MASS FLOW THROUGH STREAM NODE TO TOTALMASS IN ACTUAL INLET NODE -- A POSITIVE VALUECORRESPONDS TO NORMAL FLOW AND A NEGATIVE VALUETO REVERSE FLOW

COMPONENT NODE MASS OR MASS FLOW RATE, LB(COMPARTMENT) OR LB/(DELT) (STREAM)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPARTMENT NODE VOLUME, FT**3RESISTANCE TERM, PSI-SEC**2/LB-FT**3NODE ENTHALPY OR ENTHALPY RATE, BTU ORBTU/(DELT)NODE INPUT STREAM NUMBERNODE OUTPUT STREAM NUMBERMINIMUM NATURAL LOG ACCEPTED BY THE COMPUTERTIME AT WHICH MASS AND ENTHALPY RATES ARE BEINGDETERMINED, SECTIME INTERVAL USED IN TRANSIENT SIMULATION, SECTIME AT WHICH FLOW REVERSAL BEGINS, SECTIME AT WHICH FLOW REVERSAL ENDS, SEC

IC

MASS (30,9)

TC (30)PC (30)VOL (30)KRCOEF (30)H (30)

lIN (30,4)lOUT (30,4)AMINLNTIME

DELTTSTART (30)TSTOP (30 )

INTERNAL VARIABLES

CHECK (30)

DELP

INLETMASSlDENSMASS2FRAC

INPUT VARIABLE

CC THE TOTAL MASS FLOW RATE IS ESTABLISHED USING A RESISTANCE TERMC EVALUATED IN THE SUBROUTINE RESIST.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

LOGICAL CHECK(30)C

COMMON ILBMASSI MASS(30 ,9), DUMlCOMMON ICOMPTPI TC(30), PC(30), DUM2(30)

C

88

COMMON /vOLUMEI VOL(30), KRCOEF(30), DUM3(31)Cot1'1ON IENTHAU H( 30), DUM4(120)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AM INLN, TIME, DELT, DUM5 , IDUM1, Dl.tI6COMMON IRVFLOWI TSTART(30), TSTOP(30)

IF (TIME.EQ.O.DO) CHECK(IC) = .TRUE.CC DETERMINE PRESSURE DIFFERENCE ACROSS STREAM NODE, ACTUAL INLET NODE,C AND THE TOTAL MASS CONTAINED IN THE ACTUAL INLET NODE.C

DELP = PC(IIN(IC,l» - PC(IOUT(IC,l»C

INLET = IIN(IC,l)C

C

C

C

C

IF (DELP.LT.O.DO) INLET = 10UT(IC,1)

MASSi = O.DO

DO 10 110=1,9

MASSi = MASSi + MASS(INLET,li0)

10 CONTINUECC DETERMINE INLET DENSITY AND TOTAL MASS FLOW RATE THROUGH THE STREAMC NODE.C

CDENS = MASSi/vOL(INLET)

MASS2 = DSQRT(DABS(DELP)*DENS/KRCOEF(IC»*DELTCC DETERMINE COMPONENT MASS FLOW RATES, STREAM ENTHALPY RATE, AND STREAMC TEMPERATURE AND PRESSURE.C

IF (DELP.LT.O.DO) MASS2 = - MASS2C

FRAC = MASS2/MASS1C

DO 20 I20 =1 ,9C

MASS(IC,120) = MASS(INLET,120)*FRACC

20 CONTINUEC

H(IC) = H(INLET)*FRACTC(IC) = TC(INLET)PC(IC) = PC(INLET)

CC CHECK FOR REVERSE FLOW.C

IF (DELP.GE.O.DO) GO TO 30C

IF (DELP.LT.O.DO.AND.CHECK(IC» WRITE (5,100) IC, TIME

89

CIF (DELP.LT.O.DO.AND.CHECK(IC» TSTART(IC) =TIME - DELT

CHECK(IC) = .FALSE.C

RETURNC

30 CONTINUEC

C

IF (.NOT.CHECK(IC» WRITE (5,110) IC, TIMEIF (.NOT.CHECK(IC» TSTOP(IC) = TIME - DELT

CHECK(IC) = .TRUE.C

RETURNC

100 FORMAT ( ,C

110 FORMAT ( ,C

END

REVERSE FLOW OCCURING IN NODE',13,' AT' ,F10.5,' SEC.')

NORMAL FLOW RESUMES IN NODE' ,13,' AT' ,Fl0.5,' SEC.')

B.7 EQTUF6

SUBROUTINE EQTUF6 (PSIA, TF)

PRESSURE, PSIAESTIMATED PRESSURE, PSIAESTIMATED PRESSURE, PSIAESTIMATED PRESSURE, PSIATEMPERATURE, DEG FESTIMATED TEMPERATURE, DEG FESTIMATED TEMPERATURE, DEG FESTIMATED TEMPERATURE, DEG FACCURACY REQUIRED OF P3 RELATIVE TO PSIADIFFERENCE BETWEEN Pl AND PSIADIFFERENCE BETWEEN P2 AND PSIADIFFERENCE BETWEEN P3 AND PSIASLOPE OF F =M*T + B

F2F3M

PSIAPiP2P3TFT1T2T3LIMITF1

CC THIS SUBROUTINE CALCULATES THE EQUILIBRIUM TEMPERATURE, TF,C CORRESPONTING TO A GIVEN PRESSURE, PSIA. THE FOLLOWING VARIABLES AREC USED.CCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)CC THE ACCURACY REQUIRED OF P3 RELATIVE TO PSIA IS GIVEN BY LIMIT.C

LIMIT = PSIA/l.D8CC THE INITIAL GUESS OF TF, WHICH IS Tl, IS BASED ON THE CORRELATIONC FOR VAPOR PRESSURE USED BETWEEN 147.3 AND 240 DEG F (22.04 ANDC 87.91 PSIA).C

C

90

T1 =( -4.6680703 / (OLOG(PSIA) - 12.160000) ) - 367.533DO

IF (PSIA.GE.22.04226474DO) GO TO 40CC THE FOLLOWING SEQUENCE OF EQUATIONS, THROUGH STATEMENT 40, GIVES THEC EQUILBRIUM TEMPERATURE FOR A PRESSURE LESS THAN 22.04 PSIA.CC A SECOND ESTIMATED TEMPERATURE IS ALSO REQUIRED.C

T2 =T1 + 1.0DOC

IF (T2.GT.147.306561DO) T2 =147.306561C

10 CONTINUECC CALCULATE VAPOR PRESSURES CORRESPONDING TO T1 AND T2.C

CALL VPRUF6 (T1, P1)CALL VPRUF6 (T2, P2)

C20 CONTINUE

CC EVALL~TE T3, AN IMPROVEO ESTIMATE OF TF.C

Fl =P1 - PSIAF2 = P2 - PSIAM = ( F2 - Fl ) / ( T2 - T1 )T3 =T2 - F2/M

CC CHECK ACCURACY OF T3 BY CHECKING ACCURACY OF P3.C

C

C

C

C

C

C

C

C

C

C

CALL VPRUF6 (T3, P3)

F3 = P3 - PSIA

IF (DABS(F3).LT.LIMIT) GO TO 30

T1 = T2T2 = T3P1 = P2P2 = P3

GO TO 20

30 CONTINUE

TF = T3

RETURN

40 CONTINUE

IF (PSIA.GT.87.9133385200) GO TO 50

91

C THE ESTIMATED TEMPERATURE, Tl, CORRESPONDS TO TF BETWEEN 147.3 ANDC 240 DEG F (22.04 AND 87.91 PSIA).C

TF = T1C

RETURNC

50 CONTINUEC

IF (PSIA.GT.135.4039894DO) GO TO 60CC THE FOLLOWING SEQUENCE OF EQUATIONS, THROUGH STATEMENT 60, GIVES THEC EQUILBRIUM TEMPERATURE FOR PRESSURES BETWEEN 87.91 AND 135.4 PSIA.CC CHECK Tl TO ENSURE THAT IT DOES NOT EXCEED 275.8 DEG F. A SECONDC ESTIMATED TEMPERATURE IS ALSO REQUIRED.C

IF (T1.GT.275.8DO) Tl = 275.8C

T2 =Tl + 0.200CC RETURN TO 10 TO EVALUATE TF CORRESPONTING TO PSIA.C

GO TO 10C

60 CONTINUECC THE FOLLOWING EQUATION GIVES TF FOR PRESSURES EXCEEDING 135.4039894C PSIA (276 DEG F).C

TF = ( -6.9761103 / (DLOG(PSIA) - 13.7627DO) ) - 511.866DOC

RETURNC

END

D.8 FLASH

INPUT VARIABLES:

INITIAL TEMPERATURE, DEG FINITIAL PRESSURE, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLEINITIAL VAPOR MASS FRACTION

TINITPINITMWXVINIT

SUBROL~INE FLASH (TINIT, PINIT, MW, XVINIT, XLINIT, PFIN, ISEN,* XVFIN, XLFIN, TFIN)

CC THIS SUBROUTINE DETERMINES THE VAPOR MASS FRACTION FOR A GIVEN FINALC PRESSURE BASED ON THE INITIAL TEMPERATURE, PRESSURE, VAPOR MASSC FRACT ION, AND LI QU10 MASS FRACTI ON OF THE NON-VAPOR FRACT ION AS WELLC AS WHETHER THE FLASH IS ISENTROPIC OR ISENTHALPI C. THE FOLLOWINGC VARIABLES ARE USED.CCCCCCC

92

************************************************************ ** WARNING! PINIT MUST BE GREATER THAN OR EQUAL TO PFIN. ** ************************************************************

INTERNAL VARIABLES:

OUTPUT VARIABLES:

BTU/LB MASS

VALUES OF THE FUNCTION F =M*T + B CORRESPONDINGTO Tl, T2, AND T3

THE FUNCTION F CORRESPONDS TO THE TEST VALUEMINUS THE AVERAGE VALUE OF THE PROPERTY.

TEST ENTROPIES CORRESPONDING TO Tl, T2, AND T3

TEST ENTHALPIES CORRESPONDING TO Tl, T2, AND T3

TEST TEMPERATURES

CALCULATES UF6 ENTROPIESCALCULATES TEMPERATURE CORRESPONDING TO A GIVENVAPOR PRESSURE

ENTHALPY OF THE SOLID, BTU/LB MASSENTHALPY OF THE LIQUID, BTU/LB MASSENTHALPY OF THE VAPOR, BTU/LB MASSAVERAGE ENTHALPY OF THE INITIAL MIXTURE,

ENTROPY OF THE SOLID, BTU/LB MASS-DEG FENTROPY OF THE LIQUID, BTU/LB MASS-DEG FENTROPY OF THE VAPOR, BTU/LB MASS-DEG FAVERAGE ENTROPY OF THE INITIAL MIXTURE,BTU/LB MASS-DEG F

FINAL VAPOR MASS FRACTIONFINAL LI QU ID MASS FRACT ION OF THE NON-VAPOR FRACT IONFINAL TEMPERATURE, DEG F

SLOPE OF THE FUNCTION FACCURACY REQUIRED IN ESTIMATING THE AVERAGE PROPERTYIN SELECTING THE FINAL TEMPERATUREMAXIMUM TEMPERATURE A SUBCOOLED LIQUID CAN ATTAIN ATTHE FINAL PRESSURE, DEG F

INITIAL LIQUID MASS FRACTION OF THE NON-VAPOR FRACTIONFINAL PRESSURE, PSIAVARIABLE SPECIFYING BASIS FOR FLASH CALCULATION

ISEN =0, ISENTROPIC FLASHISEN = 1, ISENTHALPIC FLASH

Hi, H2, H3

HSOLHLIQHVAPHAVG

SUF6EQTUF6

Sl, S2, S3

F1, F2, F3

SSOLSLIQSVAPSAVG

MLIMIT

XVFINXLFINTFIN

TMAX

T1, T2, T3

XLI NITPFINISEN

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE USED.CCCC

93

CALCULATES UF6 ENTHALPIES

DENUF6VPRUF6ZUF6

HUF6CCC THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.CCCCC

IMPLICIT REAL*8 (A-H,J-Z)CC A THREE PHASE INITIAL RELEASE CAN ONLY EXIST AT THE TRIPLE POINT;C THEREFORE, XLINIT EQUALS 1 OR 0 EXCEPT AT THE TRIPLE POINT.C

IF (TINIT.GT.147.306561DO) XLINIT = 1.0DOIF (TINIT.LT.147.306561DO) XLINIT = O.ODO

CC SELECT BASIS FOR FLASH CALCULATION.C

IF (ISEN.EQ.l) GO TO 40CC CALCULATE THE AVERAGE ENTROPY OF THE INITIAL MIXTURE.C

CALL SUF6 (TINIT, PINIT, MW, SSOL, SLIQ, SVAP)C

SAVG =XVINIT*SVAP + (l.DO-XVINIT)*XLINIT*SLIQ* + (l.DO-XVINIT)*(l.DO-XLINIT)*SSOL

CC CALCULATE THE FINAL VAPOR MASS FRACTION ASSUMING AN EQUILIBRIUMC FLASH.C

CALL EQTUF6 (PFIN, TFIN)c

CALL SUF6 (TFIN, PFIN, MW, SSOL, SLIQ, SVAP)C

IF (TFIN.GE.147.306561DO) XVFIN = (SAVG-SLIQ)/(SVAP-SLIQ)IF (TFIN.LT.147.306561DO) XVFIN = (SAVG-SSOL)/(SVAP-SSOL)

CIF (XVFIN.GE.O.ODO) GO TO 10

CC A VALUE OF ~)FIN LESS THAN ZERO IMPLIES A SUBCOOLED CONDENSED PHASEC IS RELEASED. SINCE THERE IS CURRENTLY NO PRESSURE DEPENDENCE FORC LIQUID ENTROPY, TFIN =TINIT.C

XLFIN =XLINITXVFIN = O.ODOTFIN =TINIT

CRETURN

C10 CONTINUE

cC THE COND~~SED PHASE RELEASED WITH THE VAPOR IS LIQUID IF THE FINALC TEMPERATURE IS GREATER THAN OR EQUAL TO THE TRIPLE POINT TEMPERATURE.C

94

IF (TFIN.GE.147.30656100) XLFIN = 1.000IF (TFIN.LT.147.306561DO) XLFIN = 0.000

CIF (XVFIN.LE.l.DO) RETURN

CC A VALUE OF XVFIN GREATER THAN 1 IMPLIES THAT THE FINAL FORM OF THEC RELEASE IS A SUPERHEATED VAPOR. THE FOLLOWING SEQUENCE OF EQUATIONSC THROUGH 40 EVALUATES THE FINAL TEMPERATURE OF A SUPERHEATED VAPORC HAVING PFIN AS THE FINAL PRESSURE.C

LIMITSlT1T2

= SAVG / 1.0B= SVAP=TFIN=Tl + 1.00

C

C

C

C

C

C

C

C

C

C

C

C

CALL SUF6 (T2, PFIN, MW, 0.000, 0.000, S2)

20 CONTINUE

Fl = Sl - SAVGF2 = S2 - SAVGM = ( F2 - Fl ) / ( T2 - Tl )T3 = T2 - F2IM

CALL SUF6 (T3, PFIN, MW, 0.000, 0.000, S3)

F3 = S3 - SAVG

IF (DABS(F3).LT.LIMIT) GO TO 30

T1 = T2T2 = T3Sl = S2S2 = S3

GO TO 20

30 CONTINUE

XVFIN = 1.00TFIN = T3

RETURN

40 CONTINUECC CALCULATE THE AVERAGE ENTHALPY OF THE INITIAL MIXTURE.C

CALL HUF6 (TINIT, PINIT, t~l, HSOL, HLIQ, HVAP)C

HAVG = ~JINIT*HVAP + (1.00-XVINIT)*XLINIT*HLIQ* + (1.DO-XVINIT)*(1.00-XLINIT)*HSOL

CC CALCULATE THE FINAL VAPOR MASS FRACTION ASSL~ING AN EQUILIBRIUM

95

C FLASH.C

CALL EQTUF6 (PFIN, TFIN)C

TM.4X =TFINC

CALL HUF6 (TFIN, PFIN, MW, HSOL, HLIQ, HVAP)C

IF (TFIN.GE.147.306561DO) XVFIN = (HAVG-HLIQ)/(HVAP-HLIQ)IF (TFIN.LT.147.306561DO) XVFIN = (HAVG-HSOL)/(HVAP-HSOL)

CIF (XVFIN.GE.O.ODO) GO TO 70

CC A VALUE OF XVFIN LESS THAN ZERO IMPLIES A SUBCOOLED PHASE ISC RELEASED.C

XLFIN = XLINITXVFIN = O.ODO

CC IF XLINIT EQUALS ZERO, THAN THE SUBCOOLED PHASE IS SOLID.C

TFIN =TINITC

IF (XLINIT.EQ.O.DO) RETURNCC IF XLINIT IS NOT EQUAL TO ZERO, THEN A SUBCOOLED LIQUID IS RELEASED.C THE FOLLOWING SEQUENCE OF EQUATIONS THROUGH 60 DETERMINES THE FINALC TEMPERATURE OF A SUBCOOLED LIQUID HAVING PFIN AS THE FINAL PRESSURE.C

XLFIN = 1. 000LIMIT = HAVG I 1.08T1 = TMAXHi = HLIQT2 = TINIT

CCALL HUF6 (T2, PFIN, MW, 0.000, H2, 0.000)

C50 CONTINUE

CFl = Hi - HAVGF2 = H2 - HAVGM = ( F2 - Fi ) I ( T2 - Tl )T3 =T2 - F2/M

CIF (T3.GT.TMAX) T3 = (TMAX + DMAXl(Ti,T2»/2.DOIF (T3.LT.TINIT) T3 = (TINIT + DMINi(Ti,T2»/2.DO

CCALL HUF6 (T3, PFIN, MW, 0.000, H3, 0.000)

CF3 = H3 - HAVG

CIF (DABS(F3).LT.LIMIT) GO TO 60

CIF «DMAXi(Tl,T2,T3) - DMINi(Tl,T2,T3».LT.i.D-3) GO TO 60

96

CT1 =T2T2 = T3Hl = H2H2 = H3

CGO TO 50

C60 CCNfINUE

CTFIN = T3

CRETURN

C70 CONTINUE

CC THE CONDENSED PHASE RELEASED WITH THE VAPOR IS LIQUID IF THE FINALC TEMPERATURE IS GREATER THAN OR EQUAL TO THE TRIPLE POINT TEMPERATURE.C

C

IF (TFIN.GE.147.306561DO) XLFIN =1.000IF (TFIN.LT.147.306561DO) XLFIN = 0.000

IF (XVFIN.LE.l.DO) RETURNCC A VALUE OF XVFIN GREATER THAN 1 IMPLIES THAT THE FINAL FORM OF THEC RELEASE IS A SUPERHEATED VAPOR. THE FOLLOWING SEQUENCE OF EQUATIONSC THROUGH THE. END OF THE SUBROUTINE EVALUATES THE FINAL TEMPERATUREC OF A SUPERHEATED VAPOR HAVING PFIN AS THE FINAL PRESSURE.C

LIMIT = HAVG / 1.08Hl = HVAPT1 = TFINT2 =Tl + 1.00

CCALL HUF6 (T2, PFIN, MW, 0.000, 0.000, H2)

C80 CONTINUE

CFl = Hl - HAVGF2 = H2 - HAVGM = ( F2 - Fl ) / ( T2 - Tl )T3 = T2 - F2/M

CCALL HUF6 (T3, PFIN, MW, 0.000, 0.000, H3)

CF3 = H3 - HAVG

CIF (DABS(F3).LT.LIMIT) GO TO 90

CT1 =T2T2 =T3Hl = H2H2 = H3

C

97

GO TO 80C

90 CONTINUEC

XVFIN =1.DOTFIN =T3

CRETURN

CEND

B.9 HCOEFF

SUBROUTINE HCOEFF (I C)

C~1ON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED.

NODE NUMBER OF THE COMPARTMENT FOR WHICH THEHEAT TRANSFER COEFFICIENT IS BEING CALCULATED

COMPONENT MASS IN A NODE, LB (FOR COMPARTMENTNODES), OR LB/(DELT) (FOR STREAM NODES)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIAHEAT TRANSFER SURFACE TEMPERATURE, DEG FTOTAL ENTHALPY OR ENTHALPY RATE, BTU ORBTU/( DELT)AMOUNT OF HEAT ADDED TO A NODE TO MAINTAIN AC~~STANT TEMPERATURE UNDER NORMAL STEADY STATECONDITI~~S, BTU/SECCOOLING RATE, BTU/SECHEAT TRANSFER COEFFICIENT, BTU/SEC-FT**2-DEG FSURFACE AREA FOR HEAT TRANSFER, FT**2t~TURAL LOG OF THE MINIMUM NUMBER ACCEPTED BYTHE COMPUTERTIME INTERVAL USED FOR THE TRANSIENT SIMULATION,SECINLET STREAM NODE NUMBER

IC

MASS (30,9)

TC (30)PC (30)TSURF (30)H (30)

QRATE (30)

QCOOL (30)HTCOEF (30)HTAREA (30)AMINLN

DELT (30)

lIN (30,4)

INPUT VARIABLES

CC THIS SUBROUTINE DETERMINES THE HEAT TRANSFER COEFFICIENT GIVEN THEC ENTHALPIES OF THE INLET STREAMS AND THE COMPARTMENT, THE MASSES INC THE INLET STREAMS AND THE COMPARTMENT, THE COOLING RATE AND THE TIMEC STEP, AND THE AREA AND TEMPERATURE OF HEAT TRANSFER SURFACES. THEC HEAT TRANSFER COEFFICIENT IS BASED ON HEATING UP THE MASS BROUGHT INC BY THE INLET STREAMS TO THE TEMPERATURE OF THE COMPARTMENT ATMOSPHEREC UNDER NORMAL STEADY STATE CONDITIONS. THE TEMPERATURES USED INC EVALUATING THE HEAT TRANSFER COEFFICIENT ARE THE ROOM TEMPERATUREC (NOT THE INLET STREAM TEMPERATURES) AND THE HEAT TRANSFER SURFACEC TEMPERATURES.CCCCCCCCCCCCCCCCCCCCCCCCCCCC

98

CC

ECCCCC

INTERNAL VARIABLES

MASSICMASS1MASS2MASS3MASS4

TOTAL MASS IN COMPARTMENT NODE IC,TOTAL MASS RATE IN INLET STREAM 1,TOTAL MASS RATE IN INLET STREAM 2,TOTAL MASS RATE IN INLET STREAM 3,TOTAL MASS RATE IN INLET STREAM 4,

LBLB/(DELT)LB/(DELT)LB/(DELT)LB/(DELT)

C

C

C

C

C

IMPLICIT REAL*8 (A-H,J-Z)

COMMON ILBMASSI MASS( 30,9), DUM1COMMON ICOMPTPI TC(30), PC(30), TSURF(30)COMMON IENTHALI H(30), QRATE(30), QCOOL(30), HTCOEF(30),

* HTAREA( 30)COMMON ICONTRLI AMINLN, DUM2, DELT, DUM3, IDUM1, DUM4COMMON IISTRMSI IIN(30,4), IDUM2(120)

MASSIC = 0.00MASS1 = O.DOMASS2 = 0.00MASS3 = 0.00MASS4 = 0.00

DO 10 110=1,9

MASSIC = MASSIC + MASS(IC,I10)MASS1 =MASS1 + MASS(IIN(IC,1),I10)MASS2 = MASS2 + t1ASS(IIN(IC,2),I10)MASS3 = MASS3 + MASS(IIN(IC,3),I10)t1ASS4 = MASS4 + MASS(IIN(IC,4),I10)

10 CONTINUEC

QRATE(I C)

*-k

CHTCOEF(IC)

CRETURN

CEND

= (H(IC)*(MASS1 + MASS2 + MASS3 + MASS4)/MASSIC- (H(IIN(IC,1» + H(IIN(IC,2» + H(IIN(IC,3»+ H(IIN(IC,4») + QCOOL(IC)*DELT)/DELT

= QRATE(IC)/HTAREA(IC)/(TSURF(IC) - TC(IC»

B.10 HFPOLY

SUBROUTINE HFPOLY (TF, PHF, MW, C1C3C6)CC THIS SUBROUTINE IS BASED ON INFORMATION PRESENTED IN JOHN M.C BECKERDITE, DAVID R. POWELL, AND EMORY T. ADAMS, JR., "SELF-ASSOCI­CATION OF GASES. 2. THE ASSOCIATION OF HYDROGEN FLUORIDE," J. CHEM.C ENG. DATA 1983, 28, 287-293. THE EQUILIBRIUM COEFFICIENTS USED BELOWC WERE DEVELOPED FROM STRO~1EIER AND BRIEGLEB/S DATA (SEE TABLE III).

99

THIS VARIABLE IS GENERALLY .TRUE. EXCEPT, FOR EXAMPLE,WHEN ONLY THE MOLECULAR WEIGHT IS REQUIRED IN PHFH20 TOESTABLISH THE AZEOTROPIC MOLE FRACTION OF HF IN THE HF­H20 SYSTEM; IN THAT CASE, A CHANGE IN THE VALUES OFCl, C3, AND C6 WOULD MESS UP OTHER CALCULATIONS.

FUNCTION OF PHF AND ESTIMATED Pl THAT MUST CONVERGE TOZERO TO OBTAIN THE AVERAGE MOLECULAR WEIGHT OF HF VAPORDERIVATIVE OF F WITH RESPECT TO Pl

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RPARTIAL PRESSURE OF HF, PSIACONVERGENCE LIMIT FOR PRESSURE, PSIAVERAGE MOLECULAR WEIGHT OF HF, LB/LB MOLEMOLECULAR WEIGHT OF HF MONOMER, LB/LB MOLEEQUILIBRIUM COEFFICIENT FOR TRIMER, PSIA**-2EQUILIBRIUM COEFFICIENT FOR HEXAMER, PSIA**-5PRESSURE OF HF MONOMER, PSIAPRESSURE-MOLECULAR WEIGHT PRODUCT FOR HF MONOMERPRESSURE-MOLECULAR WEIGHT PRODUCT FOR HF TRIMERPRESSURE-MOLECULAR WEIGHT PRODUCT FOR HF HEXAMERSUM OF PRESSURE-MOLECULAR WEIGHT PRODUCTSMASS FRACTION OF MONOMER TO TOTAL HF, LB MONOMER/LB HF

VAPORMASS FRACTION OF TRIMER TO TOTAL HF, LB TRIMER/LB HF

VAPORMASS FRACTION OF HEXAMER TO TOTAL HF, LB HEXAMER/LB HF

VAPOR

DFDP

F

C1C3C6 A LOGICAL VARIABLE TO INDICATE WHETHER EXISTING VALUESOF Cl, C3, AND C6 SHOULD BE CHANGED

.TRUE. PERMITS VALUES TO BE CHANGED

.FALSE. RETAINS EXISTING VALUES

C6

C3

TFTRPHFPLIMITMWIr-lMBHFK3K6PlP1MWlP3MW3P6J'1.J6PMWSUMCl

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c

C THE FOLLOWING VARIABLES ARE USED.CCC

IMPLICIT REAL*B(A-H,K-Z)C

LOGICAL C1C3C6C

COMMON /POLYMRI Cl, C3, C6,WMBHFC

MW =WMBHFC

IF (.NOT.C1C3C6) GO TO 10C

Cl = 1.DOC3 = 0.00C6 = O.DO

C10 CONTINUE

C

100

IF (PHF.LT.l.D-5) RETURNC

PLIMIT = PHF*1.D-6TR =TF + 459.67DOK3 = DEXP(23884.0DO/TR - 51.2393DO)K6 =DEXP(40319.6DO/TR - 87.7927DO)Pi = PHF

C20 CONTINUE

CF = PHF - Pi - K3*Pl**3 - K6*Pl**6IF (DABS(F).LT.PLIMIT) GO TO 30DFDP = -l.DO - 3.DO*K3*Pl**2 - 6.DO*K6*Pl**5Pi = Pi - F/DFDP

CGO TO 20

C30 CONTINUE

CP1MWl =WMBHF*PlP3MW3 = 3.DO*WMBHF*K3*Pl**3P6MW6 =6.DO*WMBHF*K6*Pl**6PMHSUM = P1MWl + P3MW3 + P6MW6MW = PMWSUMlPHF

CIF (.NOT.C1C3C6) GO TO 40

CCl = P1MW1/PMWSUMC3 = P3MW3/PMWSlJ1C6 = P6MW6/PMWSUM

C40 CONTINUE

CRETURNEND

B.ll HHFH20

SUBROUTINE HHFH20 (TF, WHFL, WHFV, HL, HV)

TEMPERATURE, DEG FWEIGHT FRACTION HF IN LIQUID, LB HF/LB HF-H20 LIQ MIXWEIGHT FRACTION HF IN VAPOR, LB HF/LB HF-H20 VAP MIXENTHALPY OF HF-H20 LIQUID MIXTURE, BTU/LB LIQ MIXENTHALPY OF HF-H20 VAPOR MIXTURE, BTU/LB VAP MIXMASS HF TRIMER TO MASS OF HF, LB TRIMER/LB HF VAPORMASS HF HEXAMER TO MASS OF HF, LB HEXAMERILB HF VAPORWHFL**2

TFWHFLWHFVHLHVC3POLYC6POLYWHFLSQ

CC THIS SUBROUTINE CALCULATES THE ENTHALPIES OF LIQUID AND VAPORC MIXTURES OF HF AND H20 GIVEN THE TEMPERATURE AND THE WEIGHT MASSC FRACTION OF HF IN EACH PHASE. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCC

101

IMPLICIT REAL*8 (A-H,J-Z)

COMMON /POLYMR/ DUM1,C3POLY,C6POLY,DUM2

Al,A2,A3,A4,A5 CONSTANTS IN EQUATIONS FOR LIQUID ENTHALPYB1,B2,B3,B4,B5 LINEAR CONSTANTS IN EQUATIONS FOR LIQUID

ENTHALPYC2,C3,C4,C5 QUADRATIC CONSTANTS IN EQUATIONS FOR LIQUID

ENTHALPY

CCCCCCCCCCCCC

C

H20,H60,H80,H90,HI00

M20,M60,M80,M90

LIQUID ENTHALPY AT 20, 60, 80, 90, AND100 WT %, RESPECTIVELY, BTU/LB HF-H20MIXTURE

SLOPE OF H-WHFL CURVE AT 20, 60, 80, AND90 WT %

CC THE FOLLOWING SEQUENCE OF EQUATIONS THROUGH "50 CONTINUE" EVALUATEC THE ENTHALPY OF HF-H20 LIQUID MIXTURES. THE EQUATIONS ARE BASED ONC A PLOT OF ENTHALPY VS CONCENTRATION AS A FUNCTI~~ OF TEMPERATUREC WHICH WAS SENT TO W. REID WILLIAMS BY BRIAN C. ROGERS OF ALLIEDC CHEMICAL, SOLVAY, NY, IN A LETTER DATED JULY 26, 1983. THE EQL~TIONS

C WERE DEVELOPED BY W. R. WILLIAMS.C

WHFLSQ =WHFL*WHFLC

Al = -32.252DO + O.99783DO*TFBl = -357.75DO - 0.969DO*TF + 0.0013DO*TF**2

CIF (WHFL.GT.0.2DO) GO TO 10

CC THE FOLLOWING EQUATION IS APPLICABLE FOR WHFL BETWEEN 0.0 AND 0.2.C

HL = A1 + B1*WHFLC

GO TO 50C

10 CONTINUEC

H20 =Al + B1*0.2DOH60 = -179.68DO + 0.63569DO*TF + 5.8429D-4*TF**2M20 = B1C2 = (H20 - H60 + 0.4DO*M20) / (-0.16DO)B2 =M20 - O.4DO*C2A2 =H20 - 0.2DO*B2 - 0.04DO*C2

CIF (WHFL.GT.0.6DO) GO TO 20

CC THE FOLLOWING EQUATION IS APPLICABLE FOR WHFL BETWEEN 0.2 AND 0.6.C

HL =A2 + B2*WHFL + C2*WHFLSQC

GO TO 50C

102

20 CONTINUEC

H80 = -159.26DO + 0.7985DO*TFM60 = B2 + 1.2DO*C2C3 = (H60 - H80 + 0.2DO*M60) / (-0.04DO)B3 =M60 - 1.2DO*C3A3 = H60 - 0.6DO*B3 - 0.36DO*C3

CIF (WHFL.GT.0.8DO) GO TO 30

CC THE FOLLOWING EQUATION IS APPLICABLE FOR WHFL BETWEEN 0.6 AND 0.8.C

HL =A3 + B3*WHFL + C3*WHFLSQC

GO TO 50C

30 CONTINUEC

H90 =-111.54DO + 0.67057*TFM80 = B3 + 1.6DO*C3C4 = (H80 - H90 + 0.lDO*M80) / (-O.OlDO)B4 =M80 - 1.6DO*C4A4 = H80 - 0.8DO*B4 - 0.64DO*C4

CIF (WHFL.GT.0.9DO) GO TO 40

CC THE FOLLOWING EQUATION IS APPLICABLE FOR WHFL BETWEEN 0.8 AND 0.9.C

HL =A4 + B4*WHFL + C4*WHFLSQC

GO TO 50C

40 CONTINUEC

H100 = -23.3142DO + 0.870283DO*TFM90 = B4 + 1.8DO*C4C5 = (H90 - Hl00 + O.lDO*M90) / (-O.OlDO)B5 =M90 - 1.8DO*C5A5 =H90 - 0.9DO*B5 - 0.81DO*C5

CC THE FOLLOWING EQUATION IS APPLICABLE FOR WHFL BETWEEN 0.9 AND 1.0C

HL =A5 + B5*WHFL + C5*WHFLSQC

50 CONTINUECC THE FOLLOWING EQUATION FOR THE ENTHALPY OF A VAPOR MIXTURE OF HF ANDC H20 WAS DERIVED BY W. R. WILLIAMS FROM THE ABOVE CITED PLOT AND FRctlC INFORMATION PRESENTED IN JOHN M. BECKERDITE, DAVID R. POWELL, ANDC EMORY T. ADAMS, JR., "SELF-ASSOCIATION OF GASES. 2. THE ASSOCIATIONC OF HYDROGEN FLUORIDE," J. CHEM. ENG. DATA 1983, 28, 287-293.C

HV = (1051.0DO + 0.472DO*TF) - (376.0DO + 0.136DO*TF* + 790.642DO*C3POLY + 667.358DO*C6POLY)*WHFV

103

CRETURN

CEND

B.12 HUF6

SUBROUTINE HUF6 (TF, PSIA, MW, HSOL, HLIQ, HVAP)

THE FOLLOWING SUBROUTINES ARE CALLED.

THE ENTHALPY CORRELATIONS ARE BASED OF INFORMATION FOUND IN R.DEWITT, ·URANIUM HEXAFLUORIDE: A SURVEY OF THE PHYSICO-CHEMICALPROPERTIES, II GAT-280, GOODYEAR ATOMIC CORP., PORTSMOUTH, OHIO, JAN.29, 1960, PAGES 65 - 67. THE CORRELATIONS REPORTED IN GAT-280 FOR THEENTHALPIES OF THE SOLID AND LIQUID ARE FOR SATURATED CONDITIONS, ANDTHE ENTHALPY OF THE VAPOR IS BASED ON A PRESSURE OF 1 ATM. THE LIQUIDENTHALPY CORRELATION WAS MODIFIED FOR SUPERSATURATED CONDITIONS (PSIAGRAETER THAN VPSIA) ASSUMING AN INCOMPRESSIBLE LIQUID. THE VAPORENTHALPY CORRELATI ON WAS MODI FI ED USING THE MAGNUSON EQUATI ON OFSTATE (SEE GAT-280, PAGES 97 - 101) AND THE DEPARTURE FUNCTIONCORRELATIONS GIVEN IN R. C. REID, J. M. PRAUSNITZ, AND T. K.SHERWOOD, THE PROPERTIES OF GASES AND LIQUIDS, 3RD ED., MCGRAW-HILLBOOK COMPANY, 1977, PAGE 93, SO THAT BOTH SATURATED AND UNSATURATEDVAPOR ENTHALPIES CAN BE CALCULATED.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG R(DEG R)**2PRESSURE, PSIAVAPOR PRESSURE CORRESPONDING TO TF, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLEENTHALPY OF THE SOLID, BTU/LB MASSENTHALPY OF THE LIQUID, BTU/LB MASSENTHALPY OF THE VAPOR, BTU/LB MASSDENSITY OF THE LIQUID, LB MASS/FT**3VAPOR COMPRESSIBILITY FACTOR AT TF AND PSIAVAPOR COMPRESSIBILITY FACTOR AT TF AND 14.696 PSIA

DENUF6VPRUF6ZUF6

TFTRTRSQPSIAVPSIAMWHSOLHLIQHVAPDENLIQZPSIAZlATM

CC THIS SUBROUTINE CALCULATES THE ENTHALPIES OF UF6 SOLID, LIQUID, ANDC VAPOR. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CIMPLICIT REAL*8 (A-H,J-Z)

TR =TF + 459.67DOC

TRSQ =TR**2CC THE ENTHALPY OF THE SOLID IS GIVEN BY THE FOLLOWING CORRELATION WHICH

104

C IS ACCURATE WITHIN 0.01% FROM 17 DEG F TO THE TRIPLE POINT (147.3C DEG F).C

HSOL = ( 50.446000 - 5.70531D-2*TR + 1.27509D-4*TRSQ* - ( 9.64563D3/TR ) ) * ( 3.52D2/MW )

CC CALCULATE THE DENSITY OF THE LIQUID AND THE VAPOR PRESSURE.C

CALL DENUF6 (TF, PSIA, MW, O.ODO, DENLIQ, O.ODO)C

CALL VPRUF6 (TF, VPSIA)CC THE ENTHALPY OF THE LIQUID IS GIVEN BY THE FOLLOWING CORRELATIONC WHICH IS REPORTED TO HAVE AN ACCURACY WITHIN 0.01% [OVER THE ASSUMEDC RANGE OF 147.3 TO 206.3 DEG F] FOR THE SATURATED LIQUID.C

HLIQ =( 30.6133DO + 5.10057D-2*TR + 5.13165D-5*TRSQ* - ( 6.13934D3/TR )* + ( 1.82628D-1 * ( PSIA - VPSIA ) / DENLIQ )* * ( 3.52D2IMW )

CC CALCULATE THE VAPOR COMPRESSIBILITY AT 14.696 PSIA AND AT apSIA.·C

CALL ZUF6 (TF, 14.696DO, ZlATM, O.ODO, O.ODO)C

CALL ZUF6 (TF, PSIA, ZPSIA, O.ODO, O.ODO)CC THE ENTHALPY OF THE VAPOR IS GIVEN BY THE FOLLOWING CORRELATION.C

HVAP**

CRETURN

CEND

= ( 43.2614DO + 9.21307D-2*TR + 6.26265D-6*TRSQ+ ( 2.95171D3/TR )+ 3.0939D-3 * TR * (ZPSIA - ZlATM) ) * ( 3.52D2/MW )

B.13 HUMID

SUBROUTINE HUMID (IC, RH, RATIO)

THE FOLLOWING VARIABLES ARE USED.

NODE NUMBER OF VECTOR HAVING TEMPERATURE ANDPRESSURE REQUIRED FOR CALCULATING RATIORELATIVE HUMIDITY CORRESPONDING TO TEMPERATUREAND PRESSURE OF NODE IC

RH

IC

INPUT VARIABLES

CC THIS SUBROUTINE CALCULATES THE RATIO OF MOLES OF WATER VAPOR IN HUMIDC AIR TO THE TOTAL MOLES OF AIR PLUS WATER VAPOR.CCCCCCCCCC

105

C OUTPUT VARIABLECC RATIO RATIO OF MOLES OF WATER VAPOR TO TOTAL MOLES OFC MOIST AIRCC COMMON BLOCK VARIABLESCC TC (30) NODE TEMPERATURE, DEG FC PC (30) NODE PRESSURE, PSIACC INTERNAL VARIABLESCC WHFL WEIGHT FRACTION OF HF IN HF-H20 CONDENSATEC PH20 VAPOR PRESSURE OF H20, PSIACC THE FOLLOWING SUBROUTINE IS REQUIRED.CC PHFH20CC THE SUBROUTINE HFPOLY IS CALLED BY PHFH20, BUT IT IS NOT CALLED INC CALCULATING PH20 FOR THIS SUBROUTINE.C

IMPLICIT REAL*8 (A-H,J-Z)C

C

C

C

C

C

COMMON /COMPTP/ TC(30), PC(30), DUM1(30)

WHFL = 0.00

CALL PHFH20 (TC(IC), WHFL, 0.00, 0.00, PH20, 0.00)

RATIO = RH*PH20/PC(IC)

RETURN

END

B.14INTMEB

SUBROUTINE ItfTMEBCC THIS SUBROUTINE DETERMINES THE FINAL STATE (PRESSURE, TEMPERATURE,C MASS FRACTIONS IN EACH PHASE) OF UF6 IN A CONTROL VOLUME GIVEN THEC INITIAL STATES OF INLET AND OUTLET STREAMS AND OF THE MASS IN THEC VOLUME AT THE BEGINNING OF A TIME STEP DURING WHICH MASS AND ENERGYC ARE ASSUMED TO FLOW AT CONSTANT RATES.C

IMPLICIT REAL*8 (A-H,J-Z)CC COMMON BLOCKS TRANSFER DATA BETWEEN INTMEB AND THE DRIVER.C

COMMON /ICOMON/ ISEN,IPIG,IBRCH,IGEXITCOMMON /CONCYL/ PCYL,TCYL,XVCYL,XLCYL,MWCOMMON /CONIN / PIN,TIN,XVIN,XLIN

106

C

COMMON ICONVOLI PVOL,TVOL,XVOL,XLVOLCOMMON IPARAM I VOL,DELT,QCOMMON /MASS I MOUT,MIN,MTOTCOMM~~ /TRIPLEI TTRIPL,PTRIPL

DIMENSION HARRAY(3,3),HVECTR(3)CC THE ARRAY FOR ENTHALPIES OF MATERIAL AT TIME T IS FILLEDC

CALL HUF6(TVOL,PVOL,MW,HARRAY(1,3),HARRAY(1,2),HARRAY(1,1»CALL HUF6( TIN, PIN,MW,HARRAY(2,3),HARRAY(2,2),HARRAY(2,1»CALL HUF6(TVOL,PVOL,MW,HARRAY(3,3),HARRAY(3,2),HARRAY(3,1»

C~~ =

* MTOT*(HARRAY(3,1)*XVOL + HARRAY(3,2)*(1.DO-XVOL)*XLVOL* + HARRAY(3,3)*(1.DO-XVOL)*(1.DO-XLVOL»*+(MIN*(HARRAY(2,1)*XVIN + HARRAY(2,2)*(1.DO-XVIN)*XLIN* + HARRAY(2,3)*(1.DO-XVIN)*(1.DO-XLIN»*-MOUT*(HARRAY(l,l)*XVCYL + HARRAY(1,2)*(1.DO-XVCYL)*XLCYL* + HARRAY(1,3)*(1.DO-XVCYL)*(1.DO-XLCYL»*+ Q)*DELT

cMTOT =MTOT + DELT*(MIN-MOUT)

CC FIRST ASSUME A FINAL CONDITION AT THE TRIPLE POINTC

CALL HUF6 (TTRIPL,PTRIPL,MW,HVECTR(3),HVECTR(2),HVECTR(1»c

CALL DENUF6(TTRIPL,PTRIPL,MW,DENSOL,DENLIQ,DENVAP)

ITER8R = 0

MSOL =MTOT-MVAP-MLIQ

IF (MLIQ.LT.O.DO) GO TO 50IF (MSOL.LT.O.DO) GO TO 20

OLDSOL =MSOLOLDT =TTRIPL

= ~OT/(HVECTR(2)-HVECTR(3»

-MTOT*HVECTR(3)/(HVECTR(2)-HVECTR(3»-MVAP*(HVECTR(1)-HVECTR(3»/(HVECTR(2)-HVECTR(3»

= DENVAP*( VOL*DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»tMTOT*(DENSOL*HVECTR(3)-DENLIQ*HVECTR(2»+HTOT*(DENLIQ-DENSOL»

I( DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»+DENVAP*DENLIQ*(HVECTR(1)-HVECTR(2»-DENVAP*DENSOL*(HVECTR(1)-HVECTR(3»)

TVOL =TTRIPLPVOL = PTRIPLXVOL =MVAPIMTOT

M~P

*****

MLIQ

**

c

c

c

C

C

C

C

107

CIF (MLIQ.EQ.O.DO.AND.MSOL.EQ.O.DO) GO TO 10

CXLVOL =MLIQ/(MLIQfMSOL)

CRETURN

C10 CONTINUE

CXLVOL = 1.DO

CRETURN

CC FOLLOWING CODE SEGMENTS ARE CALLED WHEN FINAL CONDITIONSC DO NOT MATCH THE TRIPLE POINT.C

20 CONTINUECC FINAL TEMPERATURE IS ABOVE TRIPLE POINT. NO SOLID IS PRESENT.C

XLVOL =1.DOC

30 CONTINUEC

CALL HUF6 (TVOL,PVOL,MW,HVECTR(3) ,HVECTR(2) ,HVECTR(l»C

CALL DENUF6(TVOL,PVOL,MW,DENSOL,DENLIQ,DENVAP)C

~JAP = DENVAP*( VOL*DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»* tMTOT*(DENSOL*HVECTR(3)-DENLIQ*HVECTR(2»* fHTOT*(DENLIQ-DENSOL»* /( DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»* fDENVAP*DENLIQ*(HVECTR(1)-HVECTR(2»* -DENVAP*DENSOL*(HVECTR(1)-HVECTR(3»)

CMLIQ = HTOT/(HVECTR(2)-HVECTR(3»

* -MTOT*HVECTR(3)/(HVECTR(2)-~)ECTR(3»

* -MVAP*(HVECTR(1)-HVECTR(3»/(HVECTR(2)-HVECTR(3»C

MSOL =MTOT-MVAP-MLIQC

XVOL =MVAP/MTOTC

C

C

C

C

IF (DABS(MSOL).LT.l.D-6) RETURN

IF (MSOL.GT.O.DO) GO TO 40

OLDSOL =MSOLOLDT = TVOLTVOL = HITVOLMSOL = HIMSOL

40 CONTINUE

C

C

C

C

C

C

C

108

NEWT =TVOL - MSOL*(TVOL-OLDT)/(MSOL-OLDSOL)

IF (NEWT.GT.250.DO.OR.NEWT.LT.TTRIPL) STOP02

ITER8R =1 + ITER8R

IF (ITER8R.GT.20) STOP03

HIMSOL =MSOLHITVOL =TVOLTVOL =NEWT

CALL VPRUF6(TVOL,PVOL)

GO TO 30

50 CONTINUECC FINAL TEMPERATURE IS BELOW TRIPLE POINT. NO LIQUID IS PRESENT.C

XLVOL = O.DOTVOL =TTRIPL - 10.DO

C

CCALL VPRUF6(TVOL,PVOL)

60 CONTINUE

CALL HUF6 (TVOL,PVOL,MW,HVECTR(3),HVECTR(2),HVECTR(1»

CALL DENUF6(TVOL,PVOL,MW,DENSOL,DENLIQ,DENVAP)

C

C

C

C

MVAP

*****

MLIQ

**

= DENVAP*( VOL*DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»+MTOT*(DENSOL*HVECTR(3)-DENLIQ*HVECTR(2»+HTOT*(DENLIQ-DENSOL»

I( DENLIQ*DENSOL*(HVECTR(2)-HVECTR(3»+DENVAP*DENLIQ*(HVECTR(1)-HVECTR(2»-DENVAP*DENSOL*(HVECTR(1)-HVECTR(3»)

= HTOT/(HVECTR(2)-HVECTR(3»-MTOT*HVECTR(3)/(HVECTR(2)-HVECTR(3»-MVAP*(HVECTR(1)-HVECTR(3»/(HVECTR(2)-HVECTR(3»

C

C

C

C

C

C

MSOL =MTOT-MVAP-MLIQ

XVOL =MVAPIMTOT

IF (DABS(MLIQ).LT.l.D-6) RETURN

IF (MLIQ.GT.O.DO) GO TO 80

OLDLI Q = MLI QOLDT = TVOL

IF (ITER8R.GT.0.DO) GO TO 70

109

CTVOL = TVOL - 10.00

C

CCALL VPRUF6(TVOL,PVOL)

GO TO 60C

70 CCNfINUEC

OLDT = TVOLOLDLIQ = MLIQTVOL = LOTVOLMLIQ =LOMLIQ

C80 CONTINUE

CITER8R = 1 + ITER8R

CIF (ITER8R.GT.20) STOP04

CNEWT = TVOL + MLIQ*(OLDT-TVOL)/(MLIQ-OLDLIQ)

C

C

C

C

C

C

IF (NEWT.GT.TTRIPL.OR.NEWT.LT.O.DO) STOP05

LOMLI Q = MLI QLOTVOL = TVOLTVOL = NEWT

CALL VPRUF6(TVOL,PVOL)

GO TO 60

RETURN

END

B.15 LEVEL

SUBROUTINE LEVEL (DENVAP, VLFACE)CC THIS SUBROUTINE CALCULATES THE LEVEL OF THE PHASE INTERFACE WITHC RESPECT TO THE BOTTOM OF A Cm~TAINMENT VOLUME AND W.R.T. A BREACHC OR PIPE SYSTEM ENTRANCE. THE CODE THEN DETERMINES THE MASS FRACTIONSC OF VAPOR, LIQUID, AND SOLID WHICH LEAVE THE CONTAINMENT AND THEC PRESSURE OF THE RELEASE, IF DIFFERENT FROM THE SATURATION PRESSURE.CC THE TOTAL MASS IN CONTAINMENT IS INPUT ALONG WITH THE TOTAL VOLUME,C SATURATION PRESSURE AND TEMPERATURE, AND THE MASS FRACTIONS OF EACHC PHASE PRESENT. ALSO INPUT ARE THE Cm~TAINMENT PARAMETERS OF LENGTHC AND DIAMETER, THE BREACH PARAMETERS OF HOLE DIAMETER AND DISTANCE OFC THE HOLE CENTER FROM THE CONTAINMENT CENTER. THE C~~TAINMENT ISC MODELED AS A CYLINDER WITH THE HOLE IN ~~E END AND THE CYLINDERC ORIENTATION (UPRIGHT OR ON ITS SIDE) IS ALSO INPUT.

110

INTERNAL VARIABLES USED BY THE LEVEL SUBROUTINE

OUTPUT VARIABLES, VALUES RETUP~ED TO CALLING PROGRAM.

VAPOR MASS FRACTIONOF MATERIAL ENTERING RELEASE PATHWAY.PRESSURE OF MATERIALENTERING RELEASE PATHWAY, PSIA

DENSITY OF ~~POR, LB MASS/FT**3HEIGHT ABOVE CYLINDER BOTTOM OF VAPOR-LIQUIDINTERFACE, INMASS FRACTION OF VAPOR IN CYLINDERTOTAL MASS IN CYLINDER, LB MASSTOTAL VOLUME ENCLOSED IN CYLINDER, FT**3DIAMETER OF CYLINDER, INLENGTH OF CYLINDER, INLENGTH OF RAY FROM CENTER OF CYLINDERTO CENTER OF HOLE, INDIAMETER OF HOLE, IN

IVERT

WOLVOL2,

VVOL2RADIANISPLIT

DENLS

DHOLE

ALPHA ANGLE BETWEEN VERTICAL UPWARD RAY AND RAY FROMCENTER OF CYLINDER TO CENTER OF HOLE, DEGREESVOLUME OF VAPOR IN CYLINDER, FT**3TOTAL VOLUME AND VAPOR VOLUME IN CYLINDER,RESPECTIVELY, IN**3ANGLE AS DEFINED FOR ALPHA, RADIANS=0, VAPOR-LIQUID INTERFACE IS ABOVE (BELOW) HOLE=1, VAPOR-LIQUID INTERFACE COINCIDES WITH HOLE=0, CYLINDER LIES ON SIDE=1, CYLINDER STANDS ON END, HOLE ON BOTTOM

ITER8R INDEX USED TO CONTROL NUMBER OF ITERATIONSAl,A2,A3 OLD, CURRENT, AND NEW RESULTS FOR VLFACEG1,G2,G3 OLD, CURRENT, AND NEW GUESSES FOR VLFACEOLDVLF STORAGE LOCATION FOR PREVIOUS VALUE OF VLFACE.HINTER DEPTH OF LIQUID ABOVE BOTTOM OF HOLE, INYVCYL VAPOR VOLUME FRACTION

OF MATERIAL ENTERING RELEASE PATHWAY.DENSITY OF THE MASS FRACTION WHICH IS NOT VAPOR,LB MASS/FT**3

DENVAPVLFACE

XVCYL

XVOLMTOTVOLDIACYLLCYLRHOLE

PCYL

CC INPUT VARIABLES, VALUES PROVIDED BY CALLING PROGRAM.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)CC C~1MON BLOCKS TRANSFER MOST OF THE INPUT ~~D OUTPUT VALUES.C

C~1MON /CONCYL/ PCYL,TCYL,XVCYL,XLCYL,MWCOMMON /CONVOLI PVOL,TVOL,XVOL,XLVOLCOMMON /PARAM I VOL,DELT,QCOMMON IMASS I MSFLRT,MIN,MTOTCOMMON ICYLINDI DIACYL,LCYL,RHOLE,DHOLE,ALPHA,IVERT

C

111

C CALCULATE THE VOLUME OF VAPOR IN THE CYLINDER.C

VVOL =XVOL*MTOT/DENVAPCC VOL AND VVOL ARE IN CUBIC FEET. CONVERT TO CUBIC INCHES.c

VOL2 =VOL*1728.DOC

VVOL2 =VVOL*1728.DOCC ALPHA IS IN DEGREES. USE EQUIVALENT ANGLE IN RADIANS.C

RADIAN =ALPHA*3.14159DO/180.DOCC AN INTEGER INDEX IS SET TO ZERO FOR A VAPOR-LIQUID INTERFACE ABOVEC THE TOP OF THE HOLE OR BELOW THE BOTTOM OF THE HOLE. IF THE VAPOR­C LIQUID INTERFACE IS FOUND TO COINCIDE WITH THE HOLE, THE INDEX WILLC BE RESET TO 1.C

ISPLIT = 0cC IF THE HOLE IS AT THE BOTTOM OF A CYLINDER STANDING ON END, THEC VAPOR-LIQUID INTERFACE CAN BE CALCULATED DIRECTLY. THE PROGRAM WILLC SKIP DOWN TO THAT SECTION.C

IF (IVERT.EQ.1) GO TO 70CC CALCULATE VAPOR-LIQUID INTERFACE. START WITH THE VALUE OF VLFACEC PASSED FROM THE CALLING PROGRAM. THEN EVALUATE VLFACE USING THEC PREVIOUS VALUE AS A GUESS.C

C

C

C

C

C

C

ITER8R = 0

Ai = 0.00

G1 = 0.00

A2 = 0.00

G2 = 0.00

A3 = 0.00

G3 = 0.00C

10 CONTINUEC

OLDVLF =VLFACEC

VLFACE = DIACYL/2.DO*(1.DO + DCOS(3.14159DO*LCYLIVOL2* *(VVOL2/LCYL + (VLFACE - DIACYL/2.DO)* *DSQRT(VLFACE*DIACYL - VLFACE**2»»

CC IF VLFACE CONVERGES STOP THE ITERATION.

112

CIF (DABS(VLFACE-OLDVLF).LT.l.D-6) GO TO 60

CITER8R = ITER8R + 1

CC IF VLFACE DOES NOT CONVERGE STOP EXECUTION.C

IF (ITER8R.GT.I00) STOP06C

C

C

IF (VLFACE.GT.OLDVLF.AND.Gl.GT.Al) GO TO 20

Gl = OLDVLF

Al = VLFACEC

GO TO 10C

20 CONTINUECC A REGULA FALSIC

SCHEME DETERMINES FURTHER GUESSES FOR VLFACE.

C

C

C

C

G2 = OLDVLF

A2 = VLFACE

30 CONTINUE

G3 = (G2*(AI-A2)-A2*(GI-G2»* I( (AI-A2) - (GI-G2»

A3 = DIACYL/2.DO*(1.DO + DCOS(3.14159DO*LCYLfiJOL2* *(VVOL2ILCYL + (G3 - DIACYL/2.DO)* *DSQRT(G3*DIACYL - 63**2»»

CC IF A3 CONVERGES STOP THE ITERATION.C

IF (DABS(A3-G3).LT.l.D-6) GO TO 50C

ITER8R = ITER8R + 1CC IF A3 DOES NOT CCNVERGE STOP EXECUTION.C

IF (ITER8R.GT.I00) STOPO?CC THIS MODIFIED REGULA FALSI SELECTS WHICH OF THE TWO PREVIOUS GUESSESC TO REPLACE WITH THE NEW GUESS. BY THIS MEANS THE REGULA FALSI IS .C ALWAYS USED FOR INTERPOLATION, SPEEDING CONVERGENCE.C

C

C

C

IF (G3.LT.A3) GO TO 40

A2 = A3

G2 = G3

113

GO TO 30C

40 CONTINUEC

Ai =A3C

Gl = G3C

GO TO 30C

50 CONTINUECC HEIGHT OF THE VAPOR-LIQUID INTERFACE IS DETERMINED. THE LAST PAIR OFC GUESS AND RESULT IS STORED AS OLDVLF AND VLFACE, RESPECTIVELY.C

VLFACE =A3C

OLDVLF =G3C

60 CONTINUECC NOW CALCULATE THE DEPTH OF LIQUID ABOVE THE BOTTOM OF THE HOLE.C

HINTER =VLFACE - (DIACYL/2.DO + RHOLE*DCOS(RADIAN)* - DHOLE/2.DO)

CC HINTER NEGATIVE MEANS VAPOR-LIQUID INTERFACE IS BELOW BOTTOM OF HOLE;C A VAPOR RELEASE OCCURS. SINCE THE CALLING PROGRAM HAS ALREADYC INITIALIZED A VAPOR RELEASE, LEVEL RETURNS WITHOUT FURTHERC CALCULATION.C

IF (HINTER.LE.O.DO) GO TO 100CC THE LIQUID LEVEL IS ABOVE THE BOTTOM OF THE HOLE. IF IT IS ABOVE THEC TOP OF THE HOLE, THE RELEASE WILL CONTAIN NO VAPOR. CALCULATE THEC INTERFACE LEVEL FOR A PRESSURE CORRECTION.C

VLFACE = HINTER - DHOLE/2.DOC

IF (HINTER.GE.DHOLE) GO TO 80CC THE LIQUID LEVEL COINCIDES WITH THE HOLE LEVEL. CALCULATE THE VAPORC VOLUME FRACTION AND SET ISPLIT TO 1.C

YVCYL = (ACOS(S~GL(2.DO*HINTER/DHOLE-1.DO»

* -4.DO/DHOLE**2*(HINTER-DHOLE/2.DO)* *DSQRT(DHOLE*HINTER-HINTER**2»/3.14159DO

CISPLIT = 1

C70 CONTINUE

CC CALCULATE DEPTH OF LIQUID IN VERTICAL CYLINDER.C

114

VLFACE = LCYL*VVOLIVOLC

80 CONTINUECC SET XVCYL TO ZERO AND CALCULATE THE DENSITY OF THE NON-VAPOR t1ASSC FRACTION.C

XVCYL = O.DOC

DENLS =MTOT*(l.DO-XVOL)/(VOL-VVOL)C

IF (ISPLIT.NE.l) GO TO 90CC IF THE LIQUID LEVEL COINCIDES WITH THE LEVEL OF THE HOLE THE VAPORC MASS FRACTION OF THE RELEASE IS RECALCULATED. VLFACE IS SET TO ZEROC SO THAT THE PRESSURE OF THE RELEASE WILL EQUAL THE SATURATI~1

C PRESSURE.C

XVCYL = YVCYL*DENVAP/DENLS* l(l.DO - YVCYL + YVCYL*DENVAP/DENLS)

CVLFACE = O.DO

C90 CONTINUE

CC CALCULATE RELEASE PRESSURE. NO CORRECTION IF VLFACE IS ZERO.C

PCYL = PVOL + VLFACE*DENLS/1728.DOC

100 CONTI NUEC

VLFACE = OLDVLFCC THIS SUBROUTINE CANNOT PROVIDE REASONABLE RESULTS IF THE UF6 GOESC SOLID BEFORE THE INTERFACE DROPS BELOW THE BOTTOM OF THE HOLE. CHECKC FOR THIS RESULT AND STOP IF A PROBLEM IS ENCOUNTERED.C

IF (XLCYL.EQ.O.DO.AND.XVCYL.NE.l.DO) STOPllC

RETURNC

END

B.16 MIXFLW

SUBROUTINE MIXFLW (IC, INLET, INODES)CC *********************************************************************C * *C * WARNING! THIS SUBROUTINE USES THE NULL VECTOR (NODE 30) FOR *C * INTERMEDIATE STORAGE. NODE 30 VALUES ARE RESET TO THOSE VALUES *C * ASSIGNED BY THE SUBROUTINE SETPAY. *C * *

115

COMMON BLOCK VARIABLES

THE FOLLOWING SUBROUTINE IS CALLED BY MIXFLW.

THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.

THE FOLLOWING VARIABLES ARE USED IN THIS SUBROUTINE.

TEMPORARY STORAGE VARIABLE

COMPONENT MASS FLOW RATE, LBI (DELT)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIAVOLUMETRIC FLOW RATE THROUGH STREAM NODE,FT**3IMINNODE ENTHALPY RATE, BTU/(DELT)NODE INPUT STREAM NUMBERNODE OUTPUT STREAM NUMBERMINIMUM NATURAL LOG ACCEPTED BY THE COMPUTERTIME INTERVAL USED IN TRANSIENT SIMULATION, SEC

NODE NUMBER REPRESENTING COMBINED STREAMNUMBER OF STREAMS TO BE MIXED (MAXIMUM OF 4)MAXIMUM NUMBER OF NODES ALLOWED BY THE SET OFSUBROUTINES OF WHICH THIS SUBROUTINE IS A PART,CORRESPONDS TO THE NULL VECTOR NODE NUMBER

COMPRT

DENTHLDENUF6HFPOLYHHFH20HUF6PHASEPHFH20VPRUF6ZUF6

(30)(30,4)(30,4)

(30,9)(30)(30)(30)

IOUTMP

HI INlOUTAMINLNDELT

ICINLETINODES

MASSTCPCACFM

INTERNAL VARIABLE

INPUT VARIABLES

THIS SUBROUTINE COMBINES UP TO 4 INLET STREAMS AND DETERMINES THEOUTLET PHASE COMPOSITION AND TEMPERATURE AT A GIVEN FINAL PRESSURE.IF REACTIVE COMPONENTS ARE IN THE STREAMS, THEY ARE ALLOWED TOREACT TO THE EXTENT OF THE LIMITING REACTANT. ALL INLET STREAMS MUSTBE BLOWER NODES.

C *********************************************************************CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

COMMON ILBMASSI MASS(30,9), DUMl

116

COMMON ICOMPTPI TC(30), PC(30), DUM2(30)COMMON /vOLUMEI ACFM(30), DUM3(61)COMMON IENTHAU H(30), DlJ14(120)COMMON IISTRMSI IIN(30,4), IOUT(30,4)CotflON ICONTRU AMINLN, DlJ15, DELT, DUM6, IDUM1, DUM7

CC SPECIFY INITIAL ESTIMATES OF MIXED STREAM TEMPERATURE AND VOLUMEC FLOW RATE.C

C

C

C

C

C

C

C

IF (TC(IC).EQ.O.DO) TC(IC) = TC(IIN(IC,l»

IF (ACFM(IC).GT.O.DO) GO TO 20

ACFM(I C) = O. DO

DO 10 I10=1,INLET

ACFM(IC) = ACFM(IC) + ACFM(IIN(IC,I10»

10 CONTINUE

20 CONTINUE

ACFM(IC) = ACFM(IC)*DELT/6.D1CC SET NODE IC COMPONENT MASS AND ENTHALPY RATES TO ZERO AND TEMPORARI LYC SET THE OUTLET NODE OF NODE IC TO THE NULL VECTOR.C

C

C

C

C

C

DO 30 130=1,9

MASS(IC,I30) = O.DO

30 CONTINUE

H(I C) = O. DO

IOUTMP = IOUT(IC,l)

IOUT (I C, 1) = 30CC COMBINE STREAMS TO OBTAIN COMPONENT MASS AND ENTHALPY RATES, THENC RESET OUTLET STREAM NODE FOR NODE IC.C

CALL COMPRT (I C, INLET, INODES)C

IOUT(IC,l) = IOUTMPCC SET "NULL VECTOR" VALUES TO BEGIN ITERATION TO OBTAIN MIXED STREAMC PHASE COMPOSITION AND TEMPERATURE AS WELL AS VOLUME FLOW RATE WHICHC CORRESPOND TO THE OUTLET PRESSURE.C

CACFM(30) = ACFM(IC)*PC(IC)/PC(IOUT(IC,l»

H(30) = H(IC)

117

CTC(30) = TCnC)

C

C

C

C

C

C

C

c

C

DO 40 140=1,9

MASS(30,I40) = MASS(IC,I40)

40 CONTINUE

50 CONTINUE

CALL COMPRT (30, 1, INODES)

IF (DABS(PC(30) - PC(IOUT(IC,1»).LT.l.D-4) GO TO 60

ACFM(30) = ACFM(30)*PC(30)/PC(IOUT(IC,1»

GO TO 50

60 CONTINUECC TRANSFER TEMPORARY VALUES STORED IN THE NULL VECTOR TO NODE VECTORC IC, THEN RESET NULL VECTOR VALUES.C

DO 70 170=1,9C

MASS n C, I70 ) = MASS( 30, 170)MASS (30 , I70 ) = 0.00

C70 CONTINUE

CPCn C) = PC(30)PC(30) = 0.00

CTCnC) = TC(30)TC(30) = 0.00

CH(30) = 0.00

CACFM( IC) = 6.Dl*ACFM(30)/DELTACFM(30) = 0.00

CRETURN

CEND

B.17 PHASE

SUBROUTINE PHASE (TF, IC)cC THIS SUBROUTINE CALCULATES THE PHASE COMPOSITION OF THE HF-H20 SYSTEMC IN A COMPARTMENT. THE FOLLOWING VARIABLES ARE USED.C

118

LNPHF1, LNPHF2 LN(PHF) AT I AND I + 1

IJ INDEX CONTROLLING PHASE ITERATION SCHEMEICOUNT COUNTER FOR PHASE ITERATION SCHEME

COEFFICIENTS FOR LN(PHF) =AITR + B

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RNUMBER OF NODE BEING EVALUATEDMASS OF COMPONENT IN NODE, LBMASS OF WATER IN NODE, LBMASS OF HF IN NODE, LBCOMBINED MASS OF H20 AND HF IN NODE, LBMASS OF HF AND H20 VAPOR IN NODE, LBCOMPONENT MOLECULAR WEIGHT, LB/LB MOLEESTIMATED MOLECULAR WEIGHT OF HF VAPOR, LB/LB MOLEVOLUME OF NODE, FT**3WEIGHT FRACTION OF HF IN THE HF-H20 LIQUID CONDENSATE,LB HF LIQ/LB HF-H20 LIQ MIXWEIGHT FRACTION OF HF IN THE HF-H20 VAPOR MIXTURE,LB HF VAP/LB HF-H20 VAP MIXWEIGHT FRACTION HF IN THE HF-H20 SYSTEM, LB HF/LB HF+H20WEIGHT FRACTION OF HF IN AN HF-H20 MIXTURE OF AZEOTROPICCOMPOSITION, LB HF/LB HF-H20 MIXWEIGHT FRACTION OF HF IN THE LIQUID REQUIRED TO YIELDPHF BASED ON THE CONCENTRAT ION OF HF ASSUMED TO BEVAPOR ONLY, LB HF LIQUID/LB HF-H20 LIQ MIXPARTIAL VAPOR PRESSURE OF HF, PSIAPARTIAL VAPOR PRESSURE OF H20, PSIAVAPOR PRESSURE OF THE HF-H20 SYSTEM, PSIAMOLE FRACTION OF HF IN THE HF-H20 VAPOR SYSTEM, MOLES HFVAPORIMOLES HF-H20 VAPOR MIXTUREMOLES OF HF-H20 VAPOR MIXTURE, MOLES/LB PLUMEPARTIAL PRESSURE OF HF-H20 VAPOR MIXTURE RESULTING FROMNVAP, VOLUME, AND TR, PSIAPCALC - PSUMPRESSURE CONVERSION FACTOR FROM TORR TO PSIAMINIMUM NATURAL LOG ACCEPTED BY COMPUTERLN(PHF/PCONV)

WHF

A, B

WHFV

WHFTOTAZEOTR

HFPOLYPHFH20

PDIFPCONVAMINLNLNPHF

PHFPH20PSUMYHF

NVAPPCALC

TFTRICMASSMSSH20MSSHFMSSTOTMSSVAPWMOLMWVOLWHFL

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE CALLED.CCCC

IMPLICIT REAL*B (A-H,J-Z)C

DIMENSION WHFL(3), PDIF(3)DIMENSION A(20), B(20)

CCOMMON /LBMASS/ MASS(30,9), DUMlCOMM~~ /VOLUME/ VOL(30), DUM2(61)C~1M~~ /MOLWT/ WMOL(9)

119

COMMON ICONTRLI AM INLN, OUM3, OUM4 (2), IOUM1, OUM5C

DATA A 1-1068900,-1053600,-1064700,-1067500,-1046000,-1036200,* -9779.500,-8917.700,-8188.200,-7770.000,-7575.000,-7411.400,* -7315.700,-7163.400,-6984.300,-6459.700,-6269.700,-5891.700,* -5849.800,-5641.0001

CDATA B 117.68000,18.06900,18.79300,19.40900,19.59500,19.95100,

* 19.42900,18.94800,18.25600,17.97500,18.05400,18.17800,* 18.36500,18.45700,18.49200,17.85700,17.81200,17.39100,* 17.55500,17.364001

CTR =TF + 459.6700PCONV =14.69600/7.602

CMSSHF = MASS(IC,4) + MASS(IC,5)MSSH20 =MASS(IC,2) + MASS(IC,3)MSSTOT =MSSHF + MSSH20

CWHFTOT = MSSHF/MSSTOT

CC THE FOLLOWING SECTION EVALUATES THE WEIGHT FRACTION OF HF IN THEC LIQUIO, WHF, REQUIREO TO YIELO PHF BASEO ON THE ASSUMPTION THAT ALLC HF IS IN THE VAPOR PHASE. IF THE REQUIREO WHF IS GREATER THAN ONE,C CONOENSATION WILL OCCUR. IF WHF IS LESS THAN OR EQUAL TO ONE, PSUMC CORRESPONOING TO WHF IS CALCULATEO ANO COMPAREO TO PHF + PH20 EVALU­C ATEO ASSUMING ALL HF ANO H20 IS IN THE VAPOR PHASE. IF PSUM IS LESSeTHAN PHF + PH20, CONOENSATION WILL OCCUR.C

10 CONTINUEC

PHF =MSSHF*TR*10.73DOIVOL(IC)IWMOL(5)C

CALL HFPOLY (TF, PHF, MIN, .TRUE.)C

C

C

C

C

C

C

C

IF (DABS(MW-WMOL(5».LT.1.D-4) GO TO 20

WMOL(5) = (MW + WMOL(5»/2.00

GO TO 10

20 CONTINUE

WMOL(5) = MW

PH20 =MSSH20*TR*10.73001V0L(IC)IWMOL(3)

LNPHF =AMINLN

IF (PHF.GT.O.DO) LNPHF = DLOG(PHF/PCONV)CC THE FOLLOWING EQUATION APPLIES FOR WHF BETWEEN 0.00 ANO 0.05.C

WHF = PHF*0.05DO/PCONV/DEXP(A(1)ITR + B(l»

120

CIF (WHF.LT.0.05DO) GO TO 40

CC THE FOLLOWING SET OF ITERATIVE EQUATIONS IS APPLICABLE BETWEEN 0.05C AND 1.00. IF WHF IS FOUND TO BE GREATER THAN 1 ON THE INTERATION 19,C CONDENSATION OCCURS.C

DO 30 130 =1,19C

LNPHFl =A(I30)/TR + B(I30)LNPHF2 =A(I30+1)/TR + B(I30+1)

40 CONTINUE

50 CONTINUE

IF (WHF.GT.l.DO) GO TO 50

IF (PSUH.LT.(PHF+PH20» GO TO 50

= 0.05DO*«LNPHF - LNPHF1)/(LNPHF2 - LNPHF1)+ DFLOAT(I30»

WHF

MASS(IC,5) =MSSHFMASS(IC,4) = O.DOMASS(IC,3) =MSSH20MASS(IC,2) = O.DO

RETURN

CALL PHFH20 (TF, WHF, O.DO, O.DO, O.DO, PSUM)

*IF (WHF.GE.(0.05DO*DFLOAT(I30».AND.WHF.LE.

* (0.05DO*DFLOAT(I30+1») GO TO 40

30 CONTINUE

C

C

C

C

C

C

C

C

C

C

CC IF CONDENSATION OCCURS, THE FOLLOWING SECTION EVALUATES THEC EQUILIBRIUM VAPOR PHASE COMPOSITION AT TF.C

IF (MSSHF.EQ.0.DO.OR.MSSH20.EQ.0.DO) GO TO 60C

AZEOTR = 0.3826DOC

IF (DABS(AZEOTR-WHFTOT).GE.l.D-6) GO TO 70CC THE FOLLOWING SECTION EVALUATES THE VAPOR CONCENTRATION AT THEC AZETROPE OR FOR A PURE COMPONENT.C

60 CONTINUEC

CALL PHFH20 (TF,WHFTOT,YHF,PHF,PH20,PSUM)C

IF (MSSHF.GT.O.DO) CALL HFPOLY (TF,PHF,WMOL(5),.TRUE.)

121

CMASS(IC,5) = PHF*VOL(IC)*WMOL(5)/10.73DO/TRMASS(IC,4) =MSSHF-MASS(IC,5)MASS(IC,3) =PH20*VOL(IC)*WMOL(3)/10.73DO/TRMASS(IC,2) =MSSH20-MASS(IC,3)

CRETURN

C70 CONTINUE

CICOUNT = 0

CWHFL(l) =AZEOTR + DSIGN(1.D-6,(WHFTOT-AZEOTR»WHFL(2) =WHFTOT

CIJ = 1

CGO TO 90

C80 CONTINUE

CIJ = 2

C90 CONTINUE

CCALL PHFH20 (TF,WHFL(IJ),YHF,PHF,PH20,PSUM)

CCALL HFPOLY (TF,PHF,WMOL(5),.TRUE.)

CWHFV =YHF*WMOL(5)/(YHF*WMOL(5) + (l.DO - YHF)*WMOL(3»

CMSSVAP = (MSSH20*WHFL(IJ) - MSSHF*(l.DO - WHFL(IJ»)

1 / (WHFL(IJ) - WHFV)C

C

C

C

NVAP =MSSVAP*WHFV/WMOL(5) + MSSVAP*(l.DO - WHFV)/WMOL(3)

PCALC = NVAP*10.73DO*TR,/vOL(IC)

PDIF(IJ) = PCALC - PSUM

IF (IJ - 2) 80,100,110C

100 CONTINUEC

ICO~~T = ICOUNT + 1C

IJ = 3C

C

C

C

M = (PDIF(2) - PDIF(1»/(WHFL(2) - WHFL(l»

WHFL(3) =WHFL(2) - PDIF(2)/M

IF «PDIF(1)-PDIF(2».GE.PSUM) WHFL(3) = (WHFL(l) + WHFL(2»/2.DO

122

GO TO 90C

110 CONTI NUEC

IF (DABS(PDIF(3».LT.(PSUM*1.D-3» GO TO 140C

IF (ICOUNT.EQ.l00) STOP12C

IF (PDIF(3» 120,140,130C

120 CONTINUEC

WHFL(2) =WHFL(3)PDIF(2) = PDIF(3)

CGO TO 100

C130 CONTINUE

CWHFL(l) =WHFL(3)PDIF(l) = PDIF(3)

CGO TO 100

C140 CONTINUE

CMASS(IC,5) =MSSVAP*WHFVMASS(IC,4) =MSSHF-MASS(IC,5)MASS(IC,3) =MSSVAP*(l.DO - WHFV)MASS(lC,2) =MSSH20-MASS(IC,3)

CRETURN

CEND

B.18 PHFH20

SUBROUTINE PHFH20 (TF, WHFL, YHF, PHF, PH20, PSUM)

TEMPERATURE, DEG FTEMPERATURE, DEG RWEIGHT FRACTION OF HF IN THE LIQUID HF-H20 MIXTURE,LB HF LIQ/LB HF-H20 LIQ MIXMOLE FRACTION OF HF IN THE VAPOR HF-H20 MIXTURE,MOLES HF VAPOR/MOLES HF-H20 VAPORPARTIAL VAPOR PRESSURE OF HF, PSIAPARTIAL VAPOR PRESSURE OF H20, PSIAVAPOR PRESSURE OF THE HF-H20 VAPOR MIXTURE, PSIA

YHF

PHFPH20PSUM

TFTRWHFL

CC THIS ROUTINE CALCULATES THE MOLE FRACTION OF HF IN THE VAPOR PHASE OFC THE HF-H20 SYSTEM AS WELL AS THE PARTIAL VAPOR PRESSURES OF HF ANDC H20 AND THEIR SUM GIVEN THE TEMPERATURE IN DEG F AND THE WEIGHTC FRACTION OF HF IN THE LIQUID PHASE. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCC

123

IMPLICIT REAL*8 (A-H,J-Z)

LNPHF1, LNPHF2 LN(PHF) EVALUATEO AT Ii ANO 1211, 12 INOICES FOR EVALUATING PHF (12 = Ii + 1)

OIMENSION A(20), 8(20)

COMMON ICONTRLI AMINLN

PCONV CO~jERSION FACTOR FROM TORR TO PSIA, PSIA/TORR

A, B COEFFICIENTS FOR LN(PHF) =A/TR + 8

LN(PHF)MINIMUM NATURAL LOG ACCEPTEO 8Y COMPUTERMOLECULAR WEIGHT OF HF VAPOR AT THE AZEOTROPE,LB/LB MOLEAZEOTROPIC WEIGHT FRACTION OF HF IN THE HF-H20 SYSTEMPARTIAL tJAPOR OF HF AT THE AZEOTROPIC COMPOSITIONPARTIAL VAPOR OF H20 AT THE AZEOTROPIC COMPOSITIONPHFAZ + PH20AZ

AZEOTRPHFAZPH20AZPAZEOT

LNPHFAMINLNMWAZ

C

C

CCCCCCCCCCCCCCCC

C

C

C

DATA A 1-1068900,-1053600,-1064700,-1067500,-1046000,-1036200,* -9779.500,-8917.700,-8188.200,-7770.000,-7575.000,-7411.400,* -7315.700,-7163.400,-6984.300,-6459.700,-6269.700,-5891.700,* -5849.800,-5641.0001

DATA B 117.68000,18.06900,18.79300,19.40900,19.59500,19.95100,* 19.42900,18.94800,18.25600,17.97500,18.05400,18.17800,* 18.36500,18.45700,18.49200,17.85700,17.81200,17.39100,* 17.55500,17.364001

TR =TF + 459.6700C

PCONV = 14.69600/7.602CC THE FOLLOWING SEQUENCE OF EQUATIONS THROUGH "30 CONTINUE" EVALUATESC THE PARTIAL VAPOR PRESSURE OF HF. THESE EQUATIONS ARE BASEO ON A PLOTC OF PARTIAL VAPOR PRESSURE OF HF VS TEMPERATURE AS A FUNCTION OFC WEIGHT FRACTION OF HF IN THE LIQUIO PHASE. THIS PLOT WAS PROVIOEO TOC W. REIO WILLIAMS BY BRIAN C. ROGERS OF ALLIEO CHEMICAL, SOLVAY, NY,C IN A LETTER OATEO JULY 26, 1983. THE EQUATIONS WERE OERIVEO BY W. R.C WILLIAMS.C

PHF =0.000C

IF (WHFL.LE.(OEXP(AMINLN+6.00») GO TO 30C

11 = IOINT(WHFL/O.0500)C

IF (Il.EQ.20) Ii =19C

12 = 11 + 1C

C

C

C

C

IF (Il.EQ.O) GO TO 10

LNPHFl =A(Il)ITR + B(Il)

10 CONTINUE

LNPHF2 =A(I2)ITR + B(I2)

IF (Il.EQ.O) GO TO 20

1~

CC THE FOLLOWING EQUATION APPLIES FOR WHFL BETWEEN 0.05 AND 1.00.C

LNPHF = LNPHFl + (LNPHF2 - LNPHF1)*(WHFL/0.05 - DFLOAT(Il»C

PHF =PCONV*DEXP(LNPHF)C

GO TO 30C

20 CONTINUECC THE FOLLOWING EQUATION APPLIES FOR WHFL BETWEEN 0.00 AND 0.05.C

PHF = (WHFL/0.05DO)*PCONV*DEXP(LNPHF2)C

30 CONTINUECC THE FOLLOWING SEQUENCE OF EQUATIONS THROUGH "60 CONTINUE" EVALL~TES

C A PSUEDO PARTIAL VAPOR PRESSURE FOR H20. THE EQUATIONS ARE BASED ONC THE VAPOR PRESSURE OF WATER GIVEN IN R. C. REID, J. H. PRAUSNITZ, ANDC T. K. SHERWOOD, THE PROPERTIES OF GASES AND LIQUIDS, 3RD ED., HCGRAW­C HILL BOOK COMPANY, 1977, PP. 629 AND 632, AN ESTIMATED VALUE OF THEC PARTIAL VAPOR PRESSURE OF H20 AT THE AZEOTROPE, AND THE REQUIREMENTC THAT PH20 = 0 AT WHFL =1. THE EQUATIONS USED BELOW WERE DERIVED BYC W. R. WILLIAMS.CC THE FOLLOWING EQUATION GIVES THE VAPOR PRESSURE OF H20.C

PH20 = PCONV*DEXP(18.3034DO - 6869.5900/(TF + 376.6400»C

IF (WHFL.EQ.O.DO) GO TO 50CC THE FOLLOWING SEQUENCE OF EQUATIONS ESTIMATES THE PARTIAL VAPORC PRESSURE OF H20 AT THE AZEOTROPE.C

LNPHFl =A(7)/TR + B(7)C

LNPHF2 =A(8)ITR + B(8)C

AZEOTR =0.382600C

LNPHF =LNPHFl + (LNPHF2 - LNPHF1)*(AZEOTR - 0.3500)/0.0500C

PHFAZ = PCONV*OEXP(LNPHF)C

**************************************************************** ** WARNING: THE VALUE OF MASS VELOCITY, G, IS CONSTANT ONLY *

125

C IN THE FOLLOWING CALL TO HFPOLY, THE LOGICAL VARIABLE C1C3C6 ISC SPECIFIED AS .FALSE. SINCE PREVIOUS ESTIMATES OF Cl, C3, AND C6C SHOULD NOT BE CHANGED.C

CALL HFPOLY (TF, PHFAZ, MWAZ, .FALSE.)C

YHF = (AZEOTR/MWAZ)/(AZEOTRIMWAZ + (l.DO - AZEOTR)/18.016DO)C

PH20AZ = (l.DO - YHF)*PHFAZlYHFC

IF (WHFL.GT.0.3826DO) GO TO 40CC THE FOLLOWING EQUATIONS APPLY FOR WHFL BETWEEN 0.0 AND THE AZEOTROPE.C

PAZEOT = PHFAZ + PH20AZC

PSUM = PH20 + (PAZEOT - PH20)*WHFL/AZEOTRC

PH20 = PSUM - PHFC

GO TO 60C

40 CONTINUECC THE FOLLOWING EQUATION APPLIES FOR WHFL BETWEEN THE AZEOTROPE AND 1.C

PH20 = PH20AZ*«1.DO - WHFL)/(l.DO - AZEOTR»**3C

50 CONTINUEC

PSUM = PHF + PH20C

60 CONTINUEC

YHF = PHF/PSUMC

RETURNC

END

B.19 PIPSYS

SUBROUTINE PIPSYS(G)CC THE PIPSYS SUBROUTINE RECALCULATES THE MASS VELOCITY AS IT MOVES Drn~

C THE LENGTH OF THE PIPE AND FIXTURE SYSTEM. THE INITIAL MASS VELOCITYC SUPPLIED TO PIPSYS CORRESPONDS TO THE ENTRANCE EFFECT PRESSURE DROP.C THE TRUE MASS VELOCITY MUST BE LESS THAN OR EQUAL TO THIS FIGURE. SOC A NEW GUESS OF MASS VELOCITY IS CALCULATED.CCCC

126

C * IF THE PIPING SYSTEM DIAMETER IS CONSTANT. HOWEVER, *C * MASS FLOW RATE IS CONSTANT. THESE VALUES ARE RELATED *C * THROUGH PIPE DIAMETERS. THE VALUE GFEAT IS CALCULATED *C * WHEN A MASS VELOCITY POTENTIALLY DIFFERENT FROM THE *C * INITIAL G CAN BE EXPECTED FOR A PARTICULAR DOWNSTREAM *C * FEATURE. *C * *C ***************************************************************C

C

C

C

C

IMPLICIT REAL*8 (A-H,J-Z)

COMMON IICOMONI ISEN, IPIG, IBRCH, IGEXITCOMMON /CONCYL/ PCYL,TCYL,XVCYL,XLCYL,MWCOMMON ICONENTI PENT,TENT,XVENT,XLENT,VNTBARCOMMON IGMTRY 1 PIGRAYCOMMON ICNSTNTI ALPHA,BETA,DELTA,GAMMA,EPSLNCOMMON ITRIPLEI TTRIPL,PTRIPL

DIMENSION PIGRAY(99,3),CONRAY(99,6)

TWELTH = 1.DO/12.DO

REYNMX = 1. 1504CC THE IGEXIT SWITCH CONTROLS THE CALCULATION OF THE EXIT. AT A VALUEC OF IGEXIT=2 THE EXIT IS KNOWN TO BE CONTROLLED BY PRESSURE DROP ANDC THE FURTHER CALCULATI~~ OF GMAX VALUES SHOULD BE SUPPRESSED.C

IGEXIT = 1CC TO BEGIN THE PIPE SYSTEM CALCULATION, A GUESS FOR G ONE-HALF THEC VALUE ENTERED AS PIPSYS WAS CALLED (WHICH MIGHT BE A CHOKE FLOWC VALUE) IS USED IN CALCULATING THE ENTRY PRESSURE DROP. A NEW GMAX FORC CHOKE FLOW IS THEN DETERMINED AND IF THIS VALUE IS LESS THAN THEC ASSUMED G, THE ASSUMED G IS REDUCED BEFORE ENTRY CONDITIONS AREC RECALCULATED.C

CONRAY(IPIG,l) = PIGRAY(IPIG,3)CC SET UPPER AND LOWER BOL~DS ON G AND MAKE FIRST GUESS.C

CONRAY(IPIG,5) = 1.010

IF (IBRCH.LT.3) C~~RAY(IPIG,5) = GC

C

C

C

CONRAY(IPIG,6) = 0.00

IF (IBRCH.LT.3) G

10 CONTINUE

= G/2.DO

CC ON RETURNING TO THIS POINT IN THE SUBROUTINE (I.E., 10 CONTINUE), THEC VALUE OF G HAS BEEN ADJUSTED AND THE ENTIRE PIPE SYST~1 CALCULATIONC IS REPEATED STARTING WITH THE ENTRANCE EFFECT.

127

C

C

C

C

C

C

C

IF ( (CONRAY(IPIG,5)-CONRAY(IPIG,6» I (CONRAY(IPIG,5)+* CONRAY(IPIG,6» .LT.EPSLN) GO TO 200

20 CONTINUE

PENT =PCYL-PIGRAY(1,2)*G**2/DELTA*VNTBAR

CALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,PENT,ISEN,XVENT,XLENT,TENT)

CALL DENUF6(TENT,PENT,MW,RHOS,RHOL,RHOV)

OLOVBR = VNTBAR

VNTBAR =XVENT/RHOV+(l.DO-XVENT)*XLENT/RHOL* +(l.DO-XVENT)*(l.DO-XLENT)/RHOS

CC A NEW SET OF ENTRANCE CONDITIONS BASED ON THE NEW VALUE OF MASSC VELOCITY HAS BEEN COMPUTED.C

IF (DABS(VNTBAR-OLDVBR).GT.(EPSLN» GO TO 20C

P2 = PENT-l.D-3CC EVALUATE GMAX BASED ON ISENTROPIC EXPANSION.C

ISNGMX = 0C

CALL FLASH (TENT, PENT, MW, XVENT, XLENT, P2, ISNGMX,* XV2, XL2, T2)

CCALL DENUF6(T2,P2,MW,RHOS,RHOL,RHOV)

CV2BAR =XV2/RHOV+(1.DO-XV2)*XL2/RHOL

* +(1.DO-XV2)*(1.DO-XL2)/RHOSC

GMAX = DSQRT(ALPHA*(PENT-P2)/(V2BAR-VNTBAR»C

IF (GMAX.LE.G) GO TO 180CC LOAD THE FIRST ROW OF CONRAY.C

CONRAY( 1,1) = PENTCONRAY(1 ,2) =TENTCONRAY(1,3) =XVENTCONRAY(1,4) = XLENTCONRAY(1,5) = VNTBARCONRAY(1,6) = GMAX

CIFEAT = 2

C30 CONTINUE

CIF (IFEAT.EQ.IPIG) GO TO 150

128

CGO TO (40,100,130), IDINT(PIGRAY(IFEAT,l»

C40 CONTINUE

CC THE PIPE SOLVER STARTS HERE BY LIMITING THE TOTAL NUMBER OF STEPS TOC THE PRESSURE DIFFERENCE BETWEEN THE BEGINNING OF THE PIPE AND THEC SURROLNDINGS. IN LATER PASSES THE TOTAL PRESSURE DROP CONSIDEREDC WILL BE UPDATED. EACH STEP INCLUDES A CALCULATION OF THE PIPE LENGTHC CORRESPONDING TO AN INCREMENTAL PRESSURE DROP OF ABOUT ONE PSI.C

DELTAP = CONRAY«IFEAT-l),l)-CONRAY(IPIG,l)CC THE TRIPLE POINT PRESSURE MUST NOT BE INCLUDED IN DELTAP IF FLASHINGC FLOW IS OCCURING.C

IF (CONRAY«IFEAT-l),l).GT.PTRIPL .AND.* CONRAY(IPIG,l).LT.PTRIPL .AND.* CONRAY«IFEAT-1),3).NE.1.DO)* DELTAP = CONRAY«IFEAT-l),l)-PTRIPL

CIF (DELTAP.LE.O.DO) GO TO 180

CICON =1

C50 CONTINUE

CIDELP = IDINT(DELTAP)

C

CIF (IDELP.EQ.O) IDELP =1

DELP = DELTAP/DFLOAT(IDELP)Pi = CONRAY«IFEAT-l),i)Tl =CONRAY«IFEAT-i),2)XVi = CONRAY«IFEAT-i),3)XLi = CONRAY«IFEAT-i),4)V1BAR = CONRAY«IFEAT-i),5)DLSUM = 0.00

CC ADJUST THE MASS VELOCITY BASED ON THE ENTRANCE DIAMETER TO THEC CURRENT DIAMETER.C

GFEAT = G*(PIGRAY(1,3)**2)/(PIGRAY(IFEAT,3)**2)C

DO 80 180 = 1,IDELPC

P2 = Pl-DELPC

60 CONTINUEC

PAVG = (P2+Pl)/2.DOC

CALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,P2,ISEN,XV2,XL2,T2)C

129

CALL DENUF6(T2,P2,MW,RHOS,RHOL,RHOV)C

V2BAR =XV2/RHOV + (1.DO-XV2)*XL2/RHOL* +(1.DO-XV2)*(1.DO-XL2)/RHOS

CCALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,PAVG,ISEN,XVAVG,XLAVG,TAVG)

CCALL DENUF6(TAVG,PAVG,MW,RHOS,RHOL,RHOV)

CVBRAVG =XVAVG/RHOV + (l.DO-XVAVG)*XLAVG/RHOL

* +(1.DO-XVAVG)*(1.DO-XLAVG)/RHOSC

CALL VISUF6(TAVG,PAVG,MW,VISL,VISV)C

VIS = (VISV*XVAVG/RHOV + VISL*(l.DO-XVAVG)*XLAVG/RHOL)/VBRAVGC

REYN =3600.DO*PIGRAY(IFEAT,3)*GFEAT/VISC

BFACTR =1.D25C

IF (REYN.GT.1.D3) BFACTR = (37580.DO/REYN)**16C

AFACTR = O.DOC

IF (REYN.GT.1.D3) AFACTR = (2.457DO** DLOG(1.DO/«7.DO/REYN)**0.9DO + (0.27DO*EPSOD»»**16

CC THE EQUATION FOR FRICTION FACTOR IS OF A TYPE WHICH LEADS TO AN ERRORC MESSAGE IF REYN IS TOO LARGE. LIMITING REYN WILL NOT AFFECT THISC CALCULATION AT THIS POINT. THIS PROBLEM IS SIMPLY A MACHINEC LIMITATION.C

IF (REYN.GT.REYNMX) REYN =REYNMXC

FFACTR = 2.DO*«8.DO/REYN)**12* + (1.DO/(AFACTR+BFACTR)**1.5DO»**TWELTH

CDELTAL = (4633.1DO*(P1-P2) + GFEAT**2*(V1BAR-V2BAR»1

* (2.DO*FFACTR*GFEAT**2*(VB~)G)/PIGRAY(IFEAT,3)

* + 32.174DO*DSIN(THETA)/(VBRAVG»C

C

C

IF (DELTAL.LE.O.DO .AND. IGEXIT.EQ.2) WRITE (5,500) IFEAT

IF (DELTAL.LE.O.DO) GO TO 180

DLSUM = DLSUM + DELTALCC EVALUATE GMAX BASED ON ISENTROPI C EXPANSION.C

P3 = P2-1.D-3C

ISNGMX = 0C

CALL FLASH (T2, P2, MW, XV2, XL2, P3, ISNGMX,

130

* XV3, XL3, T3)C

CALL DENUF6(T3,P3,MW,RHOS,RHOL,RHOV)C

V3BAR =XV3/RHOV+(1.DO-XV3)*XL3/RHOL* +(1.DO-XV3)*(1.DO-XL3)/RHOS

CGMAX = DSQRT(ALPHA*(P2-P3)/(V3BAR-V2BAR»

C

C

C

C

C

C

C

C

C

C

IF (GMAX.LE.GFEAT .AND. DLSUM.LT.(PIGRAY(IFEAT,2)-0.01DO) .AND.* IGEXIT.EQ.2) WRITE (5,510) IFEAT

IF (GMAX.LE.GFEAT .AND. DLSUM.LT.(PIGRAY(IFEAT,2)-O.Ol»* GO TO 180

IF (DABS(DLSUM-PIGRAY(IFEAT,2».LT.l.D-2) GO TO 90

IF (DLSUM.LT.PIGRAY(IFEAT,2) .AND. ICON.EQ.l) GO TO 70

IF (ICON.EQ.100) STOP13

IF (ICON.EQ.l) PUPPER = PiIF (ICON.EQ.i) PLa~ER = P2

IF (DLSUM.GT.PIGRAY(IFEAT,2) .AND. ICON.GT.l) PLOWER = P2IF (DLSUM.LT.PIGRAY(IFEAT,2) .AND. ICrn~.GT.i) PUPPER = P2

P2 = (PUPPER + PLOWER)/2.DO

ICON = ICON + 1

DLSUM = DLSUM - DELTALC

GO TO 60C

70 CONTINUEC

Pi = P2T1 = T2Xl)1 = X'V2XLi =XL2ViBAR =V2BAR

C80 CONTINUE

CGO TO 180

C90 COt,lTINUE

CC PRESSURE DROP EVALL~TED FOR TOTAL LENGTH OF CURRENT FEATURE. CHOKEC FLOW DOES NOT OCCUR IN THE CURRENT FEATURE.C

CONRAY(IFEAT,l) = P2CONRAY(IFEAT,2) = T2

131

CONRAY(IFEAT,3) =XV2CONRAY(IFEAT,4) =XL2CONRAY(IFEAT,5) =V2BARCONRAY(IFEAT,6) =GMAX*PIGRAY(IFEAT,3)**2/PIGRAY(IFEAT,1)**2

CIFEAT = IFEAT + 1

CC FINISHED WITH PIPE ELEMENT.C

GO TO 30C

100 CONTINUECC EXPANSIONS AND FITTINGS FOR WHICH PRESSURE DROP MUST BE CALCULATEDC ARE HANDLED BY THIS SECTION OF PROGRAMMING.CC ADJUST THE MASS VELOCITY BASED ON THE ENTRANCE DIAMETER TO THEC CURRENT DIAMETER.C

C

C

C

C

GFEAT = G*(PIGRAY(1,3)**2)/(PIGRAY(IFEAT,3)**2)

CONRAY(IFEAT,l) = CONRAY«IFEAT-l),l)* - PIGRAY(IFEAT,2) * GFEAT**2/DELTA* * CONRAY«IFEAT-l),5)

CALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,CONRAY(IFEAT,l),ISEN,* CONRAY(IFEAT,3),CONRAY(IFEAT,4),CONRAY(IFEAT,2»

CALL DENUF6 (CONRAY(IFEAT,2),CONRAY(IFEAT,1),MW,RHOS,RHOL,RHOV)

CONRAY(IFEAT ,5) = CONRAY(IFEAT ,3)/RHOV* + (1.DO-CONRAY(IFEAT,3»*CONRAY(IFEAT,4)/RHOL*+ (1.DO-CONRAY(IFEAT,3»*(1.DO-CONRAY(IFEAT,4»/RHOS

CC FOR A SUDDEN EXPANSION, A GMAX VALUE NEED NOT BE CALCULATED. GMAXC FOR THE PREVIOUS ELEMENT IS PLACED IN THE CONDITIONS ARRAY.C

IF (PIGRAY«IFEAT+1),3).GT.PIGRAY(IFEAT,3) .AND.* (IFEAT+1).LT.IPIG) GO TO 120

C110 CONTINUE

CP2 = CONRAY(IFEAT,1)-1.D-3

CC EVALUATE GMAX BASED ON ISENTROPI C EXPANSION.C

ISNGMX = 0C

C

C

CALL FLASH (CONRAY(IFEAT,2), CONRAY(IFEAT,l), MW,* CONRAY(IFEAT,3), CONRAY(IFEAT,4), P2, ISNGMX, XV2, XL2, T2)

CALL DENUF6(T2,P2,MW,RHOS,RHOL,RHOV)

V2BAR =XV2/RHOV+(1.DO-XV2)*XL2IRHOL

C

132

* + (1.DO-XV2)*(1.DO-XL2)/RHOS

GMAX = DSQRT(ALPHA*(CONRAY(IFEAT,1)-P2)/* (V2BAR-CONRAY(IFEAT,5)))

CC IF GHAX IS SMALLER THAN G, THE CALCULATION MUST BE RESTARTED AT AC NEW, LOWER VALUE OF G.C

IF (GMAX.LE.GFEAT) GO TO 180C

120 CONTINUEC

C

C

C

CONRAY(IFEAT,6) = GMAX*PIGRAY(IFEAT,3)**2/PIGRAY(1,3)**2

IF (PIGRAY«IFEAT+l),3).GT.PIGRAY(IFEAT,3) .AND.* (IFEAT+l).LT.IPIG) CONRAY(IFEAT,6) = CONRAY«IFEAT-l),6)

IFEAT = IFEAT+l

GO TO 30C

130 CONTINUECC CONTRACTIONS IN THE PIPE SYSTEM ARE HANDLED BY THIS SECTION OF THEC PROGRAM. SINCE THE PRESSURE DROP IS A FUNCTION OF DOWNSTREAMC CONDITIONS, AN ITERATION IS REQUIRED. INITIALLY THE SPECIFIC VOLUMEC UPSTREAM IS ASSUMED TO HOLD DOWNSTREAM. THEN A NEW GUESS IS COMPUTED.C

ICON =1C

CONRAY(IFEAT,5) =CONRAY«IFEAT-l),5)CC ADJUST THE MASS VELOCITY BASED ON THE ENTRANCE DIAMETER TOC THE CURRENT DIAMETER.C

GFEAT = G*(PIGRAY(1,3)**2)/(PIGRAY(IFEAT,3)**2)C

140 CONTINUEC

CONRAY(IFEAT,l) =CONRAY«IFEAT-l),l)* - PIGRAY(IFEAT,2)*(GFEAT**2)/DELTA* * CONRAY(IFEAT,5)

C

C

C

C

C

CALL FLASH (TCYL,PCYL,MW,XVCYL,XLCYL,CONRAY(IFEAT,l),ISEN,* CONRAY(IFEAT,3),CONRAY(IFEAT,4),CONRAY(IFEAT,2))

CALL DENUF6 (CONRAY(IFEAT,2),CONRAY(IFEAT,1),MW,RHOS,RHOL,RHOV)

OLDCON =CONRAY(IFEAT,5)

CONRAY(IFEAT,5) = CONRAY(IFEAT,3)/RHOV* + (1.DO-CONRAY(IFEAT,3))*CONRAY(IFEAT,4)/RHOL* + (1.DO-CONRAY(IFEAT,3))*(1.DO-CONRAY(IFEAT,4))/RHOS

133

ICON = ICON + 1C

C

C

IF (ICON.GT.100) STOP14

IF (DABS(CONRAY(IFEAT,5)-OLDCON).GT.EPSLN) GO TO 140

GO TO 110C

150 CONTINUECC EVALUATION OF PRESSURE DROP ALONG THE PIPING SYSTEM FOR THE CURREtfrC VALUE OF G IS COMPLETE EXCEPT FOR THE EXHAUST PRESSURE DROP.C

DELTAP = PIGRAY(IPIG,2)*GFEAT**2*CONRAY«IPIG-1),5)/DELTACC DETERMINE WHETHER THE CURRENT VALUE OF G IS AN UPPER OR LOWER LIMIT.C

IF (CONRAY«IPIG-l),l) - DELTAP - PIGRAY(IPIG,3» 170, 190, 160C

160 CONTINUECC RESET LOWER BOUND ON G AND INCREASE MASS VELOCITY.C

C~~RAY(IPIG,6) = GC

C

C

G = (G + CONRAY(IPIG,5»/2.DO

IF (CONRAY(IPIG,5).EQ.1.D10) G = CONRAY(IPIG,6)/0.98DO

GO TO 10CC RESET UPPER BOUND AND REDUCE MASS VELOCITY.C

170 CONTINUEC

IGEXIT = 2C

180 CONTINUEC

CONRAY(l PI G, 5) = GC

CG = (G+ CONRAY(IPIG,6»/2.DO

IF (CONRAY(IPIG,6).EQ.0.DO .AND. IBRCH.EQ.3)* G =CONRAY(IPIG,5)*0.98DO

CGO TO 10

C190 CONTINUE

CIGEXIT = 2

C200 CONTINUE

C

134

RETURNC

500 FORMAT (' ',/,' WARNING! CHOKE FLOW PREDICTED IN FEATURE',* 13,/,' AFTER PRESSURE-DROP-CONTROLLED FLOW ESTABLISHED',* ' FOR PIPING SYSTEM (DELTAL.LE.O).')

C510 FORMAT (' ',/,' WARNING! CHOKE FLOW PREDICTED IN FEATURE',

* 13,/,' AFTER PRESSURE-DROP-CONTROLLED FLOW ESTABLISHED',* ' FOR PIPING SYSTEM (ISENTROPIC FLASH).')

END

B.20 REMOVE

SUBROUTINE REMOVE (IC, IREMOV)

COMMON BLOCK VARIABLES

OTHER SUBROUTINES REQUIRED ARE:

THE FOLLOWING VARIABLES ARE USED.

THE FOLLOWING SUBROUTINE IS CALLED.

REMOVAL FRACTION (VOLUME BASIS)

NODE NUMBER OF COMPARTMENT FROM WHICH CONDENSATEIS BEING REMOVED BY FALL OUTNODE NUMBER OF REMOVAL STREAM

COMPONENT MASS REMOVAL RATE, LB/(DELT), ORCOMPONENT MASS IN COMPARTMENT, LBNODE VOLUME, FT**3DEPOSITION AREA, FT**2DEPOSITI~~ VELOCITY, FT/SECMINIMUM NATURAL LOG ACCEPTED BY COMPUTERTIME INTERVAL FOR TRANSIENT SIMULATION, SECNODE TEMPERATURE, DEG FNODE PRESSURE, PSIAENTHALPY RATE, BTU/ (DELT)

DENUF6HHFH20HUF6

DENTHL

(30,9)

(30)(30)

(30 )(30)(30)

RMFRAC

MASS

IREt'10V

IC

VOLDPAREADEPVELAMINLNDELTTCPCH

INTERNAL VARIABLE

INPUT VARIABLES

CC THIS SUBROUTINE DETERMINES THE MASSES OF CONDENSED PHASES REMOVED BYC DEPOSITION FROM A ROOM.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC

C

135

VPRUF6ZUF6

IMPLICIT REAL*8 (A-H,J-Z)

COMMON ILBMASSI MASS(30,9), DUMlCOMMON IVOLUMEI VOL(30), DUM2(30), DPAREA(30), DEPVELCCM10N ICONTRLI AMINLN, DUM3, DELT, DUM4, IDUM1, DUM5COMMON ICOMPTPI TC(30), PC(30), DUM6(30)COMMON IENTHALI H(30), DUM7(120)

CC CALCULATE THE REMOVAL FRACTION WHICH IS BASED ON THE VOLUME FROMC WHICH CONDENSATES CAN BE REMOVED DURING THE TIME INTERVAL USEDC FOR THE TRANSIENT ANALYSIS DIVIDED BY THE TOTAL VOLUME OF THEC COMPARTMENT. THE FIRST VOLUME IS THE PRODUCT OF THE DEPOSITIONC VELOCITY, THE DEPOSITION AREA, AND THE TIME INTERVAL.C

RMFRAC =DEPVEL*DPAREA(IC)*DELTIVOL(IC)CC APPLY THE REMOVAL FRACTION, RMFRAC, TO CONDENSED PHASES CONTAINEDC IN NODE IC.C

MASS(IREMOV,l) = O.DOMASS(IREMOV,2) =MASS(IC,2)*RMFRACMASS(IREMOV,3) = O.DOMASS(IREMOV,4) =MASS(IC,4)*RMFRACMASS(IREMOV,5) =O.DOMASS(IREMOV,6) =MASS(IC,6)*RMFRACMASS(IREMOV,7) =MASS(IC,7)*RMFRACMASS(IREMOV,8) = O.DOMASS(IREMOV,9) =MASS(IC,9)*RMFRAC

CC SET THE TEMPERATURE AND PRESSURE OF THE REMOVAL STREAM TO THAT OF THEC SOURCE NODE, THEN CALCULATE THE ENTHALPY RATE OF THE REMOVAL STREAM.C

TC(IREMOV) =TC(IC)PC(IREMOV) = PC(IC)

C

C

C

CALL DENTHL (TC(IREMOV), PC(IREMOV), IREMOV, H(IREMOV»

RETURN

END

B.21 RESIST

SUBROUTINE RESIST (IC)CC THIS SUBROUTINE EVALUATES THE RESISTENCE TERM FOR THE RELATIONSHIPC DELP = KRCOEF*MASS-FLOW-RATE**2/DENSITY. THE MASS FLOW RATE FOR THEC TIME STEP DELT MUST HAVE ALREADY BEEN CALCULATED BEFORE THISC SUBROUTINE IS CALLED UNLESS A RESISTANCE COEFFICIENT FOR THE STREAMC HAS BEEN ENTERED.

136

CROSS-SECTIONAL AREA FOR FLOW, FT**2

STREAM NODE FOR WHICH RESISTANCE TERM IS TO BEEVALUATED

NODE INPUT STREAM NUMBERNODE OUTPUT STREAM NUMBERMINIMUM NATURAL LOG ACCEPTED BY THE COMPUTERTIME INTERVAL USED IN TRANSIENT SIMULATION, SEC

ABSOLUTE PRESSURE DIFFERENCE ACROSS NODE, PSITOTAL MASS IN INLET NODE, LBTOTAL MASS FLOW RATE IN STREAM NODE, LB/(DELT)DENSITY OF MATERIAL FLOWING INTO THE STREAMNODE, LB/FT**3

COMPONENT NODE MASS OR MASS FLOW RATE, LB(COMPARTMENT) OR LB/(DELT) (STREAM)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPARTMENT NODE VOLUME, FT**3RESISTANCE COEFFICIENT (INPUT), --, ORRESISTANCE TERM (OUTPUT), PSI-SEC**2/LB-FT**3

AS A RESISTANCE TERM, KRCOEF IS A COMBINATIONOF THE RESISTANCE TERM, THE CROSS-SECTIONALAREA OF FLOW, AND CONVERSION FACTORS.

(30,4)(30,4)

MASS (30,9)

TC (30)PC (30)VOL (30)KRCOEF (30)

NOTE:

IC

FLAREA (30)

I INlOUTAMINLNDELT

DELPMASSiMASS2DENS

IMPLICIT REAL*B (A-H,J-Z)

DIMENSION FLAREA(30)

EQUIVALENCED VARIABLE

COMMON BLOCK VARIABLES

INTERNAL VARIABLES

INPUT VARIABLE

C

CC THE FOLLOWING VARIABLES ARE USED IN THIS SUBROUTINE:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

COMMON /LBMASS/ MASS(30,9), DUMlCOMMON /COMPTP/ TC(30), PC(30), DUM2(30)COMMON /VOLUME/ VOL(30), KRCOEF(30), DUM3(31)COMMON /ISTRMS/ IIN(30,4), IOUT(30,4)COMMON /CONTRL/ AMINLN, DUM4, DELT, DUM5, IDUM1, DUM6

EQUIVALENCE (VOL(l), FLAREA(l»

IF (KRCOEF(IC).LE.O.DO) GO TO 10CC IF A POSITIVE RESISTANCE COEFFICIENT HAS BEEN ENTERED, FOR EXAMPLE, A

137

C VALUE OF 1.5 CORRESPONDING TO A SUDDEN CONTRACTION FOLLOWED BY AC SUDDEN EXPANSION, THE RESISTANCE TERM IS EVALUATED USING THE FOLLOW­C ING EQUATION.C

KRCOEF(IC) = KRCOEF(IC)/FLAREA(IC)/FLAREA(IC)/9266.1DOC

RETURNC

10 CONTINUECC THE REMAINDER OF THIS SUBROUTINE EVALUATES A COEFFICIENT WHICHC INCORPORATES THE RESISTANCE COEFFICIENT, FLOW AREA, AND CONVERSIONC FACTORS INDIRECTLY BY USING INITIAL STEADY STATE CONDITIONS OF MASSC FLOW RATE AND PRESSURE DROP.C

CDELP = PC(IIN(IC,l)) - PC(IOUT(IC,l))

MASSl = O.DOMASS2 = O.DO

C

C

C

DO 20 120=1,9

MASSl = MASSl + MASS(IIN(IC,1),I20)MASS2 =MASS2 + MASS(IC,I20)

20 CONTINUEC

CDENS =MASS1/VOL(IIN(IC,1))

KRCOEF(IC) = DELP*DENS*DELT*DELTIMASS2/MASS2C

RETURNC

END

B.22 ROOM

SUBROUTINE ROOM (IC, RATIO)

COMMON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED.

NUMBER OF NODE BEING INITIALIZEDRATIO OF THE MOLES OF WATER VAPOR TO THE TOTALNL~BER OF MOLES OF MOIST AIR

(30,9) NODE COMPONENT MASS, LB

ICRATIO

MASS

INPUT VARIABLES

CC THIS SUBROUTINE EVALUATES THE INITIAL MASSES AND ENTHALPIES IN NODESC WHICH REPRESENT ROOMS.CCCCCCCCCCCC

138

THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED.

LB/LB MOLE

NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPONENT MOLECULAR WEIGHT,NODE ENTHALPY, BTUNODE VOLUME, FT**3

TOTAL MOLES OF MOIST AIR IN NODEMOLES OF WATER VAPOR IN NODEMOLES OF DRY AIR IN NODE

DENTHL

DENUF6HHFH20HUF6lJPRUF6ZUF6

(30)(30)(9)(30)(30)

NTOTNH20NAIR

TCPCWMOLHVOL

INTERNAL VARIABLES

CCCCCCCCCCCCC THE FOLLOWING SUBROUTINE IS CALLED.CCCCCCCCCCC

C

C

IMPLICIT REAL*B (A-H,J-Z)

COMMON /LBMASS/ MASS(30,9), DUMlCOMMON /COMPTP/ TC(30), PC(30), DUM2(30)COMMON /MOLWT/ WMOL(9)C~1ON /ENTHAL/ H(30), DUM3(120)COMMON /VOLUME/ VOL(30), DUM4(61)

NTOT = PC(IC)*VOL(IC)/10.73DO/(TC(IC) + 459.67DO)C

NH20 = RATIO*NTOTNAIR =NTOT - NH20

C

C

C

MASS(IC,3) = NH20*WMOL(3)MASS(IC,l) =NAIR*WMOL(l)

CALL DENTHL(TC(IC), PC(IC), IC, H(IC»

RETURNC

END

B.23 SETRAY

SUBROUTINE SETRAY (INODES, INOUT)CC THIS SUBROUTINE IS USED TO INITIALIZE VALUES IN THE VARIOUS ARRAYSC NEEDED FOR TRANSIENT COMPARTM~~T ANALYSIS.C

139

COMMON BLOCK VARIABLES

EQUIVALENCED VARIABLES

BLOWER FLOW RATE, FT**3IMINFLOW AREA FOR PRESSURE DROP CONTROLLED FLOW,FT**2

NUMBER OF NODES AVAILABLE IN THE TRANSIENTCOMPARTMENT MODEL (NOTE: NODE 30 IS THE NULLVECTOR)NUMBER OF INPUT AND NUMBER OF OUTPUT STREAMSALLOWED IN THE TRANSIENT COMPARTMENT MODEL

NODE COMPONENT MASS, LB, OR NODE Cot1PONENT FLOWRATE, LB/(DELT)FRACTIONAL RELATIVE HUMIDITY, -­NODE TEMPERATURE, DEG FNODE PRESSURE, PSIANODE HEAT TRANSFER SURFACE TEMPERATURE, DEG FCOMPONENT MOLECULAR WEIGHTS, LB/LB MOLENODE VOLUME, FT**3RESISTANCE COEFFICIENT, --, OR RESISTENCE TERM,PSI-SEC**2/LB-FT**2DEPOSITION AREA, FT**2DEPOSITION VELOCITY, FT/SECNODE ENTHALPY, BTU, OR NODE ENTHALPY RATE,BTU/(DELT)HEAT TRANSFER RATE, BTU/(DELT)COOLING RATE, BTU/(DELT)HEAT TRANSFER COEFFICIENT, BTU/SEC-FT**2-DEG FHEAT TRANSFER AREA, FT**2NODE INLET STREAMSNODE OUTLET STREAMSNATURAL LOG OF THE MINIMUM NUMBER ACCEPTED BYTHE COMPUTERCUMULATIVE TIME OF THE TRANSIENT SIMULATION, SECTIME INCREMENT FOR THE TRANSIENT SIMULATION, SECMAXIMUM CUMULATIVE TIME OF THE SIMULATION, SECCONTROL VARIABLE FOR PRINTING OUTPUTTOTAL RELEASE TIME, SECWEI GHT FRACTION OF MONOMER TO HF VAPORWEIGHT FRACTION OF TRIMER TO HF VAPORWEIGHT FRACTION OF HEXAMER TO HF VAPOREFFECTIVE MOLECULAR WEIGHT OF HF VAPOR,LB/LB MOLETYPE OF RELEASETOTAL MASS OF RELEASED MATERIAL, LBCONTROL VARIABLE IDENTIFYING BASIS FOR UF6LIQUID FLASH OR VAPOR EXPANSION

INOUT

INODES

MASS (30,9)

RHTC (30)PC (30)TSURF (30)WMOL (9)

VOL (30)KRCOEF (30)

DPAREA (30)DEPVELH (30)

QRATE (30)QCOOL (30)HTCOEF (30)HTAREA (30)IIN (30,4)lOUT (30,4)AMINLN

TIMEDELTMAXTIMIFLAGTRELSC1C3C6WMBHF

ITYPESOURCEISEN

ACFM (30)FLAREA (30)

OUTPUT VARIABLES

C THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C

C

140

IMPLICIT REAL*8 (A-H,J-Z)

DIMENSION ACFM(30), FLAREA(30)

COMMON ILBMASSI MASS(30,9) , RHCOMMON ICOMPTPI TC(30), PC(30), TSURF(30)COMMON IMOLWTI WMOL(9)COMMON /vOLUMEI VOL(30), KRCOEF(30), DPAREA(30), DEPVELCOMMON lENTHAll H(30), QRATE(30), QCOOL(30), HTCOEF(30),

* HTAREA(30)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AMINLN, TIME, DELT, MAXTIM, IFLAG, TRELSCOMMON IPOLYMRI Cl, C3, C6, WMBHFCOMMON IMISCELI ITYPE, SOURCE, ISEN

CEQUIVALENCE (VOL(l), ACFM(l), FLAREA(l»

CAMINLN =-88.00

CINODES =30INOUT =4

CC MOLECULAR WEIGHTS.C

WMOL(1) =28.96600WMOL(2) =18.01600WMOL(3) =WMOL(2)WMOL(4) = 20.00800WMOL(5) = WMOL(4)WMOL(6) = 352.02500WMOL(?) = WHOL(6)WMOL(8) =WMOL(6)WMOL(9) = 308.02500

CWMBHF = 1oI'10L(4)

CDO 30 I30=1,INOOES

CDO 10 110=1,9

CMASS(I30,I10) = 0.00

C10 CONTINUE

C

C

VOL (130) = O. DOH(l30) =0.00QRATE(I30) = 0.00QCOOL(I30) =0.00HTCOEF(I30) = 0.00VOL (130 ) = O. DOKRCOEF(I30) = 0.00DPAREA(I30) = 0.00

141

C

C

DO 20 I20=1,INOUT

IIN(I30,I20) = INODESIOUT(I30,I20) = INODES

20 CONTINUEC

30 CONTINUEC

DEPVEL = 0.033DOC

RETURNC

END

B.24 SSBLOW

SUBROUTINE SSBLOW (IC, RATIO)

COMM~~ BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED:

STREAM NODE NUMBERRATIO OF MOLES OF WATER VAPOR TO TOTAL MOLES OFMOIST AIR

ABSOLUTE TEMPERATURE, DEG RTOTAL MOLE FLrn~ RATE, MOLE/(DELT)

COMPONENT NODE MASS OR MASS FLOW RATE, LB(COMPARTMENT) OR LB/(DELT) (STREAM)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPONENT MOLECULAR WEIGHTS, LB/LB MOLEVOLUMETRIC FLOW RATE THROUGH STREAM NODE,FT**3/MINENTHALPY RATE, BTU/(DELT)NODE INPUT STREAM NUMBERNODE OUTPUT STREAM NUMBERMINIMUM NATUPAL LOG ACCEPTED BY THE COMPUTERTIME AT WHICH FLOW RATE IS BEING EVALUATED, SECTIME INTER~~L USED IN TRANSIEt~ SIMULATION, SEC

(30)(30,4)(30,4)

(30)(30 )( 9)(30)

(30,9)MASS

ICRATIO

TRNTOT

TCPCWMOLACFM

HlINlOUTAtv!!:~LN

TIMEDELT

INTERNAL VARIABLES

INPUT VARIABLES

CC THIS SUBROUTINE EVALUATES THE STEADY-STATE COMPONENT MASS FLOW RATESC RESULTING FROM THE FLOW OF MOIST AIR THROUGH A CONSTANT VOLUME BLOWERC GIVEN THE RATIO OF WATER VAPOR TO AIR AND WATER. FOR STEADY STATEC CONDITIONS, THE TEMPERATURE AND PRESSURE OF NODE IC SHOULD BE THAT OFC THE NODE SERVING AS THE INLET TO NODE IC.CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DENTHL

HHFH20HUF6DENUF6VPRUF6ZUF6

OTHER SUBROUTINES REQUIRED (BECAUSE OF DENTHL) ARE:

142

Ce THE FOLLOWING SUBROUTINE IS CALLED BY DENTHL:eCCCeCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)e

COMMON /LBMASSI MASS(30,9), DUMlCOMMON ICOMPTPI TC(30), PC(30), DUM2(30)COMMON IMOLWTI WMOL(9)COMMON IVOLUMEI ACFM(30), DUM3(61)COMMON IENTHALI H(30), DUM4(120)COMMON IISTRMSI IIN(30,4), IOUT(30,4)COMMON ICONTRLI AMINLN, TIME, DELT, DUM5, IDUM, DUM6

C

C

C

C

C

C

C

TC(IC) =TC(IIN(IC,l»PC(IC) = PC(IIN(IC,l»

TR =TC(IC) + 459.6700

NTOT = PC(IC)*ACFM(IC)*DELT/l0.73DO/TR/6.Dl

MASS(IC,3) = RATIO*NTOT*WMOL(3)MASS(IC,l) = (1.00 - RATIO)*NTOT*WMOL(l)

CALL DENTHL (TC(IC), PC(IC), IC, H(IC»

RETURN

END

B.25 STERM

SUBROUTINE STERM (IC, ICMAIN, SOLIDS)cC THIS SUBROUTINE EVALUATES A STEADY STATE RELEASE RATE BASED ON THEC INITIAL PRESSURE OF THE MAIN COMPARTMENT ~ID, FOR UF6 RELEASES,C WHETHER THE RELEASE IS ISENTROPIC OR ISENTHALPI C.CC THE FOLLOWING VARIABLES ARE USED.CC INPUT VARIABLEScCC

IeICMAIN

NODE NUMBER FOR SOURCENODE NUMBER OF COMPARTMENT IN WHICH SOURCE IS

143

CCCCCC

OUTPUT VARIABLE

SOLIDS

LOCATED

MASS FLOW RATE OF UF6 SOLIDS BEING DEPOSITED ONFLOOR, LB/(DELT)

SOLIDS DUMPED TO FLOORSOLIDS AIRBORNE

ISENTROPIC FLASHISENTHALPIC FLASH

HF LIQUIDHF VAPORUF6 LIQUID,UF6 LIQUID,UF6 VAPOR

o1

457

-78

WEIGHT FRACTION OF HF IN HF-H20 CONDENSATEVAPOR PRESSURE OF HF, PSIAINITIAL UF6 VAPOR MASS FRACTIONINITIAL UF6 LIQUID MASS FRACTION IN THE UF6CONDENSED FRACTIONFINAL UF6 VAPOR MASS FRACTIONFINAL UF6 LIQUID MASS FRACTION IN THE UF6CONDENSED FRACTIONFINAL TEMPERATURE OF FLASHED UF6 CORRESPONDINGTO THE PRESSURE OF THE MAIN COMPARTMENT, DEG FVAPOR PRESSURE OF UF6, PSIA

COMPONENT MASS FLOW RATE, LB/(DELT)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPONENT MOLECULAR WEIGHTNODE ENTHALPY RATE, BTU/(DELT)MINIMUM NATURAL LOG ACCEPTED BY THE COMPUTERINTERVAL OF TIME USED FOR TRANSIENT SIMULATION,SECTOTAL TIME OF RELEASE, SECRELEASE TYPE INENTIFIER

TOTAL MASS OF SOURCE, LBBASIS FOR FLASH OF UF6 LIQUID

(30,9)(30 )(30)(9)(30)

DENTHLFLASHHFPOLYPHFH20VPRUF6

PUF6

SOURCEISEN

XVFINXLFIN

TRELSITYPE

WHFLPHFXVINITXLINIT

MASSTCPCWMOLHAMINLNDELT

TFIN

COMMON BLOCK VARIABLES

INTERNAL VARIABLES

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC THE FOLLOWING SUBROUTINES ARE CALLED BY THIS SUBROUTINE.CCCCCCC

DENUF6EQTUF6HHFH20HUF6SUF6ZUF6

144

C THE FOLLOWING SUBROUTINES ARE ALSO REQUIRED TO EXECUTE THISC SUBROUTINE.CCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

C

C

COMMON ILBMASSI MASS(30,9) , DUM1COMMON ICOMPTPI TC(30), PC(30), DUM2(30)COMMON IMOLWTI WMOL(9)COMMON IENTHALI H(30), DUM3(120)COMMON ICONTRLI AMINLN, DL~4, DELT, DUM5, IDUM, TRELSCOMMON IMISCELI ITYPE, SOURCE, ISEN

SOLIDS = O.DO

MASS(IC,IABS(ITYPE» = SOURCE*DELTITRELSCC SOURCE TERM FOR HF LIQUID.C

IF (ITYPE.EQ.4) GO TO 40CC SOURCE TERM FOR HF VAPOR. IF THE ENTERED SOURCE PRESSURE IS LESSC THAN ZERO OR GREATER THAN THE VAPOR PRESSURE CORRESPONDING TO THEC SOURCE TERMPERTURE, THE SOURCE PRESSURE IS SET EQUAL TO THE VAPORC PRESSURE.C

IF (ITYPE.NE.5) GO TO 10C

WHFL = 1.00C

CALL PHFH20 (TC(IC), WHFL, 0.00, PHF, 0.00, 0.00)C

IF (PHF.LT.PC(IC).OR.PC(IC).LT.O.DO) PC(IC) = PHFC

CALL HFPOLY (TC(IC), PC(IC), WMOL(5), .TRUE.)C

GO TO 40C

10 CONTINUECC SOURCE TERM FOR UF6 LIQUID. UF6 LIQUID IS FLASHED TO THE INITIALC PRESSURE OF THE COMPARTMENT. IF ITYPE = 7, ONLY THE VAPOR FRACTION ISC UTILIZED AS A SOURCE TERM FOR THE COMPARTMENT, WHILE THE SOLIDSC FRACTION IS ACCUMULATED ON THE FLOOR. IF ITYPE = -7, BOTH SOLID ANDC VAPOR ARE INCORPORATED INTO THE SOURCE TERM.C

IF (IABS(ITYPE).NE.7) GO TO 20C

C

C

C

C

C

C

C

C

C

C

145

CALL VPRUF6 (TC(IC), PC(IC»

XVINIT = O. DOXLINIT =1. DO

CALL FLASH (TC(IC), PC(IC), WMOL(7), XVINIT, XLINIT, PC(ICMAIN),* ISEN, XVFIN, XLFIN, TFIN)

MASS(IC,8) = MASS(IC,7)*XVFIN

SOLIDS =MASS(IC,7) - MASS(IC,8)

IF (ITYPE.EQ.-7) MASS(IC,6) = SOLIDSIF (ITYPE.EQ.-7) SOLIDS = O.DO

MASS(IC,7) = O.DO

TC(IC) =TFIN

PC(IC) = PC(ICMAIN)

GO TO 40

20 Ce:t-ITINUECC SOURCE TERM FOR UF6 VAPOR. IF THE ENTERED SOURCE PRESSURE IS LESSC THAN OR EQUAL TO ZERO OR GREATER THAN THE VAPOR PRESSUREC CORRESPONDING TO THE SOURCE TERMPERTURE, THE SOURCE PRESSURE IS SETC EQUAL TO THE VAPOR PRESSURE.C

IF (ITYPE.NE.8) GO TO 30C

C

C

C

C

C

C

C

C

CALL VPRUF6 (TC(IC), PUF6)

IF (PUF6.LT.PC(IC).OR.PC(IC).LE.0.DO) PC(IC) = PUF6

GO TO 40

30 CONTINUE

WRITE (5,500) ITYPE

STOP15

40 CONTINUE

CALL DENTHL (TC(IC), PC(IC), IC, H(IC»

RETURNC

500 FORMAT (11,5X,'ITYPE =',31,' NOT RECOGNIZED.',II)C

END

146

B.26 SUF6

SUBROUTINE SUF6 (TF, PSIA, MW, SSOL, SLIQ, SVAP)

THE FOLLOWING SUBROUTINE IS CALLED.

THE ENTROPY CORRELATIONS ARE BASED ON INFORMATION IN R. DEWITT,·URANIUM HEXAFLUORIDE: A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,"GAT-280, GOODYEAR ATOMIC CORP., PORTg10UTH, OHIO, JAN. 29, 1960,PAGES 67 - 70. THE ENTROPY OF THE VAPOR GIVEN BY THE CORRELATION INGAT-280 IS FOR A PRESSURE OF 1 ATM. THE VAPOR CORRELATION GIVEN BELOWHAS BEEN MODIFIED USING THE MAGNUSON EQUATION OF STATE (SEE GAT-280,PAGES 97 - 101) AND THE DEPARTURE FUNCTION CORRELATIONS GI~EN INR. C. REID, J. M. PRAUSNITZ, AND T. K. SHERWOOD, THE PROPERTIES OFGASES AND LIQUIDS, 3RD ED., MCGRAW-HILL BOOK COMPANY, 1977, PAGE 93,SO THAT BOTH SATURATED AND UNSATURATED VAPOR ENTROPIES CAN BECALCULATED.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RLN(TR)TR**2PRESSURE, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLEENTROPY OF THE SOLID, BTU/LB MASS-DEG FENTROPY OF THE LIQUID, BTU/LB MASS-DEG FENTROPY OF THE VAPOR, BTU/LB MASS-DEG FVAPOR COMPRESSIBILITY FACTOR AT TF AND PSIAVAPOR COMPRESSIBILITY FACTOR AT TF AND 14.696 PSIA

SSOL

TFTRLNTRTRSQPSIAMW

SUQSVAPZPSIAZlATM

ZUF6

CC THIS SUBROUTINE CALCULATES THE ENTROPIES OF UF6 SOLID, LIQUID, ANDC VAPOR. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CIMPLICIT REAL*8 (A-H,J-Z)

TR =TF + 459.67DOLNTR = DLOG(TR)TRSQ = TR*'k2

CC THE ENTROPY OF THE SOLID IS GIVEN BY THE FOLL(~ING CORRELATION WHICHC IS ACCURATE WITHIN 0.01% BETWEEN 32 DEG F AND THE TRIPLE POINT (147.3C DEG F).C

SSOL = ( 3.93535D-l - 5.70531D-2*LNTR + 2.55019D-4*TR* - ( 4.82282D3/TRSQ ) ) * ( 3.52D2/MW )

cC THE ENTROPY OF THE LIQUID IS GIVEN BY THE FOLLOWING CORRELATION WHICHC IS REPORTED TO HAVE AN ACCURACY OF 0.01% [OVER AN ASSUMED RANGE OFC 147.3 TO 206.3 DEG F).C

SLIQ = ( -1.72963D-1 + 5.10057D-2*LNTR + 1.02633D-4*TR* - ( 3.06967D3/TRSQ ) ) * ( 3.52D2/MW )

147

CC CALCULATE THE VAPOR COMPRESSIBILITY FACTOR AT 14.696 PSIA AND ATC ·PSIA.·C

CALL ZUF6 (TF, 14.696DO, ZlATM, O.ODO, O.ODO)CALL ZUF6 (TF, PSIA, ZPSIA, O.ODO, 0.000)

SVAP***

CRETURN

CEND

CC THE ENTROPY OF THE VAPOR IS GIVEN BY THE FOLLOWING CORRELATION.C

= ( -3.327040-1 + 9.21307D-2*LNTR + 1.25237D-5*TR+ ( 1.47586D3/TRSQ ) + 3.09390-3 * (ZPSIA - ZlATM)+ 1.0313D-3 * DLOG( (l.DO - ZlATM) / (1.00 - ZPSIA) ) )* ( 3.52D2/MW )

D.27 THCUF6

THE FOLLOWING SUBROUTINES ARE CALLED.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, OEG RPRESSURE, PSIAMOLECULAR WEIGHT, LB MASS/LB MOLETHERMAL CONDUCTIVITY OF THE SOLID, BTU/HR-FT-DEG FTHERMAL CONDUCTIVITY OF THE LIQUID, BTU/HR-FT-OEG FTHERMAL CONDUCTIVITY OF THE VAPOR, BTU/HR-FT-DEG FHEAT CAPACITY OF THE LIQUID, BTU/LB MASS-DEG FDENSITY OF THE LIQUID, LB MASS/FT**3

CPUF6DENUF6

TFTRPSIAMWTHCSOLTHCLIQTHCVAPCPLIQDENLIQ

SUBROUTINE THCUF6 (TF, PSIA, MW, THCSOL, THCLIQ, THCVAP)CC THIS SUBROUTINE CALCULATES THE THERMAL CONDUCTIVITY OF UF6 SOLID,C LIQUID, AND VAPOR. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

TR =TF + 459.67DOCC THE THERMAL CONDUCTIVITY OF THE SOLID IS BASED ON DATA OBTAINED FROMC E. J. BARBER (PERSONAL COMMUNICATION, JULY 13, 1983). ASSUMING AC LINEAR RELATIONSHIP BETWEEN THERMAL CONDUCTIVITY AND TEMPERATURE,C THE THERMAL CONDUCTIVITY OF THE SOLID IS GIVEN BYC

THCSOL =2.586D-l + 6.084D-4*TFCC CALCULATE THE HEAT CAPACITY AND THE DENSITY OF THE LIQUID.C

148

CALL CPUF6 (TF, PSIA, MW, O.ODO, CPLIQ, O.ODO, O.ODO, O.ODO)C

CALL DENUF6 (TF, PSIA, MW, O.ODO, DENLIQ, O.ODO)CC THE THERMAL C~~DUCTIVITY OF THE LIQUID IS BASED ON A SINGLE VALUEC REPORTED IN R. DEWITT, "URANIUM HEXAFLUORIDE: A SURVEY OF THEC PHYSICO-CHEMICAL PROPERTIES," GAT-2BO, GOODYEAR ATOMIC CORP.,C PORTSMOUTH, OHIO, JAN. 29, 1960, PAGE 46. ASSUMING A GENERAL FORM OFC VARIOUS PREDICTIVE CORRELATIONS FOR THERMAL CONDUCTIVITY OF A LIQUID,C WHICH IS K = B * CP * (DEN**1.33) I TR, THE COEFFICIENT B WASC DETERMINED. THUS, AN APPROXIMATE CORRELATION FOR LIQUID THERMALC CONDUCTIVITY IS GIVEN BYC

THCLIQ = 3.2470-1 * CPLIQ * ( DENLIQ**(4.DO/3.DO) ) I TRCC THE THERMAL CONDUCTIVITY OF THE VAPOR IS BASED ON GAT-2BO, PAGES 44 ­C 46, AND IS GIVEN BYC

THCVAP = 3.26BD-3 * ( 1.0DO + 2.52D-3*TF )C

RETURNC

END

B.28 TRBLOW

SUBROUTINE TRBLOW (IC)

EQUIVALENCED VARIABLE

COMMON BLOCK VARIABLES

THE FOLLOWING VARIABLES ARE USED:

STREAM NODE NUMBER

COMPONENT NODE MASS OR MASS FLOW RATE, LB(COMPARTMENT) OR LB/(DELT) (STREAM)NODE TEMPERATURE, DEG FNODE PRESSURE, PSIACOMPONENT MOLECULAR WEIGHTS, LB/LB MOLEVOLUMETRIC FLOW RATE THROUGH BLOWER, FT**3/MINENTHALPY OR ENTHALPY RATE, BTU OR BTU/(DELT)MINIMUM NATURAL LOG ACCEPTED BY THE COMPUTERTIME INTERVAL USED IN TRANSIENT SIMULATION, SECNODE INPUT STREAM NUMBERNODE OUTPUT STREAM NUMBER

(30,9)

(30,4)(30,4)

(30)(30)(9)(30)(30)

IC

MASS

TCPCJoI10LACFMHAMINLNDELTI INlOUT

INPUT VARIABLE

CC THIS SUBROUTINE EVALUATES THE TRANSIENT MASS FLOW RATES FOR AC CONSTANT VOLUME BLOWER REPRESENTED BY NODE IC WHICH DRAWS FROM AC COMPARTMENT REPRESENTED BY NODE IIN(IC,l).CCCCCCCCCCCCCCCCCCCCCC

149

DIMENSION VOL(30)

IMPLICIT REAL*B (A-H,J-Z)

CCCCCCCC

C

VOL (30)

INTERNAL VARIABLE

FRAC

COMPARTMENT NODE VOLUME, FT**3

RATIO OF BLOWER VOLUME FLOW RATE-TIME INTERVALPRODUCT TO INLET NODE VOLUME

C

C

C

COMMON /LBMASS/ MASS(30,9), DUM1COMMON /COMPTP/ TC(30), PC(30), DUM2(30)COMMON /MOLWT/ WMOL(9)COMMON /VOLUME/ ACFM( 30), DUM3( 61)COMMON /ENTHAL/ H(30), DUM4(120)COI'1'1ON /CONTRU AMINLN, DUM5, DELT, DUM6, IDUM1, DUI'17COMMON /ISTRMS/ IIN(30,4), IOUT(30,4)

EQUIVALENCE (VOL(l),ACFM(l»

C

C

C

FRAC = ACFM(IC)*DELT/6.D1/vOL(IIN(TC,1»

DO 10 110=1,9

MASS(IC,I10) = FRAC*MASS(IIN(IC,1),I10)

10 CONTINUEC

C

H(IC) =FRAC*H(IIN(IC,l»TC(IC) =TC(IIN(IC,l»PC(IC) = PC(IIN(IC,l»

RETURNC

END

B.29 VISUF6

SUBROUTINE VISUF6 (TF, PSIA, MW, VISLIQ, VISVAP)

THE FOLLOWING SUBROUTINE IS CALLED.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG RPRESSURE, PSIAMOLECULAR WEIGHT, LB/LB MOLELIQUID VISCOSITY, LB MASS/FT-HRVAPOR VISCOSITY, LB MASS/FT-HR

TFTRPSIAMWVISLIQVISVAP

CC THIS SUBROUTINE CALCULATES THE VISCOSITIES OF UF6 LIQUID AND VAPOR.C THE FOLLOWING VARIABLES ARE USED.CCCCCCCCC

150

CC VPRUF6CC THE VISCOSITY CORRELATIONS ARE BASED ON INFORMATION FROM R. DEWITT,C ·URANIUM HEXAFLUORID: A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,"C GAT-280, GOODYEAR ATOMIC CORP., PORTSMOUTH, OHIO, JAN. 29, 1960,C PAGES 38 - 44. THE VAPOR VISCOSITY CORRELATION WAS FITTED TO DATAC REPORTED IN GAT-280 BY W. R. WILLIAMS.C

CIMPLICIT REAL*8 (A-H,J-Z)

TR =TF + 459.6700CC THE VISCOSITY OF THE LIQUID IS GIVEN BY THE FOLLOWING CORRELATIONC WHICH IS BASED ON DATA RANGING FROM 158 TO 410 DEG F. THE SUM OF THEC TERMS IN THE EXPONENTIAL IS CORRECT BASED ON THE DATA OF BLATTC REPORTED BY DEWITT IN TABLE 25.C

VISLIQ = 0.40400 * DEXP( (9.9702 + 4.1D-2*PSIA)/TR )CC THE VISCOSITY OF THE VAPOR BASED ON DATA RANGING FROM 104 TO 392C DEG F ISGIVEN WITHIN 0.6% BY THE FOLLOWING CORRELATION.C

VISVAP = 1.1920-4 * TR**0.9305DOC

RETURNC

END

B.30 VPRUF6

SUBROUTINE VPRUF6 (TF, PSIA)

TEMPERATURE, DEG FPRESSURE, PSIAPRESSURE, PSIAPRESSURE, PSIA

TFPSIAPlP2

C

CC THIS SUBROUTINE CALCULATES THE VAPOR PRESSURE OF UF6. THE FOLLOWINGC VARIABLES ARE USED.CC

CCCC THE VAPOR PRESSURE CORRELATIONS USED ARE BASED ON R. DEWITT, ·URANIUMC HEXAFLUORIDE: A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,· GAT-280,C GOODYEAR ATOMIC CORP., PORTSMOUTH, OHIO, JAN. 29, 1960, PAGE 81.C

IMPLICIT REAL*8 (A-H,J-Z)C

IF (TF.GE.147.306561DO) GO TO 10CC THE VAPOR PRESSURE OF UF6 OVER THE SOLID FROM 32 DEG F TO THE TRIPLEC POINT AT 147.3 DEG F IS GIVEN BYC

PSIA = DEXP ( 10.444300 + 9.64233D-3*TF - ( 3.9074103 /

151

* ( TF + 298.149DO ) ) )C

RETURNC

10 CONTINUECC DEWITT RECOMMENDS 2 CORRELATIONS FOR THE VAPOR PRESSURE OF UF6 OVERC THE LIQUID. THE FIRST, WHICH IS GIVEN BELOW BY P1, GIVES GOOD AGREE­C MENT (0.03%) FROM THE TRIPLE POINT TO 240.8 DEG F. THE SECOND, WHICHC IS GIVEN BELOW BY P2, AGREES WITHIN 0.3% ON AVERAGE BETWEEN THEC 240.8 DEG F AND THE CRITICAL POINT. P2 EXCEEDS THE TABULATED VALUESC OF VAPOR PRESSURE FROM 240.8 DEG F TO ABOUT 276 DEG F. BY USING AC WEIGHTED AVERAGE OF Pi AND P2 OVER THIS RANGE, A BETTER AGREEMENTC WITH TABULATED VALUES IS OBTAINED, AS WELL AS A CONTINUOUS FUNCTIONC FOR VAPOR PRESSURE.C

P1 = DEXP ( 12.1600DO - ( 4.66807D3 / ( TF + 367.533DO ) ) )P2 = DEXP ( 13.7627DO - ( 6.97611D3 / ( TF + 511.866DO ) ) )

CIF (TF. GE. 2.40D2) GO TO 20

CC THE VAPOR PRESSURE OF UF6 OVER THE LIQUID FROM THE TRIPLE POINT TOC 240 DEG F IS GIVEN BYC

PSIA = P1C

RETURNC

20 CONTINUEC

IF (TF.GE.2.76D2) GO TO 30CC THE VAPOR PRESSURE OF UF6 OVER THE LIQUID FROM 240 TO 276 DEG F ISC GIVEN BYC

PSIA = ( (2.76D2 - TF)*P1 + (TF - 2.40D2)*P2 )/ 3.6D1C

RETURNC

30 CONTINUECC THE VAPOR PRESSURE OF UF6 OVER THE LIQUID FROM 276 DEG F TO THEC CRITICAL POINT IS GIVEN BYC

PSIA = P2C

RETURNC

END

152

B.31 ZUF6

SUBROUTINE ZUF6 (TF, PSIA, Z, ZP, ZT)

ZP = Z - P (DZ/DP), EVALUATED FOR CONSTANT TZT = Z + T (DZ/DT), EVALUATED FOR CONSTANT P

THE COMPRESSIBILITY FACTOR IS BASED ON THE EQUATION OF STATE FOR UF6PROPOSED BY D. W. MAGNUSON CITED BY R. DEWITT, "URANIUM HEXAFLUORIDE:A SURVEY OF THE PHYSICO-CHEMICAL PROPERTIES,· GAT-280, GOODYEARATOMIC CORP., PORTSMOUTH, OHIO, JAN. 29, 1960, PAGES 24 AND 97 - 101.

TEMPERATURE, DEG FABSOLUTE TEMPERATURE, DEG R(DEG R)**3PRESSURE, PSIACOMPRESSIBILITY FACTOR

TFTRTCUBEPSIAZ

CC THIS SUBROUTINE CALCULATES THE COMPRESSIBILITY FACTOR OF UF6 AS WELLC AS THE QUANTITIES ZP AND ZT. THE FOLLOWING VARIABLES ARE USED.CCCCCCCCCCCCCCC

IMPLICIT REAL*8 (A-H,J-Z)C

TR =TF + 459.67DOTCUBE = TR**3

CZ =TCUBE I ( TCUBE + 4.8923D5*PSIA

CZP = ( 2.0DO - Z ) * ZZT = ( 4.0DO - 3.0DO*Z ) * Z

CRETURN

CEND

Appendix CEXAMPLE PROBLEM OUTPUT

Output for Examples I (Cases 1 through 4), 2 (Cases 1 and 3), 3 (Cases I through 3), 4(Cases 1 through 4), and 5 are included in this appendix. Output for Examples 1, 2, and 3 wereproduced by CYLIND. Output for Example 4, Cases 1 and 3, as well as Example 5, were producedby FODRFT and for Example 4, Cases 2 and 4, by INDRFT. Example problems are described inChapter 5. Output for Examples 2 (Case 2) and 6 from CYLIND and BATCH, respectively, areincluded in Chapter 5 as are selected plots produced by COMPLT and CYLPLT.

153

TITL

E:EX

.1,

CASE

1.10

-TCN

CYL,

SHEA

RED

VAlV

EAT

6O'

CLOC

K,UF

6AT

200

F

******

*CCN

DITlC

NOF

UF6

INCO

NTAl

ttlENT

******

*PA

TIJ.IA

YIN

LET

****

****

*CC

NDIT

ICN

OFUF

6EX

HAUS

TED

****

****

**FU

JITIM

E**

****

****

MASS

(LB)

******

****

TEMP

PRES

RELE

ASE

PRES

RATE

****R

ELEA

SERA

TE(L

BISE

C)***

*TE

MPPR

ES(S

EC)

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

PHAS

E(P

SIA)

BASI

SSO

LID

LIQU

IDVA

POR

TOTA

L(D

EGF)

(PSI

A)

o.0.

021

003.

426

.621

030.

020

0.00

051

.152

LIQU

ID55

.298

CHOK

E2.

944

0.00

03.

390

6.33

414

.700

133.

780

60.

0.0

2061

9.2

30.7

2065

0.0

199.

949

51.1

14LI

QUID

55.1

57CH

OKE

2.94

30.

000

3.38

76.

330

14.7

0013

3.78

012

0.0.

020

235.

334

.920

270.

219

9.89

651

.075

LIQU

ID55

.019

CHOK

E2.

942

0.00

03.

384

6.32

614

.700

133.

780

180.

0.0

1985

1.6

39.0

1989

0.6

199.

843

51.0

36LI

QUID

54.8

84CH

OKE

2.94

10.

000

3.38

16.

322

14.7

0013

3.78

024

0.0.

019

468.

143

.219

511.

319

9.78

950

.996

LIQU

ID54

.751

CHOK

E2.

940

0.00

03.

379

6.31

814

.760

133.

780

300.

0.0

1908

4.8

47.3

1913

2.2

199.

734

50.9

55LI

QUID

54.6

20CH

OKE

2.93

90.

000

3.37

66.

314

14.7

0013

3.78

036

0.0.

018

701.

951

.418

753.

319

9.67

850

.914

LIQU

ID54

.490

CHOK

E2.

938

0.00

03.

373

6.31

014

.700

133.

780

420.

0.0

1831

9.1

55.6

1837

4.7

199.

621

50.8

71LI

QUID

54.3

60CH

OKE

2.93

70.

000

3.37

06.

306

14.7

0013

3.78

048

0.0.

017

936.

659

.717

996.

319

9.56

250

.828

LIQU

ID54

.232

CHOK

E2.

935

0.00

03.

367

6.30

214

.700

133.

780

540.

0.0

1755

4.4

63.8

1761

8.2

199.

503

50.7

85LI

QUID

54.1

04CH

OKE

2.93

40.

000

3.36

36.

298

14.7

0013

3.78

060

0.0.

017

172.

567

.817

240.

319

9.44

250

.740

LIQU

ID53

.976

CHOK

E2.

933

0.00

03.

360

6.29

314

.700

133.

780

660.

0.0

1679

0.8

71.9

1686

2.7

199.

381

50.6

95LI

QUID

53.8

49CH

OKE

2.93

20.

000

3.35

76.

289

14.7

0013

3.78

072

0.0.

016

409.

476

.016

485.

419

9.31

850

.648

LIQU

ID53

.721

CHOK

E2.

931

0.00

03.

354

6.28

414

.700

133.

780

780.

0.0

1602

8.3

80.0

1610

8.3

199.

254

50.6

01LI

QUID

53.5

94CH

OKE

2.92

90.

000

3.35

06.

280

14.7

0013

3.78

084

0.0.

015

647.

584

.115

731.

619

9.18

850

.553

LIQU

ID53

.466

CHOK

E2.

928

0.00

03.

347

6.27

514

.700

133.

780

900.

0.0

1526

7.0

88.1

1535

5.1

199.

121

50.5

03LI

QUID

53.3

38CH

OKE

2.92

70.

000

3.34

36.

270

14.7

0013

3.78

096

0.0.

014

886.

792

.114

978.

919

9.05

250

.453

LIQU

ID53

.210

CHOK

E2.

925

0.00

03.

340

6.26

514

.700

133.

780

....10

20.

0.0

1450

6.8

96.1

1460

3.0

198.

982

50.4

02LI

QUID

53.0

80CH

OKE

2.92

40.

000

3.33

66.

260

14.7

0013

3.78

0~

1080

.0.

014

127.

210

0.1

1422

7.4

198.

910

50.3

49LI

QUID

52.9

51CH

OKE

2.92

20.

000

3.33

26.

255

14.7

0013

3.78

011

40.

0.0

1374

8.0

104.

113

852.

119

8.83

750

.295

LIQU

ID52

.820

CHOK

E2.

921

0.00

03.

328

6.24

914

.700

133.

780

1200

.0.

013

369.

010

8.1

1347

7.1

198.

761

50.2

40LI

QUID

52.6

88CH

OKE

2.92

00.

000

3.32

56.

244

14.7

0013

3.78

012

60.

0.0

1299

0.5

112.

013

102.

519

8.68

450

.184

LIQU

ID52

.556

CHOK

E2.

918

0.00

03.

320

6.23

814

.700

133.

780

1320

.0.

012

612.

211

6.0

1272

8.2

198.

605

50.1

26LI

QUID

52.4

22CH

OKE

2.91

60.

000

3.31

66.

233

14.7

0013

3.78

013

80.

0.0

1223

4.3

119.

912

354.

219

8.52

450

.066

LIQU

ID52

.287

CHOK

E2.

915

0.00

03.

312

6.22

714

.700

133.

780

1440

.0.

011

856.

812

3.8

1198

0.6

198.

440

50.0

06LI

QUID

52.1

50CH

OKE

2.91

30.

000

3.30

86.

221

14.7

0013

3.78

015

00.

0.0

1147

9.7

127.

711

607.

319

8.35

449

.943

LIQU

ID52

.012

CHOK

E2.

911

0.00

03.

303

6.21

514

.700

133.

780

1560

.0.

011

102.

913

1.6

1123

4.5

198.

266

49.8

79LI

QUID

51.8

72CH

OKE

2.91

00.

000

3.29

96.

208

14.7

0013

3.78

016

20.

0.0

1072

6.5

135.

410

862.

019

8.17

549

.812

LIQU

ID51

.730

CHOK

E2.

908

0.00

03.

294

6.20

214

.700

133.

780

1680

.0.

010

350.

613

9.3

1048

9.9

198.

081

49.7

44LI

QUID

51.5

86CH

OKE

2.90

60.

000

3.28

96.

195

14.7

0013

3.78

017

40.

0.0

9975

.114

3.1

1011

8.2

197.

984

49.6

74LI

QUID

51.4

41CH

OKE

2.90

40.

000

3.28

46.

188

14.7

0013

3.78

018

00.

0.0

9600

.014

6.9

9746

.919

7.88

449

.601

LIQU

ID51

.292

CHOK

E2.

902

0.00

03.

279

6.18

114

.700

133.

780

1860

.0.

092

25.4

150.

793

76.0

197.

790

49.5

26lll

UID

51.1

41CH

OKE

2.90

00.

000

3.27

46.

173

14.7

0013

3.78

019

20.

0.0

8851

.215

4.4

9005

.619

7.67

349

.449

LIUI

D50

.987

CHOK

E2.

898

0.00

03.

268

6.16

614

.700

133.

780

1980

.0.

084

77.5

158.

186

35.7

197.

562

49.3

69LI

UID

50.8

31CH

OKE

2.89

60.

000

3.26

26.

158

14.7

0013

3.78

020

40.

0.0

8104

.416

1.8

8266

.219

7.44

749

.286

LIUI

D50

.670

CHOK

E2.

893

0.00

03.

256

6.15

014

.700

133.

780

2100

.0.

077

31.7

165.

578

97.2

197.

327

49.1

99LI

QUID

50.5

07CH

OKE

2.89

10.

000

3.25

06.

141

14.7

0013

3.78

021

60.

0.0

7359

.616

9.2

7528

.819

7.20

249

.109

LIQU

ID50

.339

CHOK

E2.

888

0.00

03.

244

6.13

214

.700

133.

780

2220

.0.

069

88.1

172.

871

60.9

197.

071

49.0

15LI

QUID

50.1

67CH

OKE

2.88

60.

000

3.23

76.

123

14.7

0013

3.78

022

80.

0.0

6617

.117

6.4

6793

.519

6.93

548

.918

LIQU

ID49

.990

CHOK

E2.

883

0.00

03.

230

6.11

314

.700

133.

780

2340

.0.

062

46.8

179.

964

26.7

196.

792

48.8

15LI

QUID

49.8

08CH

OKE

2.88

00.

000

3.22

36.

103

14.7

0013

3.78

024

00.

0.0

5877

.118

3.5

6060

.619

6.64

248

.708

LIQU

ID49

.620

CHOK

E2.

877

0.00

03.

215

6.09

214

.700

133.

780

2460

.0.

055

08.1

186.

956

95.0

196.

484

48.5

95LI

QUID

49.4

26CH

OKE

2.87

40.

000

3.20

76.

081

14.7

0013

3.78

025

20.

0.0

5139

.819

0.4

5330

.219

6.31

748

.476

LIQU

ID49

.224

CHOK

E2.

871

0.00

03.

198

6.06

914

.700

133.

780

Ex.

1,Ca

se1

(con

tinue

d)

2580

.0.

047

72.3

193.

849

66.1

196.

140

48.3

50LI

QUID

49.0

15CH

OKE

2.86

70.

000

3.18

96.

056

14.7

0013

3.78

026

40.

0.0

4405

.619

7.1

4602

.719

5.95

148

.217

LIQU

ID48

.796

CHOK

E2.

863

0.00

03.

180

6.04

314

.700

133.

780

2700

.0.

040

39.7

200.

442

40.1

195.

750

48.0

74LI

QUID

48.5

67CH

OKE

2.85

60.

000

3.16

76.

023

14.7

0013

3.78

027

60.

0.0

3675

.120

3.6

3878

.719

5.53

547

.922

LIQU

ID48

.327

CHOK

E2.

844

0.00

03.

147

5.99

114

.700

133.

780

2820

.0.

033

12.6

206.

735

19.3

195.

303

47.7

59LI

QUID

48.0

73CH

OKE

2.83

10.

000

3.12

65.

957

14.7

0013

3.78

028

80.

0.0

2952

.120

9.7

3161

.919

5.05

147

.582

LIQU

ID47

.805

CHOK

E2.

817

0.00

03.

104

5.92

114

.700

133.

780

2940

.0.

025

94.0

212.

728

06.6

194.

777

47.3

90LI

QUID

47.5

18CH

OKE

2.80

30.

000

3.08

05.

883

14.7

0013

3.78

030

00.

0.0

2238

.221

5.5

2453

.619

4.47

647

.179

LIQ-

vAP

47.1

79CH

OKE

2.76

10.

000

3.04

05.

801

14.7

0013

3.78

030

60.

0.0

1887

.721

7.9

2105

.619

4.07

846

.903

VAPO

R46

.903

CHOK

E0.

000

0.00

02.

366

2.36

614

.700

192.

978

3120

.0.

017

81.4

182.

219

63.6

179.

706

37.7

04VA

POR

37.7

04PD

C0.

000

0.00

01.

902

1.90

214

.700

178.

873

3180

.0.

016

95.4

154.

018

49.5

167.

107

30.8

38VA

POR

30.8

38PD

C0.

000

0.00

01.

485

1.48

514

.700

166.

491

3240

.0.

016

27.7

132.

717

60.4

156.

501

25.8

43VA

POR

25.8

43PD

C0.

000

0.00

01.

163

1.16

314

.700

156.

057

3300

.0.

015

74.1

116.

516

90.6

147.

655

22.1

78VA

POR

22.1

78PD

C0.

000

0.00

00.

906

0.90

614

.700

147.

345

3360

.79

.814

40.1

116.

316

36.2

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3420

.16

2.9

1303

.011

6.6

1582

.514

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

334

80.

245.

911

65.8

117.

015

28.7

147.

307

22.0

42VA

POR

22.0

42Po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3540

.32

8.9

1028

.711

7.4

1474

.914

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

336

00.

411.

989

1.5

117.

814

21.1

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3660

.49

4.9

754.

311

8.1

1367

.314

7.30

722

.042

VAPO

R22

.042

POC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

337

20.

577.

961

7.2

118.

513

13.6

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3780

.66

0.9

480.

011

8.9

1259

.814

7.30

722

.042

VAPO

R22

.042

POC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

338

40.

743.

934

2.9

119.

312

06.0

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

.... IJ1

3900

.82

6.9

205.

711

9.6

1152

.214

7.30

722

.042

VAPO

R22

.042

POC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3IJ

1

3960

.90

9.9

68.5

120.

010

98.5

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

TITL

E:EX

.1,

CASE

2.10-T~

CYL,

SHEA

RED

VALV

EAT

9O'

CLOC

K,UF

6AT

200

F

******

*C~ITJ~

OFUF

6IN

COOA

ltt1EN

T***

****

PAT~Y

INLE

T***

******

C~DITl~

orUF

6EX

WillS

TED

HH

HH

HrL

lJ4TIM

E**

****

****

MASS

(LB)

****

****

**TE

MPPR

ESRE

LEAS

EPR

ESRA

TE***

*REL

EASE

RATE

(LBI

SEC)

****

TEMP

PRES

(SEC

)SO

LID

LIQU

IDVA

POR

TOTA

L(D

EGF)

(PSI

A)PI¥

%SE

(PSI

A)BA

SIS

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

O.0.

021

003.

426

.621

030.

020

0.00

051

.152

LIQU

ID53

.179

CHOK

E2.

944

0.00

03.

390

6.33

414

.700

133.

780

60.

0.0

2061

9.2

30.7

2064

9.9

199.

949

51.1

14LI

QUID

53.0

39CH

OKE

2.94

30.

000

3.38

76.

331

14.7

0013

3.78

012

0.0.

020

235.

234

.920

270.

119

9.89

651

.075

LIQU

ID52

.901

CHOK

E2.

942

0.00

03.

384

6.32

714

.700

133.

780

180.

0.0

1985

1.5

39.0

1989

0.5

199.

843

51.0

36LI

QUID

52.7

66CH

OKE

2.94

10.

000

3.38

26.

323

14.7

0013

3.78

024

0.0.

019

468.

043

.219

511.

119

9.78

950

.996

LIQU

ID52

.632

CHOK

E2.

940

0.00

03.

379

6.31

914

.700

133.7

BO30

0.0.

019

084.

747

.319

132.

019

9.73

450

.955

LIQU

ID52

.501

CHOK

E2.

939

0.00

03.

376

6.31

514

.700

133.

780

360.

0.0

1870

1.7

51.4

1875

3.1

199.

678

SO.91

4LI

QUID

52.3

71CH

OKE

2.93

80.

000

3.37

36.

311

14.7

0013

3.78

042

0.0.

018

318.

955

.618

374.

519

9.62

050

.871

LIQU

ID52

.241

CHOK

E2.

937

0.00

03.

370

6.30

714

.700

133.

780

480.

0.0

1793

6.4

59.7

1799

6.1

199.

562

50.8

28LI

QUID

52.1

12CH

OKE

2.93

60.

000

3.36

76.

302

14.7

0013

3.78

054

0.0.

017

554.

163

.817

617.

919

9.S0

350

.785

LIQU

ID51

.984

CHOK

E2.

934

0.00

03.

364

6.29

814

.700

133.

780

600.

0.0

1717

2.2

67.8

1724

0.0

199.

442

50.7

40LI

QUID

51.8

57CH

OKE

2.93

30.

000

3.36

16.

294

14.7

0013

3.78

066

0.0.

016

790.

571

.916

862.

419

9.38

150

.695

LI~ID

51.7

29CH

OKE

2.93

20.

000

3.35

76.

289

14.7

0013

3.78

072

0.0.

016

409.

076

.016

485.

019

9.31

850

.648

LIID

51.6

02CH

OKE

2.93

10.

000

3.35

46.

285

14.7

0013

3.78

078

0.0.

016

027.

980

.016

107.

919

9.25

350

.601

LIQU

ID51

.474

CHOK

E2.

930

0.00

03.

351

6.28

014

.700

133.

780

840.

0.0

1564

7.0

84.1

1573

1.1

199.

188

50.5

53LI

QUID

51.3

46CH

OKE

2.92

80.

000

3.34

76.

275

14.7

0013

3.78

090

0.0.

015

266.

588

.115

354.

619

9.12

150

.S03

LIQU

ID51

.218

CHOK

E2.

927

0.00

03.

344

6.27

114

.700

133.

780

960.

0.0

1488

6.2

92.1

1497

8.4

199.

052

50.4

53LI

QUID

51.0

89CH

OKE

2.92

60.

000

3.34

06.

266

14.7

0013

3.78

0~ 0

110

20.

0.0

1450

6.3

96.1

1460

2.4

198.

982

50.4

02LI

QUID

50.9

60CH

OKE

2.92

40.

000

3.33

66.

259

14.7

0013

3.78

0<

:1)

1080

.0.

014

126.

710

0.1

1422

6.9

198.

910

50.3

49LI

QUID

SO.8

30CH

OKE

2.91

50.

000

3.32

46.

239

14.7

0013

3.78

011

40.

0.0

1374

8.4

104.

113

852.

619

8.83

750

.295

LIQU

ID50

.699

CHOK

E2.

906

0.00

03.

312

6.21

814

.700

133.

780

1200

.0.

013

371.

410

8.1

1347

9.5

198.

762

50.2

40LI

QUID

50.5

68CH

OKE

2.89

80.

000

3.30

06.

198

14.7

0013

3.78

012

60.

0.0

1299

5.6

112.

013

107.

619

8.68

550

.184

LIQU

ID50

.436

CHOK

E2.

889

0.00

03.

288

6.17

714

.700

133.

780

1320

.0.

012

621.

111

5.9

1273

6.9

198.

607

50.1

27LI

QUID

50.3

04CH

OKE

2.88

10.

000

3.27

66.

157

14.7

0013

3.78

013

80.

0.0

1224

7.8

119.

812

367.

519

8.52

750

.069

LIQU

IDSO

.170

CHOK

E2.

872

0.00

03.

264

6.13

614

.700

133.

780

1440

.0.

011

875.

712

3.6

1199

9.3

198.

444

50.0

09LIQ~

SO.00

9CH

OKE

2.82

80.

000

3.23

26.

060

14.7

0013

3.78

015

00.

0.0

1150

8.4

127.

411

635.

719

8.34

049

.933

LIQ-

VAP

49.9

33CH

OKE

1.23

80.

000

2.64

83.

887

14.7

0013

3.78

015

60.

0.0

1127

4.7

127.

811

402.

519

6.94

248

.923

VAPO

R48

.923

CHOK

E0.

000

0.00

02.

462

2.46

214

.700

195.

786

1620

.0.

011

130.

312

4.5

1125

4.8

193.

642

46.6

01VA

POR

46.6

01CH

OKE

0.00

00.

000

2.35

22.

352

14.7

0019

2.55

016

80.

0.0

1099

2.5

121.

211

113.

719

0.43

544

.425

VAPO

R44

.425

CHOK

E0.

000

0.00

02.

249

2.24

914

.700

189.

404

1740

.0.

010

860.

711

8.0

1097

8.8

187.

317

42.3

85VA

POR

42.3

85CH

OKE

0.00

00.

000

2.15

22.

152

14.7

0018

6.34

518

00.

0.0

1073

4.8

114.

910

849.

718

4.28

640

.471

VAPO

R40

.471

CHOK

E0.

000

0.00

02.

060

2.06

014

.700

183.

369

1860

.0.

010

614.

311

1.8

1072

6.1

181.

337

38.6

73VA

POR

38.6

73PD

C0.

000

0.00

01.

959

1.95

914

.700

180.

475

1920

.0.

010

499.

710

8.8

1060

8.5

178.

490

36.9

95VA

POR

36.9

95PD

C0.

000

0.00

01.

860

1.86

014

.700

177.

679

1980

.0.

010

391.

010

5.9

1049

6.9

175.

748

35.4

33VA

POR

35.4

33PD

C0.

000

0.00

01.

766

1.76

614

.700

174.

985

2040

.0.

010

287.

810

3.2

1039

1.0

173.

106

33.9

76VA

POR

33.9

76PD

C0.

000

0.00

01.

678

1.67

814

.700

172.

389

2100

.0.

010

189.

710

0.5

1029

0.2

170.

562

32.6

17VA

POR

32.6

17PD

C0.

000

0.00

01.

595

1.59

514

.700

169.

889

2160

.0.

010

096.

697

.910

194.

516

8.11

331

.348

VAPO

R31

.348

PDC

0.00

00.

000

1.51

71.

517

14.7

0016

7.48

022

20.

0.0

1000

8.0

95.5

1010

3.5

165.

754

30.1

63VA

POR

30.1

63PD

C0.

000

0.00

01.

443

1.44

314

.700

165.

161

2280

.0.

099

23.8

93.1

1001

6.9

163.

484

29.0

55VA

POR

29.0

55PD

C0.

000

0.00

01.

373

1.37

314

.700

162.

928

2340

.0.

098

43.7

90.9

9934

.616

1.30

028

.019

VAPO

R28

.019

PDC

0.00

00.

000

1.30

61.

306

14.7

0016

0.77

924

00.

0.0

9767

.588

.798

56.2

159.

198

27.0

49VA

POR

27.0

49PD

C0.

000

0.00

01.

243

1.24

314

.700

158.

711

2460

.0.

096

95.0

86.7

9781

.715

7.17

726

.141

VAPO

R26

.141

PDC

0.00

00.

000

1.18

31.

183

14.7

0015

6.72

225

20.

0.0

9626

.084

.797

10.7

155.

233

25.2

91VA

POR

25.2

91PD

C0.

000

0.00

01.

126

1.12

614

.700

154.

809

Ex.

1,ea

se2

(conti

nued

)25

80.

0.0

9560

.382

.896

43.2

153.

366

24.4

94VA

POR

24.4

94PO

e0.

000

0.00

01.

071

1.07

114

.700

152.

970

2640

.0.

094

97.8

81.1

9578

.915

1.57

223

.747

VAPO

R23

.747

poe

0.00

00.

000

1.01

91.

019

14.7

0015

1.20

427

00.

0.0

9438

.479

.495

17.8

149.

850

23.0

47VA

POR

23.0

47po

e0.

000

0.00

00.

969

0.96

914

.700

149.

508

2760

.0.

093

81.9

77.7

9459

.614

8.19

722

.390

VAPO

R22

.390

poe

0.00

00.

000

0.92

20.

922

14.7

0014

7.88

028

20.

37.3

9289

.977

.094

04.3

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

2880

.12

0.3

9152

.777

.493

50.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

2940

.20

3.4

9015

.677

.892

96.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3000

.28

6.4

8878

.478

.292

43.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3060

.36

9.4

8741

.378

.691

89.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3120

.45

2.4

8604

.178

.991

35.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3180

.53

5.4

8466

.979

.390

81.6

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3240

.61

8.4

8329

.879

.790

27.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3300

.70

1.4

8192

.680

.189

74.1

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3360

.78

4.4

8055

.580

.489

20.3

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3420

.86

7.4

7918

.3SO

.888

66.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3480

.95

0.4

7781

.181

.288

12.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3540

.10

33.4

7644

.081

.687

59.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3600

.11

16.4

7506

.881

.987

05.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3660

.11

99.4

7369

.782

.386

51.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3720

.12

82.4

7232

.582

.785

97.6

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3780

.13

65.4

7095

.483

.185

43.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

3840

.14

48.4

6958

.283

.584

90.1

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

....39

00.

1531

.468

21.0

83.8

8436

.314

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3tT

l-;

s

3960

.16

14.4

6683

.984

.283

82.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4020

.16

97.4

6546

.784

.683

28.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4080

.17

80.4

6409

.685

.082

75.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4140

.18

63.4

6272

.485

.382

21.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4200

.19

46.4

6135

.285

.781

67.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4260

.20

29.4

5998

.186

.181

13.6

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4320

.21

12.4

5860

.986

.580

59.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4380

.21

95.4

5723

.886

.8B0

06.1

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4440

.22

78.5

5586

.687

.279

52.3

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4500

.23

61.5

5449

.587

.678

98.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4560

.24

44.5

5312

.388

.078

44.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4620

.25

27.5

5175

.188

.477

91.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4680

.26

10.5

5038

.088

.777

37.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4740

.26

93.5

4900

.889

.176

83.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4800

.27

76.5

4763

.789

.576

29.6

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4860

.28

59.5

4626

.589

.975

75.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4920

.29

42.5

4489

.390

.275

22.1

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

4980

.30

25.5

4352

.290

.674

68.3

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5040

.31

08.5

4215

.091

.074

14.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5100

.31

91.5

4077

.991

.473

60.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5160

.32

74.5

3940

.791

.873

07.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5220

.33

57.5

3803

.592

.172

53.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5280

.34

40.5

3666

.492

.571

99.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5340

.35

23.5

3529

.292

.971

45.6

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5400

.36

06.5

3392

.193

.370

91.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

Ex.

1,Ca

se2

(c~ntinued)

5460

.36

89.5

3254

.993

.670

38.1

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

5520

.37

72.5

3117

.894

.069

84.3

147.

307

22.0

42VA

POR

22.0

42PD

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5580

.38

55•~I

2980

.694

.469

30.5

147.

307

22.0

42VA

POR

22.0

42PD

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5640

.39

38.5

2843

.494

.868

76.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5700

.40

21.5

2706

.395

.168

23.0

147.

307

22.0

42VA

POR

22.0

42PD

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5760

.41

04.5

2569

.195

.567

69.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

~1820.

4187

.524

32.0

95.9

6715

.414

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

358

80.

4270

.522

94.8

96.3

6661

.614

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

359

40.

4353

.521

57.6

96.7

6607

.814

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

360

00.

4436

.620

20.5

97.0

6554

.114

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

360

60.

4519

.618

83.3

97.4

6500

.314

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

361

20.

4602

.617

46.2

97.8

6446

.514

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

361

80.

4685

.616

09.0

98.2

6392

.714

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

362

40.

4768

.614

71.8

98.5

6339

.014

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

363

00.

4851

.613

34.7

98.9

6285

.214

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

363

60.

4934

.611

97.5

99.3

6231

.414

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

364

20.

5017

.610

60.4

99.7

6177

.614

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

364

80.

5100

.692

3.2

100.

061

23.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6540

.51

83.6

786.

110

0.4

6070

.114

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

366

00.

5266

.664

8.9

100.

860

16.3

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6660

.53

49.6

511.

710

1.2

5962

.514

7.30

722

.042

VAPO

R22

.042

PDe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

367

20.

5432

.637

4.6

101.

659

08.7

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

.... C1l

6780

.55

1!',6

-23

7.4

101.

958

55.0

147.

307

22.0

42VA

POR

22.0

42PD

t0.

000

0.00

00.

896

0.89

614

.700

147.

003

00

6840

.55

98.6

100.

310

2.3

5801

.214

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3

TITL

E:EX

.1,

CASE

3.10

-T(}

ICY

L,SH

EARE

DVA

lVE

AT12

O'Cl

OCK,

UF'6

AT20

0F'

******

*C(

}IDIT

l(}l

OF'U

F'6IN

COOA

IttlE

NT***

****

PAHI

¥tYIN

lET

~~~~~~~~~

COND

ITI(}

IOF

'UF

6EX

HAUS

TED

~~~~*~~~*~

FL~

TIME

~~*~~~*~~*

MASS

(LB)

~****~***~

TEMP

PRES

RELE

ASE

PRES

RATE

****R

ELEA

SERA

TE(L

BISE

C)***

*TE

MPPR

ES(S

EC)

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

PI¥lS

E(P

SIA)

BASI

SSO

LID

LIQU

I0VA

POR

TOTA

L(D

EGF)

(PSI

A)

O.0.

021

003.

426

.621

030.

020

0.00

051

.152

VAPO

R51

.152

CHOK

E0.

000

0.00

02.

567

2.56

714

.700

198.

784

60.

0.0

2084

7.9

28.1

2087

6.0

198.

100

49.7

58VA

POR

49.7

58CH

OKE

0.00

00.

000

2.50

22.

502

14.7

0019

6.92

212

0.0.

020

696.

529

.420

725.

919

6.23

148

.415

VAPO

R48

.415

CHOK

E0.

000

0.00

02.

438

2.43

814

.700

195.

089

180.

0.0

2054

9.0

30.6

2057

9.6

194.

392

47.1

21VA

POR

47.1

21CH

OKE

0.00

00.

000

2.37

72.

377

14.7

0019

3.28

624

0.0.

020

405.

231

.720

437.

019

2.58

245

.873

VAPO

R45

.873

CHOK

E0.

000

0.00

02.

318

2.31

814

.700

191.

511

300.

0.0

2026

5.2

32.7

2029

7.9

190.

801

44.6

69VA

POR

44.6

69CH

OKE

0.00

00.

000

2.26

02.

260

14.7

0018

9.76

336

0.0.

020

128.

733

.620

162.

318

9.04

843

.508

VAPO

R43

.508

CHOK

E0.

000

0.00

02.

205

2.20

514

.700

188.

043

420.

0.0

1999

5.5

34.4

2003

0.0

187.

322

42.3

88VA

POR

42.3

88CH

OKE

0.00

00.

000

2.15

22.

152

14.7

0018

6.35

048

0.0.

019

865.

735

.219

900.

918

5.62

441

.307

VAPO

R41

.307

CHOK

E0.

000

0.00

02.

100

2.10

014

.700

184.

683

540.

0.0

1973

9.1

35.8

1977

4.9

183.

952

40.2

64VA

POR

40.2

64CH

OKE

0.00

00.

000

2.05

02.

050

14.7

0018

3.04

160

0.0.

019

615.

536

.419

651.

918

2.30

539

.256

VAPO

R39

.256

POC

0.00

00.

000

1.99

31.

993

14.7

0018

1.42

566

0.0.

019

495.

436

.919

532.

318

0.69

238

.287

VAPO

R38

.287

PDC

0.00

00.

000

1.93

61.

936

14.7

0017

9.84

072

0.0.

019

378.

837

.319

416.

117

9.11

137

.356

VAPO

R37

.356

PDC

0.00

00.

000

1.88

11.

881

14.7

0017

8.28

878

0.0.

019

265.

537

.719

303.

217

7.56

336

.461

VAPO

R36

.461

PDC

0.00

00.

000

1.82

81.

828

14.7

0017

6.76

884

0.0.

019

155.

538

.019

193.

517

6.04

835

.601

VAPO

R35

.601

PDC

0.00

00.

000

1.77

71.

777

14.7

0017

5.27

990

0.0.

019

048.

738

.319

086.

917

4.56

334

.774

VAPO

R34

.774

PDC

0.00

00.

000

1.72

71.

727

14.7

0017

3.82

196

0.0.

018

944.

838

.518

983.

317

3.11

033

.978

VAPO

R33

.978

PDC

0.00

00.

000

1.67

91.

679

14.7

0017

2.39

2~ 0

110

20.

0.0

1884

4.0

38.7

1888

2.6

171.

687

33.2

12VA

POR

33.2

12PD

C0.

000

0.00

01.

632

1.63

214

.700

170.

994

~

1080

.0.

018

745.

938

.818

784.

717

0.29

432

.476

VAPO

R32

.476

PDC

0.00

00.

000

1.58

71.

587

14.7

0016

9.62

411

40.

0.0

1865

0.6

38.9

1868

9.5

168.

930

31.7

67VA

POR

31.7

67PD

C0.

000

0.00

01.

543

1.54

314

.700

168.

283

1200

.0.

018

557.

939

.018

596.

916

7.59

431

.084

VAPO

R31

.084

roc0.

000

0.00

01.

501

1.50

114

.700

166.

970

1260

.0.

018

467.

839

.118

506.

916

6.28

630

.427

VAPO

R30

.427

PDC

0.00

00.

000

1.45

91.

459

14.7

0016

5.68

413

20.

0.0

1838

0.3

39.1

1841

9.3

165.

007

29.7

94VA

POR

29.7

94PD

C0.

000

0.00

01.

420

1.42

014

.700

164.

426

1380

.0.

018

295.

139

.118

334.

216

3.75

429

.185

VAPO

R29

.185

PDC

0.00

00.

000

1.38

11.

381

14.7

0016

3.19

314

40.

0.0

1821

2.2

39.1

1825

1.3

162.

527

28.5

98VA

POR

28.5

98roc

0.00

00.

000

1.34

31.

343

14.7

0016

1.98

715

00.

0.0

1813

1.7

39.0

1817

0.7

161.

327

28.0

32VA

POR

28.0

32PD

C0.

000

0.00

01.

307

1.30

714

.700

160.

806

1560

.0.

018

053.

339

.018

092.

316

0.15

327

.486

VAPO

R27

.486

roc0.

000

0.00

01.

271

1.27

114

.700

159.

651

1620

.0.

017

977.

138

.918

016.

015

9.00

326

.961

VAPO

R26

.961

PDC

0.00

00.

000

1.23

71.

237

14.7

0015

8.52

016

80.

0.0

1790

3.0

38.8

1794

1.8

157.

879

26.4

54VA

POR

26.4

54PD

C0.

000

0.00

01.

203

1.20

314

.700

157.

413

1740

.0.

017

830.

938

.717

869.

615

6.77

925

.965

VAPO

R25

.965

PDC

0.00

00.

000

1.17

11.

171

14.7

0015

6.33

018

00.

0.0

1776

0.7

38.6

1779

9.4

155.

703

25.4

94VA

POR

25.4

94PD

C0.

000

0.00

01.

139

1.13

914

.700

155.

271

1860

.0.

017

692.

538

.517

731.

015

4.65

025

.040

VAPO

R25

.040

PDC

0.00

00.

000

1.10

81.

108

14.7

0015

4.23

519

20.

0.0

1762

6.1

38.4

1766

4.5

153.

621

24.6

02VA

POR

24.6

02PD

C0.

000

0.00

01.

078

1.07

814

.700

153.

221

1980

.0.

017

561.

538

.317

599.

815

2.61

424

.179

VAPO

R24

.179

PDC

0.00

00.

000

1.04

91.

049

14.7

0015

2.23

020

40.

0.0

1749

8.7

38.1

1753

6.8

151.

630

23.7

71VA

POR

23.7

71PD

C0.

000

0.00

01.

021

1.02

114

.700

151.

261

2100

.0.

017

437.

638

.017

475.

615

0.66

823

.378

VAPO

R23

.378

PDC

0.00

00.

000

0.99

30.

993

14.7

0015

0.31

421

60.

0.0

1737

8.2

37.8

1741

6.0

149.

728

22.9

98VA

POR

22.9

98PD

C0.

000

0.00

00.

966

0.96

614

.700

149.

387

2220

.0.

017

320.

437

.717

358.

114

8.80

922

.631

VAPO

R22

.631

PDC

0.00

00.

000

0.93

90.

939

14.7

0014

8.48

222

80.

0.0

1726

4.2

37.5

1730

1.7

147.

911

22.2

78VA

POR

22.2

78PD

C0.

000

0.00

00.

914

0.91

414

.700

147.

598

2340

.26

.317

183.

137

.517

246.

914

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

324

00.

109.

317

045.

937

.917

193.

114

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

324

60.

192.

316

908.

838

.317

139.

314

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

325

20.

275.

316

771.

638

.617

085.

514

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3

Ex.

I,Ca

se3

(con

tinue

d)

2580

.35

8.3

1663

4.5

39.0

1703

1.8

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2640

.44

1.3

1649

7.3

39.4

1697

8.0

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2700

.52

4.3

1636

0.2

39.8

1692

4.2

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2760

.60

7.3

1622

3.0

40.1

1687

0.4

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2820

.69

0.3

1608

5.8

40.5

1681

6.6

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2880

.77

3.3

1594

8.7

40.9

1676

2.9

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2940

.85

6.3

1581

1.5

41.3

1670

9.1

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3000

.93

9.3

1567

4.4

41.7

1665

5.3

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3060

.10

22.3

1553

7.2

42.0

1660

1.5

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3120

.11

05.3

1540

0.0

42.4

1654

7.8

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3180

.11

88.3

1526

2.9

42.8

1649

4.0

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3240

.12

71.3

1512

5.7

43.2

1644

0.2

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3300

.13

54.3

1498

8.6

43.5

1638

6:4

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3360

.14

37.3

1485

1.4

43.9

1633

2.6

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3420

.15

20.3

1471

4.2

44.3

1627

8.9

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

3480

.16

D3.

3145

77.1

44.7

1622

5.1

147.

307

22.0

42VA

POR

22.D

42PO

CO.O

DOD.D

DO0.

896

0.89

614

.700

147.0

D335

40.

1686

.314

439.

945

.016

171.

314

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

336

00.

1769

.314

302.

845

.416

117.

514

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

336

60.

1852

.314

165.

645

.816

063.

814

7.30

722

.042

VAPO

R22

.042

POC

O.DOO

0.00

00.

896

0.89

614

.700

147.

003

372D

.19

35.3

1402

8.5

46.2

1601

D.0

147.

307

22.D

42VA

POR

22.0

42PD

CD.D

DDD.D

DDD.

896

0.89

614

.70D

147.D

D337

80.

2D18

.413

891.

346

.615

956.

214

7.30

722

.M2

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

338

4D.

2101

.413

754.

146

.915

902.

414

7.3D7

22.0

42VA

POR

22.M

2PO

C0.

000

0.00

00.

896

0.89

614

.700

147.D

03..... 0

)

3900

.21

84.4

1361

7.0

47.3

1584

8.6

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

0

3960

.22

67.4

1347

9.8

47.7

1579

4.9

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4020

.23

50.4

1334

2.7

48.1

1574

1.1

147.

307

22.0

42VA

POR

22.M

2PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4080

.24

33.4

1320

5.5

48.4

1568

7.3

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4140

.25

16.4

1306

8.3

48.8

1563

3.5

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4200

.25

99.4

1293

1.2

49.2

1557

9.8

147.

307

22.0

42VA

POR

22.M

2PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4260

.26

82.4

1279

4.0

49.6

1552

6.0

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4320

.27

65.4

1265

6.9

49.9

1547

2.2

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4380

.28

48.4

1251

9.7

50.3

1541

8.4

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4440

.29

31.4

1238

2.5

50.7

1536

4.6

147.

307

22.0

42VA

POR

22.M

2PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4500

.30

14.4

1224

5.4

51.1

1531

0.9

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

4560

.30

97.4

1210

8.2

51.5

1525

7.1

147.

307

22.0

42VA

POR

22.0

42PO

C0.

000

O.DOO

0.89

60.

896

14.7

0014

7.00

346

20.

3180

.411

971.

151

.815

203.

314

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.D03

4680

.32

63.4

1183

3.9

52.2

1514

9.5

147.

307

22.0

42VA

POR

22.0

42PO

CO.D

OOO.D

DD0.

896

0.89

614

.700

147.

003

4740

.33

46.4

1169

6.8

52.6

1509

5.8

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.~6

14.7

0014

7.DD3

480D

.34

29.4

1155

9.6

53.0

1504

2.0

147.

307

22.0

42VA

POR

22.0

42PO

CO.O

ODD.O

OO0.

896

D.8

614

.70D

147.

003

4860

.35

12.4

1142

2.4

53.3

1498

8.2

147.

307

22.0

42VA

POR

22.0

42PD

CD.O

OO0.

000

0.89

60.

896

14.7

0014

7.00

349

2D.

3595

.411

285.

353

.714

934.

414

7.3D7

22.D

42VA

POR

22.0

42PO

CD.D

DDD.D

DDD.

896

D.89

614

.7DD

147.D

D349

80.

3678

.411

148.

154

.114

880.

614

7.30

722

.D42

VAPO

R22

.042

POC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

350

40.

3761

.411

011.D

54.5

1482

6.9

147.3

D722

.D42

VAPO

R22

.D42

POC

D.DDD

D.DDO

D.89

6D.

896

14.7D

O14

7.DD3

51DO

.38

44.4

1087

3.8

54.8

1477

3.1

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

5160

.39

27.4

1D73

6.655

.214

719.

314

7.3D7

22.0

42VA

POR

22.D

42PO

CD.D

DDD.D

DDD.

896

D.89

614

.7DO

147.D

0352

20.

4010

.410

599.

555

.614

665.

514

7.30

722

.042

VAPO

R22

.D42

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

352

80.

4093

.510

462.

356

.014

611.

814

7.30

722

.042

VAPO

R22

.042

POC

O.DDD

D.DDD

D.89

60.

896

14.70

D14

7.D03

534D

.41

76.5

1032

5.2

56.4

1455

8.0

147.

307

22.0

42VA

POR

22.M

2PD

CO.D

OOO.O

DO0.

896

0.89

614

.700

147.

003

5400

.42

59.5

1018

8.0

56.7

1450

4.2

147.

307

22.0

42VA

POR

22.M

2PO

C0.

000

0.00

00.

896

0.89

614

.70D

147.

003

Ex.

1,eas~

3(continu~d)

5460

.43

42.5

1005

0.8

57.1

1445

0.4

147.

307

22.0

42VA

POR

22.0

42PD

t0.

000

0.00

00.

896

0.89

614

.700

147.

003

5520

.44

25.5

9913

.757

.514

396.

614

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

355

80.

4508

.597

76.5

57.9

1434

2.9

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5640

.45

91.5

9639

.458

.214

289.

114

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

357

00.

4674

.595

02.2

58.6

1423

5.3

147.

307

22.0

42VA

POR

22.0

42PD

t0.

000

0.00

00.

896

0.89

614

.700

147.

003

5760

.47

57.5

9365

.159

.014

181.

514

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

358

20.

4840

.592

27.9

59.4

1412

7.8

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

5880

.49

23.5

9090

.759

.714

074.

014

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

359

40.

5006

.589

53.6

60.1

1402

0.2

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6000

.50

89.5

8816

.460

.513

966.

414

7.30

722

.042

VAPO

R22

.042

POC

0.00

00.

000

0.89

60.

996

14.7

0014

7.00

360

60.

5172

.586

79.3

60.9

1391

2.6

147.

307

22.0

42VA

POR

22.0

42PD

t0.

000

0.00

00.

896

0.89

614

.700

147.

003

6120

.52

55.5

8542

.161

.313

858.

914

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

361

80.

5338

.584

04.9

61.6

1380

5.1

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6240

.54

21.5

9267

.862

.013

751.

314

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

363

00.

5504

.581

30.6

62.4

1369

7.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6360

.55

87.5

7993

.562

.813

643.

814

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

364

20.

5670

.578

56.3

63.1

1359

0.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6480

.57

53.5

7719

.263

.513

536.

214

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

365

40.

5836

.575

82.0

63.9

1348

2.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6600

.59

19.5

7444

.864

.313

428.

614

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

366

60.

6002

.573

07.7

64.7

1337

4.9

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6720

.60

85.5

7170

.565

.013

321.

114

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3....

6780

.61

68.5

7033

.465

.413

267.

314

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

30

") ....69

40.

6251

.668

96.2

65.8

1321

3.5

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

6900

.63

34.6

6759

.066

.213

159.

814

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

369

60.

6417

.666

21.9

66.5

1310

6.0

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.99

614

.700

147.

003

7020

.65

00.6

6484

.766

.913

052.

214

7.30

722

.042

VAPO

R22

.042

PDt

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

370

80.

6583

.663

47.6

67.3

1299

8.4

147.

307

22.0

42VA

POR

22.0

42po

e0.

000

0.00

00.

896

0.89

614

.700

147.

003

7140

.66

66.6

6210

.467

.712

944.

614

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3

TITL

E:EX

.1,

CASE

4.10

-TON

CYL,

SHEA

RED

VALV

EAT

6O'

CLOC

K,UF

6AT

250

F

****

***

COND

ITIO

NOF

UF6

INCO

NTAI

t-t1EN

T***

****

PATH

-IAY

INLE

T**

****

***

COND

ITIO

NOF

UF6

EXHA

USTE

D**

****

****

FUJ4

TIME

****

****

**MA

SS(L

B)**

****

****

TEMP

PRES

RELE

ASE

PRES

RATE

****

RELE

ASE

RATE

(LBI

SEC)

****

TEMP

PRES

(SEC

)SO

LID

LIQU

IDVA

POR

TOTA

L(D

EGF)

(PSI

A)PH

ASE

(PSI

A)BA

SIS

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

O.0.

021

007.

622

.421

030.

025

0.00

099

.709

LIQU

ID10

3.97

6CH

OKE

3.77

60.

000

6.93

410

.710

14.7

0013

3.78

060

.0.

020

351.

935

.520

387.

424

9.85

099

.525

LIQU

ID10

3.58

6CH

OKE

3.77

50.

000

6.92

110

.696

14.7

0013

3.78

012

0.0.

019

697.

148

.619

745.

724

9.69

699

.335

LIQU

ID10

3.21

3CH

OKE

3.77

30.

000

6.90

710

.681

14.7

0013

3.78

018

0.0.

019

043.

361

.519

104.

824

9.53

799

.141

LI~UID

102.

849

CHOK

E3.

772

0.00

06.

894

10.6

6514

.700

133.

780

240.

0.0

1839

0.4

74.5

1846

4.9

249.

373

98.9

41LI

UID

102.

488

CHOK

E3.

770

0.00

06.

879

10.6

5014

.700

133.

780

300.

0.0

1773

8.6

87.3

1782

5.9

249.

205

98.7

35LI

QUID

102.

129

CHOK

E3.

769

0.00

06.

865

10.6

3314

.700

133.

780

360.

0.0

1708

7.8

100.

117

187.

924

9.03

198

.522

LIQU

ID10

1.77

0CH

OKE

3.76

70.

000

6.85

010

.617

14.7

0013

3.78

042

0.0.

016

438.

111

2.8

1655

0.9

248.

851

98.3

04LI

QUID

101.

407

CHOK

E3.

765

0.00

06.

834

10.5

9914

.700

133.

780

480.

0.0

1578

9.6

125.

415

915.

024

8.66

598

.077

LIQU

ID10

1.04

2CH

OKE

3.76

30.

000

6.81

810

.582

14.7

0013

3.78

054

0.0.

015

142.

113

7.9

1528

0.1

248.

473

97.8

44LI

QUID

100.

671

CHOK

E3.

761

0.00

06.

802

10.5

6314

.700

133.

780

600.

0.0

1449

5.9

150.

414

646.

324

8.27

397

.602

LIQU

ID10

0.29

5CH

OKE

3.75

90.

000

6.78

510

.544

14.7

0013

3.78

066

0.0.

013

850.

916

2.71

4013

.624

8.06

697

.351

LIQU

ID99

.911

CHOK

E3.

757

0.00

06.

767

10.5

2414

.700

133.

780

720.

0.0

1320

7.2

175.

013

382.

224

7.85

197

.091

LIQU

ID99

.520

CHOK

E3.

755

0.00

06.

749

10.5

0414

.700

133.

780

780.

0.0

1256

4.8

187.

212

751.

924

7.62

696

.820

LIQU

ID99

.120

CHOK

E3.

753

0.00

06.

730

10.4

8214

.700

133.

780

840.

0.0

1192

3.8

199.

212

123.

024

7.39

296

.538

LIQU

ID98

.709

CHOK

E3.

750

0.00

06.

710

10.4

6014

.700

133.

780

900.

0.0

1128

4.3

211.

111

495.

424

7.14

796

.244

LIQU

ID98

.286

CHOK

E3.

748

0.00

06.

689

10.4

3714

.700

133.

780

960.

0.0

1064

6.2

223.

010

869.

224

6.89

195

.936

LIQU

ID97

.850

CHOK

E3.

745

0.00

06.

667

10.4

1214

.700

133.

780

.... 0')

1020

.0.

010

009.

823

4.7

1024

4.5

246.

621

95.6

13LI

QUID

97.4

00CH

OKE

3.74

20.

000

6.64

510

.387

14.7

0013

3.78

0~

1080

.0.

093

75.1

246.

296

21.3

246.

337

95.2

74LI

QUID

96.9

33CH

OKE

3.73

90.

000

6.62

110

.360

14.7

0013

3.78

011

40.

0.0

8742

.125

7.6

8999

.724

6.03

794

.917

LIQU

ID96

.447

CHOK

E3.

730

0.00

06.

586

10.3

1614

.700

133.

780

1200

.0.

081

11.9

268.

883

80.7

245.

719

94.5

39LI

QUID

95.9

41CH

OKE

3.72

00.

000

6.54

710

.266

14.7

0013

3.78

012

60.

0.0

7484

.927

9.8

7764

.824

5.38

194

.139

LIQU

ID95

.412

CHOK

E3.

709

0.00

06.

506

10.2

1414

.700

133.

780

1320

.0.

0686

1.3

290.

671

51.9

245.

021

93.7

14LI

QUID

94.8

56CH

OKE

3.69

70.

000

6.46

310

.160

14.7

0013

3.78

013

80.

0.0

6241

.130

1.2

6542

.324

4.63

593

.259

LIQU

ID94

.270

CHOK

E3.

686

0.00

06.

418

10.1

0414

.700

133.

780

1440

.0.

056

24.5

311.

559

36.1

244.

219

92.7

71LI

QUID

93.6

48CH

OKE

3.67

30.

000

6.37

110

.045

14.7

0013

3.78

015

00.

0.0

5011

.832

1.5

5333

.424

3.76

892

.243

LIQU

ID92

.984

CHOK

E3.

661

0.00

06.

321

9.98

214

.700

133.

780

1560

.0.

044

03.2

331.

247

34.5

243.

274

91.6

68LI

QUID

92.2

71CH

OKE

3.64

70.

000

6.26

89.

915

14.7

0013

3.78

016

20.

0.0

3799

.034

0.5

4139

.624

2.72

991

.036

LIQU

ID91

.497

CHOK

E3.

633

0.00

06.

210

9.84

314

.700

133.

780

1680

.0.

031

99.6

349.

435

48.9

242.

121

90.3

34LI

QUID

90.6

47CH

OKE

3.61

80.

000

6.14

89.

765

14.7

0013

3.78

017

40.

0.0

2605

.435

7.7

2963

.024

1.43

089

.541

LIQU

ID89

.701

CHOK

E3.

572

0.00

06.

030

9.60

214

.700

133.

780

1800

.0.

020

21.7

365.

323

86.9

240.

639

88.6

39LI

Q-VA

P88

.639

CHOK

E3.

319

0.00

05.

789

9.10

814

.700

133.

780

1860

.0.

014

72.0

368.

418

40.4

238.

883

86.6

78VA

POR

86.6

78CH

OKE

0.00

00.

000

4.20

34.

203

14.7

0023

6.83

219

20.

0.0

1308

.527

9.7

1588

.221

2.77

761

.307

VAPO

R61

.307

CHOK

E0.

000

0.00

03.

042

3.04

214

.700

211.

301

1980

.0.

011

90.3

215.

414

05.7

190.

643

44.5

64VA

POR

44.5

64CH

OKE

0.00

00.

000

2.25

52.

255

14.7

0018

9.60

920

40.

0.0

1101

.716

8.7

1270

.417

1.76

633

.254

VAPO

R33

.254

PDt

0.00

00.

000

1.63

41.

634

14.7

0017

1.07

221

00.

0.0

1036

.513

5.8

1172

.315

6.34

025

.772

VAPO

R25

.772

PDC

0.00

00.

000

1.15

81.

158

14.7

0015

5.89

821

60.

26.3

957.

711

8.9

1102

.814

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

322

20.

109.

382

0.6

119.

310

49.1

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2280

.19

2.3

683.

411

9.6

995.

314

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

323

40.

275.

354

6.2

120.

094

1.5

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2400

.35

8.3

409.

112

0.4

887.

714

7.30

722

.042

VAPO

R22

.042

poe

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

324

60.

441.

327

1.9

120.

883

4.0

147.

307

22.0

42VA

POR

22.0

42PD

C0.

000

0.00

00.

896

0.89

614

.700

147.

003

2520

.52

4.3

134.

812

1.1

780.

214

7.30

722

.042

VAPO

R22

.042

PDC

0.00

00.

000

0.89

60.

896

14.7

0014

7.00

3

TITL

E:EX

.2,

CASE

1.RE

LEAS

EFR

OM8"

BREA

CHIN

SIDE

OF14

-TCY

L(A

SHO

LEIN

END)

TIME (SEC

) O. 10.

20.

30.

40.

50.

60.

70.

80.

90.

100.

110.

120.

130.

140.

150.

160.

170.

180.

190.

200.

210.

220.

230.

240.

250.

260.

270.

280.

290.

300.

310.

320.

330.

340.

350.

360.

370.

380.

390.

400.

410.

420.

******

*C(J.

IDIT

I(NOF

UF6

INCC

NTAl

tflENT

******

*PA

TIIoIA

YIN

LET

••••

••••

••MA

SS(L

B)••

••••

••••

TEMP

PRES

RELE

ASE

PRES

SOLI

DLI

QUID

~POR

TOTA

L(D

EGF)

(PSI

A)PH

ASE

(PSI

A)

0.0

2585

0.6

49.4

2590

0.0

190.

000

44.1

36LI

QUID

48.6

870.

025

510.

752

.625

563.

318

9.96

744

.114

LIQU

ID48

.604

0.0

2517

0.9

55.8

2522

6.7

189.

934

44.0

93LI

QUID

48.5

210.

024

831.

359

.024

890.

318

9.90

144

.070

LIQU

ID48

.439

0.0

2449

1.8

62.2

2455

3.9

189.

867

44.0

48LI

QUID

48.3

570.

024

152.

465

.424

217.

818

9.83

344

.025

LIQU

ID48

.276

0.0

2381

3.2

68.6

2388

1.7

189.

798

44.0

03LI

QUID

48.1

950.

023

474.

171

.823

545.

818

9.76

343

.979

LIQU

ID48

.115

0.0

2313

5.1

74.9

2321

0.1

189.

728

43.9

56LI

QUID

48.0

350.

022

796.

378

.122

874.

518

9.69

243

.932

LIQU

ID47

.955

0.0

2245

7.7

81.3

2253

9.0

189.

655

43.9

08LI

QUID

47.8

750.

022

119.

284

.522

203.

718

9.61

843

.883

LIQU

ID47

.795

0.0

2178

0.9

87.6

2186

8.5

189.

581

43.8

59LI

QUID

47.7

160.

021

442.

790

.821

533.

518

9.54

343

.834

LIQU

ID47

.636

0.0

2110

4.7

93.9

2119

8.6

189.

504

43.8

08LI

QUID

47.5

570.

020

766.

897

.120

863.

918

9.46

543

.782

LIQU

ID47

.477

0.0

2042

9.1

100.

220

529.

318

9.42

543

.756

LIQU

ID47

.398

0.0

2009

1.6

103.

420

194.

918

9.38

543

.730

LIQU

ID47

.318

0.0

1975

4.2

106.

519

860.

718

9.34

443

.703

LIQU

ID47

.238

0.0

1941

7.0

109.

619

526.

618

9.30

243

.675

LIQU

ID47

.158

0.0

1908

0.0

112.

719

192.

718

9.26

043

.648

LIQU

ID47

.078

0.0

1874

3.1

115.

818

859.

018

9.21

743

.620

LIQU

ID46

.998

0.0

1840

6.5

118.

918

525.

418

9.17

443

.591

LIQU

ID46

.917

0.0

1807

0.0

122.

018

192.

018

9.13

043

.562

LIQU

ID46

.836

0.0

1773

3.7

125.

117

858.

818

9.08

543

.532

LIQU

ID46

.755

0.0

1739

7.6

128.

217

525.

818

9.03

943

.502

LIQU

ID46

.673

0.0

1706

1.6

131.

317

192.

918

8.99

243

.472

LIQU

ID46

.591

0.0

1672

5.9

134.

416

860.

318

8.94

543

.441

LIQU

ID46

.509

0.0

1639

0.4

137.

416

527.

818

8.89

743

.409

LIQU

ID46

.426

0.0

1605

5.0

140.

516

195.

518

8.84

843

.377

LIQU

ID46

.342

0.0

1571

9.9

143.

515

863.

418

8.79

843

.345

LIQU

ID46

.258

0.0

1538

5.0

146.

615

531.

618

8.74

743

.311

LIQU

ID46

.174

0.0

1505

0.3

149.

615

199.

918

8.69

543

.277

LIQU

ID46

.089

0.0

1471

5.8

152.

614

868.

418

8.64

243

.243

LIQU

ID46

.003

0.0

1438

1.5

155.

614

537.

218

8.58

843

.207

LI~UID

45.9

170.

014

047.

515

8.6

1420

6.1

188.

533

43.1

72LI

UID

45.8

300.

013

713.

716

1.6

1387

5.3

188.

476

43.1

35LI

UID

45.7

420.

013

380.

116

4.6

1354

4.7

188.

419

43.0

97LI

QUID

45.6

530.

013

046.

716

7.6

1321

4.3

188.

360

43.0

59LI

QUID

45.5

640.

012

713.

617

0.6

1288

4.2

188.

300

43.0

20LI

QUID

45.4

730.

012

380.

817

3.5

1255

4.3

188.

239

42.9

80LI

QUID

45.3

820.

012

048.

217

6.5

1222

4.7

188.

176

42.9

39LI

QUID

45.2

890.

011

715.

917

9.4

1189

5.3

188.

111

42.8

98LI

QUID

45.1

96

FUll

RATE

BASI

S

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

E

••••

••••

•C(

J.IDI

TI(N

OFUF

6EX

HAUS

TED

••••

••••

•****

*REL

EASE

RATE

(LBI

SEC)

****

TEMP

PRES

SOLI

DLI

QUID

~POR

TOTA

L(D

EGF)

(PSI

A)

16.3

960.

000

17.2

7533

.671

14.7

0013

3.78

016

.392

0.00

017

.266

33.6

5814

.700

133.

780

16.3

880.

000

17.2

5633

.645

14.7

0013

3.78

016

.384

0.00

017

.247

33.6

3114

.700

133.

780

16.3

800.

000

17.2

3833

.618

14.7

0013

3.78

016

.376

0.00

017

.228

33.6

0414

.700

133.

780

16.3

720.

000

17.2

1833

.590

14.7

0013

3.78

016

.367

0.00

017

.208

33.5

7614

.700

133.

780

16.3

630.

000

17.1

9833

.562

14.7

0013

3.78

016

.359

0.00

017

.188

33.5

4714

.700

133.

780

16.3

540.

000

17.1

7833

.532

14.7

0013

3.78

016

.350

0.00

017

.168

33.5

1714

.700

133.

780

16.3

450.

000

17.1

5733

.502

14.7

0013

3.78

016

.340

0.00

017

.147

33.4

8714

.700

133.

780

16.3

360.

000

17.1

3633

.472

14.7

0013

3.78

016

.331

0.00

017

.125

33.4

5614

.700

133.

780

16.3

260.

000

17.1

1433

.440

14.7

0013

3.78

016

.321

0.00

017

.102

33.4

2414

.700

133.

780

16.3

160.

000

17.0

9133

.407

14.7

0013

3.78

016

.311

0.00

017

.079

33.3

9014

.700

133.

780

16.3

060.

000

17.0

6833

.374

14.7

0013

3.78

016

.301

0.00

017

.056

33.3

5614

.700

133.

780

16.2

950.

000

17.0

4433

.339

14.7

0013

3.78

016

.290

0.00

017

.031

33.3

2114

.700

133.

780

16.2

840.

000

17.0

1933

.303

14.7

0013

3.78

016

.279

0.00

017

.006

33.2

8514

.700

133.

780

16.2

730.

000

16.9

9333

.266

14.7

0013

3.78

016

.267

0.00

016

.980

33.2

4714

.700

133.

780

16.2

610.

000

16.9

6633

.228

14.7

0013

3.78

016

.255

0.00

016

.953

33.2

0814

.700

133.

780

16.2

490.

000

16.9

3933

.188

14.7

0013

3.78

016

.243

0.00

016

.925

33.1

6814

.700

133.

780

16.2

360.

000

16.9

1033

.147

14.7

0013

3.78

016

.230

0.00

016

.896

33.1

2614

.700

133.

780

16.2

230.

000

16.8

8133

.104

14.7

0013

3.78

016

.217

0.00

016

.865

33.0

8214

.700

133.

780

16.2

100.

000

16.8

5033

.059

14.7

0013

3.78

016

.203

0.00

016

.834

33.0

3614

.700

133.

780

16.1

950.

000

16.8

1833

.013

14.7

0013

3.78

016

.188

0.00

016

.801

32.9

8914

.700

133.

780

16.1

800.

000

16.7

8432

.964

14.7

0013

3.78

016

.173

0.00

016

.767

32.9

3914

.700

133.

780

16.1

650.

000

16.7

4932

.914

14.7

0013

3.78

0

.... ~

Ex.

2,Ca

se1

(con

tinue

d)

430.

0.0

1138

3.8

182.

311

566.

218

8.04

542

.855

LIQU

ID45

.101

CHOK

E16

.157

0.00

016

.731

32.8

8714

.700

133.

780

440.

0.0

1105

2.0

185.

311

237.

318

7.97

842

.811

LIQU

ID45

.006

CHOK

E16

.148

0.00

016

.712

32.8

6014

.700

133.

780

450.

0.0

1072

0.5

188.

210

908.

718

7.90

842

.766

LIQU

ID44

.908

CHOK

E16

.140

0.00

016

.693

32.8

3314

.700

133.

780

460.

0.0

1038

9.3

191.

010

580.

318

7.83

742

.720

LIQU

ID44

.810

CHOK

E16

.131

0.00

016

.673

32.8

0414

.700

133.

780

470.

0.0

1005

8.4

193.

910

252.

318

7.76

342

.672

LIQU

ID44

.710

CHOK

E16

.122

0.00

016

.653

32.7

7514

.700

133.

780

480.

0.0

9727

.819

6.8

9924

.618

7.68

842

.624

LIQU

ID44

.609

CHOK

E16

.113

0.00

016

.633

32.7

4514

.700

133.

780

490.

0.0

9397

.519

9.6

9597

.118

7.61

042

.574

LIQU

ID44

.505

CHOK

E16

.103

0.00

016

.611

32.7

1414

.700

133.

780

500.

0.0

9067

.520

2.5

9270

.018

7.53

142

.522

LIQU

ID44

.401

CHOK

E16

.093

0.00

016

.590

32.6

8314

.700

133.

780

510.

0.0

8737

.920

5.3

8943

.118

7.44

842

.469

LIQU

ID44

.294

CHOK

E16

.083

0.00

016

.567

32.6

5014

.700

133.

780

520.

0.0

8408

.620

8.1

8616

.618

7.36

342

.414

LIQU

ID44

.185

CHOK

E16

.072

0.00

016

.544

32.6

1614

.700

133.

780

530.

0.0

8079

.621

0.8

8290

.518

7.27

542

.358

LIQU

ID44

.074

CHOK

E16

.062

0.00

016

.520

32.5

8114

.700

133.

780

540.

0.0

7751

.121

3.6

7964

.718

7.18

442

.300

LIQU

ID43

.961

CHOK

E16

.050

0.00

016

.495

32.5

4514

.700

133.

780

550.

0.0

7422

.921

6.3

7639

.218

7.09

042

.239

LIQU

ID43

.846

CHOK

E16

.039

0.00

016

.469

32.5

0814

.700

133.

780

560.

0.0

7095

.121

9.1

7314

.118

6.99

242

.177

LI~UID

43.7

28CH

OKE

16.0

270.

000

16.4

4332

.469

14.7

0013

3.78

057

0.0.

067

67.7

221.

869

89.4

186.

891

42.1

12LI

UID

43.6

07CH

OKE

16.0

140.

000

16.4

1532

.429

14.7

0013

3.78

058

0.0.

064

40.7

224.

466

65.1

186.

785

42.0

44LI

QUID

43.4

83CH

OKE

16.0

010.

000

16.3

8632

.387

14.7

0013

3.78

059

0.0.

061

14.2

227.

163

41.3

186.

675

41.9

74LI

QUID

43.3

55CH

OKE

15.9

870.

000

16.3

5732

.344

14.7

0013

3.78

060

0.0.

057

88.1

229.

760

17.8

186.

560

41.9

01LI

QUID

43.2

24CH

OKE

15.9

730.

000

16.3

2632

.299

14.7

0013

3.78

061

0.0.

054

62.5

232.

356

94.8

186.

440

41.8

24LI

QUID

43.0

89CH

OKE

15.9

580.

000

16.2

9332

.251

14.7

0013

3.78

062

0.0.

051

37.5

234.

953

72.3

186.

314

41.7

44LI

QUID

42.9

50CH

OKE

15.9

430.

000

16.2

5932

.202

14.7

0013

3.78

063

0.0.

048

12.9

237.

450

50.3

186.

182

41.6

60LI

QUID

42.8

06CH

OKE

15.9

260.

000

16.2

2332

.150

14.7

0013

3.78

0~

640.

0.0

4488

.923

9.9

4728

.818

6.04

341

.572

LIQU

ID42

.656

CHOK

E15

.909

0.00

016

.186

32.0

9514

.700

133.

780

~65

0.0.

041

65.5

242.

344

07.9

185.

895

41.4

79LI

QUID

42.5

01CH

OKE

15.8

910.

000

16.1

4632

.037

14.7

0013

3.78

066

0.0.

038

42.7

244.

740

87.5

185.

739

41.3

80LI

QUID

42.3

38CH

OKE

15.8

710.

000

16.1

0431

.976

14.7

0013

3.78

067

0.0.

035

20.6

247.

137

67.7

185.

573

41.2

75LI

QUID

42.1

69CH

OKE

15.8

510.

000

16.0

6031

.911

14.7

0013

3.78

068

0.0.

031

99.2

249.

434

48.6

185.

395

41.1

63LI~ID

41.9

91CH

OKE

15.8

290.

000

16.0

1231

.841

14.7

0013

3.78

069

0.0.

028

78.6

251.

631

30.2

185.

204

41.0

43LI

ID41

.803

CHOK

E15

.805

0.00

015

.961

31.7

6614

.700

133.

780

700.

0.0

2558

.825

3.8

2812

.518

4.99

740

.914

LIQU

ID41

.603

CHOK

E15

.779

0.00

015

.907

31.6

8614

.700

133.

780

710.

0.0

2239

.825

5.9

2495

.718

4.77

240

.773

LIQU

ID41

.391

CHOK

E15

.751

0.00

015

.847

31.5

9814

.700

133.

780

720.

0.0

1921

.825

7.9

2179

.718

4.52

640

.619

LIQU

ID41

.162

CHOK

E15

.721

0.00

015

.782

31.5

0214

.700

133.

780

730.

0.0

1605

.025

9.7

1864

.718

4.25

240

.450

LIQU

ID40

.913

CHOK

E15

.687

0.00

015

.710

31.3

9714

.700

133.

780

740.

0.0

1289

.326

1.4

1550

.718

3.94

640

.260

LIQU

ID40

.640

CHOK

E15

.644

0.00

015

.625

31.2

6914

.700

133.

780

750.

0.0

975.

026

3.0

1238

.018

3.59

740

.045

LIQU

ID40

.335

CHOK

E15

.546

0.00

015

.480

31.0

2614

.700

133.

780

760.

0.0

663.

526

4.3

927.

818

3.19

339

.797

LIQU

ID39

.989

CHOK

E15

.436

0.00

015

.315

30.7

5114

.700

133.

780

770.

0.0

355.

026

5.3

620.

318

2.71

239

.503

LIQ-

vAP

39.5

03CH

OKE

15.1

510.

000

15.0

2330

.174

14.7

0013

3.78

0

TIM

E(S

EC) O. 60.

120.

180.

240.

300.

360.

420.

480.

540.

600.

660.

720.

TITL

E:EX

.2,

rASE

3.RE

LEAS

EF'R

!J1B"

BREA

CHIN

SIDE

Of14

-TCY

L(A

SHO

LEIN

END)

******

*C(}

I)ITH

NOF

'UF'6

INCO

NTAI

NMEN

T**

****

*PA

THoIA

YIN

LET

H.H~.H

COND

lTlON

OfUf

6EX~USTED

HH

HH

HFL

(}l

••••

••••

••MA

SS(L

B)***

******

*TE

MPPR

ESRE

LEAS

EPR

ESRA

TE***

*REL

EASE

RATE

(LBI

SEC)

****

TEMP

PRES

SOLI

DLI

QUID

VAPO

RTO

TAL

(DE6

f)(P

SIA)

PHAS

E(P

SIA)

BASI

SSO

LID

LIQU

IDVA

POR

TOTA

L(D

E6f)

(PSI

A)

0.0

2585

0.6

49.4

2590

0.0

190.

000

44.1

36LI

QUID

48.6B

7CH

OKE

16.3

960.

000

17.2

7533

.671

14.7

0013

3.78

00.

023

811.

168

.623

879.

718

9.79

143

.998

LIQU

ID48

.190

CHOK

E16

.371

0.00

017

.216

33.5

8714

.700

133.

780

0.0

2177

6.BB7

.621

864.

518

9.56

543

.B48

LIQU

ID47

.705

CHOK

E16

.343

0.00

017

.153

33.4

9614

.700

133.

780

0.0

1974

8.2

106.

519

854.

718

9.31

843

.686

LIQU

ID47

.221

CHOK

E16

.313

0.00

017

.084

33.3

9714

.700

133.

780

0.0

1772

5.B

125.

117

850.

918

9.04

743

.508

LIQU

ID46

.729

CHOK

E16

.280

0.00

017

.008

33.2

8814

.700

133.

780

0.0

1571

0.1

143.

515

853.

618

8.74

543

.310

LIQU

ID46

.223

CHOK

E16

.243

0.00

016

.924

33.1

6714

.700

133.

780

0.0

1370

2.0

161.

613

863.

618

8.40

643

.089

LIQU

ID45

.694

CHOK

E16

.201

0.00

016

.830

33.0

3114

.700

133.

780

0.0

1170

2.4

179.

311

881.

818

8.01

742

.836

LIQU

ID45

.133

CHOK

E16

.153

0.00

016

.723

32.8

7614

.700

133.

780

0.0

9712

.619

6.6

9909

.218

7.56

142

.542

LIQU

ID44

.524

CHOK

E16

.097

0.00

016

.59B

32.6

9514

.700

133.7

BO0.

077

34.2

213.

379

47.5

187.

010

42.1

88LI

QUID

43.8

47CH

OKE

16.0

290.

000

16.4

4832

.476

14.7

0013

3.78

00.

057

69.8

229.

25~99.0

lB6.

314

41.7

44LI

QUID

43.0

64CH

OKE

15.9

430.

000

16.2

5932

.201

14.7

0013

3.7BO

0.0

3823

.124

3.7

4Q66

.918

5.36

241

.142

LIQU

ID42

.097

CHOK

E15

.825

0.00

016

.004

31.8

2814

.700

133.

780

0.0

1901

.425

5.8

2157

.218

3.84

940

.200

LIQU

ID40

.738

CHOK

E15

.636

0.00

015

.604

31.2

4014

.700

133.

780

.... ~

TITL

E:EX

.3,

CASE

1.14

-TON

CYL

WI

RUPT

URED

PIGT

AIL

(6IN

)

TIM

E(S

EC) O. 30.

60.

90.

120.

150.

180.

210.

240.

270.

300.

330.

360.

390.

420.

450.

480.

510.

540.

570.

600.

630.

660.

690.

720.

750.

780.

810.

840.

870.

******

*CON

DITIO

Nor

Uf6

INCO

NTAI

NMEN

T***

****

PATH

4AY

INlE

T

AAAA

AAAA

AAMA

SS(L

B)***

******

*TE

MPPR

ESRE

LEAS

EPR

ESSO

LID

LIQU

IDVA

POR

TOTA

L(D

EGf)

(PSI

A)PH

ASE

(PSI

A)

0.0

2594

8.1

51.9

2600

0.0

200.

000

51.1

52VA

POR

51.1

520.

025

883.

852

.425

936.

219

9.36

850

.685

VAPO

R50

.685

0.0

2582

0.1

52.9

2587

3.0

198.

740

50.2

24VA

POR

50.2

240.

025

757.

053

.325

810.

319

8.11

549

.769

VAPO

R49

.769

0.0

2569

4.4

53.7

2574

8.1

197.

493

49.3

19VA

POR

49.3

190.

025

632.

354

.225

686.

519

6.87

448

.874

VAPO

R48

.874

0.0

2557

0.8

54.6

2562

5.4

196.

259

48.4

35VA

POR

48.4

350.

025

509.

854

.925

564.

819

5.64

748

.001

VAPO

R48

.001

0.0

2544

9.4

55.3

2550

4.7

195.

039

47.5

73VA

POR

47.5

730.

025

389.

655

.625

445.

219

4.43

447

.150

VAPO

R47

.150

0.0

2533

0.3

56.0

2538

6.2

193.

833

46.7

33VA

POR

46.7

330.

025

271.

456

.325

327.

719

3.23

446

.320

VAPO

R46

.320

0.0

2521

3.1

56.6

2526

9.7

192.

639

45.9

12VA

POR

45.9

120.

025

155.

256

.925

212.

119

2.04

745

.509

VAPO

R45

.509

0.0

2509

7.9

57.2

2515

5.0

191.

458

45.1

10VA

POR

45.1

100.

025

041.

057

.525

098.

419

0.87

144

.716

VAPO

R44

.716

0.0

2498

4.6

57.7

2504

2.3

190.

288

44.3

27VA

POR

44.3

270.

024

928.

658

.024

986.

618

9.70

843

.943

VAPO

R43

.943

0.0

2487

3.3

58.2

2493

1.5

189.

133

43.5

64VA

POR

43.5

640.

024

818.

458

.424

876.

818

8.56

043

.189

VAPO

R43

.189

0.0

2476

3.9

58.6

2482

2.6

187.

990

42.8

19VA

POR

42.8

190.

024

710.

058

.824

768.

818

7.42

342

.453

VAPO

R42

.453

0.0

2465

6.5

59.0

2471

5.5

186.

860

42.0

92VA

POR

42.0

920.

024

603.

559

.224

662.

718

6.30

041

.735

VAPO

R41

.735

0.0

2455

0.9

59.4

2461

0.2

185.

742

41.3

82VA

POR

41.3

820.

024

498.

659

.524

558.

218

5.18

741

.033

VAPO

R41

.033

0.0

2444

6.9

59.7

2450

6.6

184.

636

40.6

88VA

POR

40.6

880.

024

395.

759

.824

455.

518

4.08

840

.348

VAPO

R40

.348

0.0

2434

4.9

60.0

2440

4.8

183.

543

40.0

12VA

POR

40.0

120.

024

294.

560

.124

354.

518

3.00

139

.679

VAPO

R39

.679

fllJ

.lRA

TEBA

SIS

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

ECH

OKE

CHOK

EPD

C poe

PDC poe

PDC poe

PDC

PDC

PDC

PDC

PDC

PDC

PDC

poe

poe

poe

PDC

PDC

PDC

PDC

PDC poe

PDC

******

***CO

NDITI

ONor

ur6

EXHA

USTE

D***

******

****

*REL

EASE

RATE

(LBI

SEC)

****

TEMP

PRES

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

f)(P

SIA)

0.00

00.

000

2.12

62.

126

14.7

0019

8.78

40.

000

0.00

02.

108

2.10

814

.700

198.

165

0.00

00.

000

2.09

02.

090

14.7

0019

7.54

90.

000

0.00

02.

072

2.07

214

.700

196.

936

0.00

00.

000

2.05

52.

055

14.7

0019

6.32

60.

000

0.00

02.

037

2.03

714

.700

195.

720

0.00

00.

000

2.02

02.

020

14.7

0019

5.11

70.

000

0.00

02.

002

2.00

214

.700

194.

517

0.00

00.

000

1.98

31.

983

14.7

0019

3.92

00.

000

0.00

01.

966

1.96

614

.700

193.

327

0.00

00.

000

1.95

11.

951

14.7

0019

2.73

70.

000

0.00

01.

934

1.93

414

.700

192.

150

0.00

00.

000

1.91

81.

918

14.7

0019

1.56

60.

000

0.00

01.

903

1.90

314

.700

190.

986

0.00

00.

000

1.88

71.

887

14.7

0019

0.40

80.

000

0.00

01.

872

1.87

214

.700

189.

832

0.00

00.

000

1.85

61.

856

14.7

0018

9.26

00.

000

0.00

01.

838

1.83

814

.700

188.

691

0.00

00.

000

1.82

31.

823

14.7

0018

8.12

60.

000

0.00

01.

808

1.80

814

.700

187.

564

0.00

00.

000

1.79

11.

791

14.7

0018

7.00

50.

000

0.00

01.

777

1.77

714

.700

186.

449

0.00

00.

000

1.76

21.

762

14.7

0018

5.89

60.

000

0.00

01.

748

1.74

814

.700

185.

346

0.00

00.

000

1.73

51.

735

14.7

0018

4.79

90.

000

0.00

01.

720

1.72

014

.700

184.

254

0.00

00.

000

1.70

31.

703

14.7

0018

3.71

30.

000

0.00

01.

689

1.68

914

.700

183.

175

0.00

00.

000

1.67

61.

676

14.7

0018

2.64

00.

000

0.00

01.

662

1.66

214

.700

182.

108

.... ~

TITL

E:EX

.3,

CASE

2.14-T£t~

CYL

WI

RUPT

URED

PIGT

AIL

(2FT

)

******

*C(N

)ITIlJ

IlOF

UF6

INCl

JIlTA

IfIKN

T***

****

PAT~Y

INlE

T**

****

***

C(N)

ITIlJ

IlOF

UF6

EXHA

USTE

D**

****

****

FL~

TIME

****

****

**MA

SS(L

B)**

****

****

TEMP

PRES

RELE

ASE

PRES

RATE

****

RELE

ASE

RATE

(LBI

SEC)

****

TEMP

PRES

(SEC

)SO

LID

LIQU

IDVA

POR

TOTA

L(D

EGF)

(PSI

A)PH

ASE

(PSI

A)BA

SIS

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

O.0.

025

948.

151

.926

000.

020

0.00

051

.152

VAPO

R51

.152

POC

0.00

00.

000

1.91

41.

914

14.7

0019

8.78

430

.0.

025

890.

252

.425

942.

619

9.43

150

.732

VAPO

R50

.732

PDe

0.00

00.

000

1.89

91.

899

14.7

0019

8.22

760

.0.

025

832.

952

.825

885.

619

8.86

650

.317

VAPO

R50

.317

PDC

0.00

00.

000

1.88

41.

884

14.7

0019

7.67

390

.0.

025

775.

953

.225

829.

119

8.30

349

.906

VAPO

R49

.906

PDe

0.00

00.

000

1.87

01.

870

14.7

0019

7.12

112

0.0.

025

719.

553

.625

773.

019

7.74

249

.499

VAPO

R49

.499

PDC

0.00

00.

000

1.85

51.

855

14.7

0019

6.57

115

0.0.

025

663.

453

.925

717.

419

7.18

549

.097

VAPO

R49

.097

PDe

0.00

00.

000

1.84

11.

841

14.7

0019

6.02

418

0.0.

025

607.

854

.325

662.

119

6.63

048

.699

VAPO

R48

.699

PDC

0.00

00.

000

1.82

61.

826

14.7

0019

5.48

021

0.0.

025

552.

754

.725

607.

419

6.07

848

.307

VAPO

R48

.307

PDe

0.00

00.

000

1.81

11.

811

14.7

0019

4.93

924

0.0.

025

498.

055

.025

553.

019

5.52

947

.918

VAPO

R47

.918

PDC

0.00

00.

000

1.79

81.

798

14.7

0019

4.40

127

0.0.

025

443.

855

.325

499.

119

4.98

247

.533

VAPO

R47

.533

PDe

0.00

00.

000

1.78

41.

784

14.7

0019

3.86

530

0.0.

025

389.

955

.625

445.

619

4.43

847

.153

VAPO

R47

.153

PDt

0.00

00.

000

1.77

01.

770

14.7

0019

3.33

133

0.0.

025

336.

556

.025

392.

519

3.89

746

.777

VAPO

R46

.777

PDe

0.00

00.

000

1.75

71.

757

14.7

0019

2.80

036

0.0.

025

283.

556

.225

339.

819

3.35

846

.405

VAPO

R46

.405

PDt

0.00

00.

000

1.74

31.

743

14.7

0019

2.27

239

0.0.

025

231.

056

.525

287.

519

2.82

246

.037

VAPO

R46

.037

PDe

0.00

00.

000

1.72

91.

729

14.7

0019

1.74

642

0.0.

025

178.

856

.825

235.

619

2.28

945

.673

VAPO

R45

.673

PDt

0.00

00.

000

1.71

61.

716

14.7

0019

1.22

345

0.0.

025

127.

157

.125

184.

119

1.75

945

.313

VAPO

R45

.313

PDe

0.00

00.

000

1.70

21.

702

14.7

0019

0.70

348

0.0.

025

075.

857

.325

133.

119

1.23

144

.958

VAPO

R44

.958

POC

0.00

00.

000

1.68

91.

689

14.7

0019

0.18

5I-

"0

')

510.

0.0

2502

4.8

57.5

2508

2.4

190.

706

44.6

06VA

POR

44.6

06PD

e0.

000

0.00

01.

676

1.67

614

.700

189.

670

-:J

540.

0.0

2497

4.3

57.8

2503

2.1

190.

183

44.2

58VA

POR

44.2

58PD

C0.

000

0.00

01.

664

1.66

414

.700

189.

157

570.

0.0

2492

4.2

58.0

2498

2.2

189.

663

43.9

13VA

POR

43.9

13PD

e0.

000

0.00

01.

650

1.65

014

.700

188.

647

600.

0.0

2487

4.5

58.2

2493

2.7

189.

146

43.5

73VA

POR

43.5

73PO

C0.

000

0.00

01.

638

1.63

814

.700

188.

140

630.

0.0

2482

5.1

58.4

2488

3.5

188.

631

43.2

36VA

POR

43.2

36PD

e0.

000

0.00

01.

625

1.62

514

.700

187.

635

660.

0.0

2477

6.2

58.6

2483

4.8

188.

119

42.9

03VA

POR

42.9

03PD

t0.

000

0.00

01.

614

1.61

414

.700

187.

132

690.

0.0

2472

7.6

58.8

2478

6.4

187.

610

42.5

73VA

POR

42.5

73PD

e0.

000

0.00

01.

600

1.60

014

.700

186.

632

720.

0.0

2467

9.4

58.9

2473

8.4

187.

103

42.2

47VA

POR

42.2

47PD

t0.

000

0.00

01.

588

1.58

814

.700

186.

135

750.

0.0

2463

1.6

59.1

2469

0.7

186.

599

41.9

25VA

POR

41.9

25PD

e0.

000

0.00

01.

576

1.57

614

.700

185.

640

780.

0.0

2458

4.2

59.3

2464

3.4

186.

097

41.6

06VA

POR

41.6

06PD

e0.

000

0.00

01.

565

1.56

514

.700

185.

147

810.

0.0

2453

7.1

59.4

2459

6.5

185.

597

41.2

90VA

POR

41.2

90PD

e0.

000

0.00

01.

553

1.55

314

.700

184.

657

840.

0.0

2449

0.3

59.6

2454

9.9

185.

100

40.9

78VA

POR

40.9

78PD

t0.

000

0.00

01.

540

1.54

014

.700

184.

169

870.

0.0

2444

4.0

59.7

2450

3.7

184.

606

40.6

70VA

POR

40.6

70PD

e0.

000

0.00

01.

529

1.52

914

.700

183.

684

TITL

E:EX

.3,

CASE

3.14-Ttt~

CYL

WI

RUPT

URED

PIGT

AIL

(4n

)

TIM

E(S

Ee) o. 30.

60.

90.

120.

150.

180.

210.

240.

270.

300.

330.

360.

390.

420.

450.

480.

510.

540.

570.

600.

630.

660.

690.

720.

750.

780.

810.

840.

870.

******

*C(N

)ITIl:

tlOF

UF6

INCO

OAItt

IENT

******

*PA

nlo/A

YIN

LET

****

****

**MA

SS(L

B)**

****

****

TEMP

PRES

RELE

ASE

PRES

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

PHAS

E(P

SIA)

0.0

2594

8.1

51.9

2600

0.0

200.

000

51.1

52VA

POR

51.1

520.

025

895.

152

.325

947.

419

9.47

950

.767

VAPO

R50

.767

0.0

2584

2.4

52.7

2589

5.1

198.

960

50.3

86VA

POR

50.3

860.

025

790.

253

.125

843.

319

8.44

450

.009

VAPO

R50

.009

0.0

2573

8.4

53.4

2579

1.8

197.

930

49.6

35VA

POR

49.6

350.

025

686.

953

.825

740.

719

7.41

949

.266

VAPO

R49

.266

0.0

2563

5.8

54.1

2569

0.0

196.

910

48.9

00VA

POR

48.9

000.

025

585.

154

.525

639.

619

6.40

348

.538

VAPO

R48

.538

0.0

2553

4.8

54.8

2558

9.6

195.

899

48.1

79VA

POR

48.1

790.

025

484.

955

.125

540.

019

5.39

747

.825

VAPO

R47

.825

0.0

2543

5.3

55.4

2549

0.7

194.

897

47.4

74VA

POR

47.4

740.

025

386.

155

.725

441.

819

4.40

047

.127

VAPO

R47

.127

0.0

2533

7.3

55.9

2539

3.2

193.

905

46.7

83VA

POR

46.7

830.

025

288.

856

.225

345.

019

3.41

346

.442

VAPO

R46

.442

0.0

2524

0.7

56.5

2529

7.2

192.

922

46.1

06VA

POR

46.1

060.

025

192.

956

.725

249.

619

2.43

445

.772

VAPO

R45

.772

0.0

2514

5.5

57.0

2520

2.5

191.

948

45.4

42VA

POR

45.4

420.

025

098.

457

.225

155.

619

1.46

545

.115

VAPO

R45

.115

0.0

2505

1.7

57.4

2510

9.1

190.

983

44.7

91VA

POR

44.7

910.

025

005.

357

.625

062.

919

0.50

444

.471

VAPO

R44

.471

0.0

2495

9.2

57.8

2501

7.0

190.

027

44.1

54VA

POR

44.1

540.

024

913.

558

.024

971.

518

9.55

243

.840

VAPO

R43

.840

0.0

2486

8.1

58.2

2492

6.3

189.

080

43.5

29VA

POR

43.5

290.

024

823.

058

.424

881.

418

8.61

043

.222

VAPO

R43

.222

0.0

2477

8.2

58.6

2483

6.8

188.

141

42.9

17VA

POR

42.9

170.

024

733.

858

.724

792.

518

7.67

542

.616

VAPO

R42

.616

0.0

2468

9.7

58.9

2474

8.6

187.

211

42.3

17VA

POR

42.3

170.

024

645.

959

.124

704.

918

6.75

042

.022

VAPO

R42

.022

0.0

2460

2.4

59.2

2466

1.6

186.

291

41.7

29VA

POR

41.7

290.

024

559.

359

.424

618.

618

5.83

441

.440

VAPO

R41

.440

FLIJ.

IRA

TEBA

SIS

POC

PDe

poe

poe

POC

poe

POC

poe

POC

poe

PDC

poe

POC

poe

PDC

poe

POC

poe

POe

poe

POC

POC

PDC

poe

POC

PDC

PDC

poe

POC

poe

"~"~'ll"~

e(N

)ITIl:

tlOF

UF6

EXHA

USTE

D**

****

****

****

RELE

ASE

RATE

(LBI

SEC)

****

TEMP

PRES

SOLI

DLI

QUID

VAPO

RTO

TAL

(DEG

F)(P

SIA)

0.00

00.

000

1.75

41.

754

14.7

0019

8.78

40.

000

0.00

01.

741

1.74

114

.700

198.

274

0.00

00.

000

1.72

81.

728

14.7

0019

7.76

50.

000

0.00

01.

716

1.71

614

.700

197.

259

0.00

00.

000

1.70

41.

704

14.7

0019

6.75

60.

000

0.00

01.

691

1.69

114

.700

196.

254

0.00

00.

000

1.67

91.

679

14.7

0019

5.75

50.

000

0.00

01.

667

1.66

714

.700

195.

258

0.00

00.

000

1.65

41.

654

14.7

0019

4.76

30.

000

0.00

01.

642

1.64

214

.700

194.

271

0.00

00.

000

1.63

01.

630

14.7

0019

3.78

10.

000

0.00

01.

619

1.61

914

.700

193.

294

0.00

00.

000

1.60

71.

607

14.7

0019

2.80

80.

000

0.00

01.

596

1.59

614

.700

192.

325

0.00

00.

000

1.58

41.

584

14.7

0019

1.84

40.

000

0.00

01.

573

1.57

314

.700

191.

365

0.00

00.

000

1.56

21.

562

14.7

0019

0.88

90.

000

0.00

01.

551

1.55

114

.700

190.

414

0.00

00.

000

1.54

01.

540

14.7

0018

9.94

20.

000

0.00

01.

529

1.52

914

.700

189.

472

0.00

00.

000

1.51

81.

518

14.7

0018

9.00

40.

000

0.00

01.

507

1.50

714

.700

188.

538

0.00

00.

000

1.49

71.

497

14.7

0018

8.07

50.

000

0.00

01.

486

1.48

614

.700

187.

613

0.00

00.

000

1.47

61.

476

14.7

0018

7.15

40.

000

0.00

01.

465

1.46

514

.700

186.

696

0.00

00.

000

1.45

41.

454

14.7

0018

6.24

10.

000

0.00

01.

444

1.44

414

.700

185.

788

0.00

00.

000

1.43

41.

434

14.7

0018

5.33

80.

000

0.00

01.

424

1.42

414

.700

184.

889

­~ 00

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

N[,

AIRB

ORNE

SOlID

S

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

N[IL

ATIO

NSY

STEM

TRAN

SIENT

COMP

ARTM

ENT

MODE

L.

C(J'!PA

RTME

NTCO

NDIT

!ONS

5000

00.

FT**

27.9

03E+

00BT

U/SE

C-DE

GF

120.

0DE

GF

O.OOO

E+OO

BTu/S

EC

UF6

L

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O

TIME

(SEC

)

0.0

120.

024

0.0

360.0

480.

060

0.0

720.

0B4

0.096

0.0

10BO

.012

00.0

1320

.014

40.0

1560

.016

80.0

IBOO

.O19

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

AIR

V

3.54

8Et0

43.

240E

t043.1

98E+

043.

227E

t043.2

44E+

043.

254E

+04

3.25

9E+0

43.

245E

t04

3.222

E+04

3.21

6Et0

43.

326E

t043.

400E

t04

3.44

9Et0

43.

482E

t043.

504E

t04

3.51B

E+04

3.52

8Et0

43.

534E

t04

3.53

9Et0

43.

541E

t04

3.543

E+04

3.54

5Et04

3.54

6Et04

3.546

E+04

3.54

7Et0

43.

547E

+04

3.54

7Et0

43.

547E

t043.5

47E+

043.

547E

t043.5

47£+

04

H2O

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

H2O

V

4.630

E+02

8.72

2E+O

lO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OO1.

120E

tOl

1.37

1Et0

22.

282E

t02

2.94

0Et0

23.41~'[+02

3.756

E+02

4.001

E+02

4.177

E+02

4.304

E+02

4.39

5E+0

24.4

61E+

024.

508E

t02

4.54

2Et0

24.

567E

t02

4.58

4Et0

24.

597E

+02

4.60

6Et0

24.

613E

t02

4.618

£+02

4.62

1Et0

24.

623E

t02

4.62

5E+0

2

C(J'!P

ARTM

ENT

VOLlt

IE=

U*A

PROD

UC,

=SU

RFAC

ETE

MPER

ATUR

E=

COOL

ING

RATE

=

COMP

ONEN

T~SS

(LB)

HFL

HFV

UF6

S

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

7.454

E+02

O.OOO

E+OO

O.OOO

E+OO

9.270

E+02

O.OOO

E+OO

O.OOO

E+OO

9.355

E+02

O.OOO

E+OO

O.OOO

E+OO

9.404

E+02

O.OOO

E+OO

O.OOO

E+OO

9.432

E+02

O.OOO

E+OO

O.OOO

E+OO

9.448

E+02

O.OOO

E+OO

O.OOO

E+OO

9.408

E+02

O.OOO

E+OO

O.OOO

E+OO

9.340

E+02

O.OOO

E+OO

O.OOO

E+OO

9.073

E+02

O.OOO

E+OO

O.OOO

E+OO

6.597

E+02

O.OOO

E+OO

O.OOO

E+OO

4.786

E+02

O.OOO

E+OO

O.OOO

E+OS

3.467

E+02

0.000

£+00

O.OOO

E+OO

2.509

E+02

O.OOO

E+OO

O.OOO

E+OO

1.814

E+02

O.OOO

E+OO

O.OOO

E+OO

1.312

E+02

O.OOO

E+OO

O.OOO

E+OO

9.479

E+Ol

O.OOO

E+OO

O.OOO

E+OO

6.84

9E+O

lO.O

OOE+

OOO.O

OOE+

OO4.9

49E+

OlO.O

OOE+

OOO.O

OOE+

OO3.

575E

+Ol

O.OOO

E+OO

O.OOO

E+OO

2.58

3E+O

l0.0

00£+

00O.O

OOE+

OO1.8

66E+

01O.O

OOE+

OOO.O

OOE+

OO1.3

48E+

OlO.O

OOE+

OOO.O

OOE+

OO9.7

35E+

00O.O

OOE+

OOO.O

OOE+

OO7.0

32E+

00O.O

OOE+

OOO.O

OOE+

OO5.0

79E+

00O.O

OOE+

OOO.O

OOE+

OO3.

669E

+00

O.OOO

E+OO

O.OOO

E+OO

2.650

E+00

O.OOO

E+OO

0.000

£+00

1.914

E+00

O.OOO

E+OO

O.OOO

E+OO

1.383

E+00

O.OOO

E+OO

O.OOO

E+OO

9.98

9E-0

1O.O

OOE+

OO

UF6

V

O.OOO

E+OO

O.OOO

EtOO

1.55

5E+0

33.

220E

t03

4.361

E+03

5.12

3E+0

35.

598E

t03

4.10

4Et0

31.

617E

t03

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOOEt~)

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

TEMP

ERAT

UR£

PRES

SURE

U02F

2S

(DE6

F)(P

SIA)

O.OOO

E+OO

90.00

0014

.750

02.7

42E+

0313

4.07

9614

.7871

3.213

E+03

135.

9586

14.7

603

3.087

E+03

128.

3078

14.7

632

3.004

E+03

123.

7446

14.7

659

2.949

E+03

121.

0188

14.7

673

2.913

E+03

119.4

511

14.7

686

2.875

£+03

124.

0808

14.7

706

2.839

£+03

131.

6553

14.7

662

2.730

E+03

134.

7454

14.7

475

1.797

E+03

118.

4066

14.7

483

1.181

E+03

108.

1649

14.7

489

7.744

E+02

101.

6697

14.7

493

5.074

E+02

97.5

195

14.7

495

3.32

3E+0

294

.854

614

.749

42.1

75£+

0293

.137

514

.749

61.4

23E+

0292

.029

414

.749

69.

312E

+Ol

91.31

3114

.749

76.0

92E+

0190

.852

814

.749

93.9

85£+

0190

.553

814

.750

02.6

06E+

Ol90

.368

814

.7501

1.705

E+01

90.2

307

14.7

498

1.115

E+Ol

90.1

489

14.7

498

7.29

3E+0

090

.095

914

.749

84.

770E

+00

90.0

695

14.7

500

3.120

E+00

90.0

433

14.7

500

2.041

E+00

90.0

302

14.7

500

1.335

E+00

90.01

7114

.750

08.

729E

-Ol

90.01

7114

.750

05.7

09E-

Ol90

.0171

14.7

500

3.734

E-Ol

90.00

4114

.7500

~ 0)

co

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

AIRB

ORNE

SOLI

DS

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTlL

ATltt4

SYST

EMT~SIENT

ClJoIP

ARTH

ENT

MOD£

L.

INLE

TAI

RBU

llER

FLlll

RATE

=0.

0AC

FMAM

BIEN

TTE

MP£R

ATUR

£=

80.0

00D£

GF

AMBIE

NTPR

ESSU

RE=

14.7

00PS

IA

TIME

ClJ'!P

tt4EN

T~S

FLlll

RATE

(LB/

S£C)

TEMP

£RAT

UR£

PRES

SURE

(SEC

)AI

RV

H2O

LH2

OV

HFL

HFV

UF6

SUF

6L

UF6

VU0

2F2

S(O

EGF)

(PSI

A)

0.0

9.603

Et01

O.OOO

EtOO

1.253

EtOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

O80

.0000

14.7

000

120.

09.6

03Et

01O.

OOO£

tOO

1.253

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

80.00

0014

.700

024

0.0

9.60

3£t0

1O.O

OOEtO

O1.2

53£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

80.00

0014

.700

036

0.0

9.60

3£tO

lO.

OOO£

tOO

1.253

£tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

80.00

0014

.700

048

0.0

9.603

Et01

O.OOO

EtOO

1.253

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOO£

tOO

80.00

0014

.700

060

0.0

9.60

3EtO

lO.

OOO£

tOO

1.253

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

0.000

£+00

0.000

£+00

80.00

0014

.700

072

0.0

9.603

E+01

O.OOO

E+OO

1.253

£+00

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

O.OOO

EtOO

80.00

0014

.700

084

0.0

9.60

3EtO

lO.O

OOE+

OO1.2

53Et

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

0080

.0000

14.7

000

960.0

9.603

Et01

O.OO

O£tO

O1.2

53£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O0.0

00£+

000.0

00£+

0080

.0000

14.7

000

1080

.09.

603£

tOl

0.000

£+00

1.253

£+00

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

0.000

£+00

80.00

0014

.7000

1200

.09.

603£

t01

O.OO

O£tO

O1.2

53£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

80.00

0014

.700

013

20.0

9.603

E+Ol

0.000

£+00

1.253

£+00

0.000

£+00

O.OO

O£tO

o0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

0080

.0000

14.7

000

1440

.09.

603£

t01

O.OOO

EtOO

1.253

£tOO

0.000

£+00

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO80

.0000

14.7

000

..... -::J

1560

.09.6

03£+

010.0

00£+

001.2

53E+

000.0

00£+

000.0

00£+

00O.

OOO£

tOO

0.000

£+00

O.OO

O£tO

O0.0

00£+

0080

.0000

14.7

000

0

1680

.09.

603£

t01

O.OOO

EtOO

1.253

£tOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

80.00

0014

.700

018

00.0

9.603

£+01

0.000

£+00

1.253

£+00

0.000

£+00

O.OO

O£tO

O0.0

00£+

000.0

00£+

00O.O

OOE+

OO0.0

00£+

0080

.0000

14.7

000

1920

.09.6

03E+

01O.O

OOE+

OO1.2

53£+

00O.O

OOE+

OOO.

OOOE

tOO

0.000

£+00

O.OO

O£tO

OO.

OOOE

tOO

0.000

£+00

80.00

0014

.700

020

40.0

9.603

£+01

O.OO

O£tO

O1.2

53E+

000.0

00£+

00O.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OOO.

OOO£

tOO

80.00

0014

.700

021

60.0

9.603

£+01

O.OOO

EtOO

1.253

E+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

O£tO

OO.O

OOE+

OOO.O

OOEtO

O80

.0000

14.7

000

2280

.09.6

03£+

010.0

00£+

001.2

53£+

000.0

00£+

00O.

OOO£

tOO

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

80.0

000

14.7

000

2400

.09.

603£

t01

O.OOO

E+OO

1.253

EtOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O80

.0000

14.7

000

2520

.09.6

03£+

010.0

00£+

001.2

53£tO

OO.

OOO£

tOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

0.000

£+00

0.000

£+00

SO.OO

OO14

.700

026

40.0

9.60

3£t0

1O.O

OOEtO

O1.2

53Et

OOO.O

OOEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

80.00

0014

.700

027

60.0

9.60

3£tO

lO.O

OOEtO

O1.2

53Et

OOO.O

OOE+

OOO.

OOO£

tOO

O.OOO

E+OO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O80

.0000

14.7

000

2880

.09.6

03Et

01O.O

OOEtO

O1.2

53£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O80

.0000

14.7

000

3000

.09.

603£

tOl

O.OOO

E+OO

1.253

£+00

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

oO.

OOO£

tOO

O.OO

O£tO

OO.O

OOE+

OO80

.0000

14.7

000

3120

.09.6

03Et

01O.O

OOEtO

O1.2

53£tO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

80.00

0014

.700

032

40.0

9.60

3£tO

lO.

OOO£

tOO

1.253

£tOO

O.OO

O£tO

OO.

OOOE

tOO

0.000

£+00

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

80.0

000

14.7

000

3360

.09.

603£

t01

O.OO

O£tO

O1.2

53£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

80.00

0014

.700

034

80.0

9.60

3£tO

lO.

OOO£

tOO

1.253

£tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

ooo£

too

O.OO

O£tO

OO.

OOO£

tOO

80.00

0014

.7000

3600

.09.

603£

t01

O.OOO

EtOO

1.253

£tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

SO.OO

OO14

.700

0

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

UF6

V

1.72

7E+0

11.7

16E+

011.

702E

t01

1.685

£+01

1.66

3Et0

11.

631E

+01

1.57

5Et01

UF6

L

O.OO

OEtO

O0.0

00£+

00O.O

OOE+

OO0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

AIRB

ORNE

SOLID

S

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIL

ATlC

NSY

STEM

TIW

4SIE

NTCc

t1PAR

TMEN

TMO

DEL.

SOUR

CETE

RM:

SOUR

CETE

RMft!l

SSFL

lJiRA

TES,

TEMP

ERAT

URE,~D

PRES

SUR£

H£RE

READ

FRct1

DATA

FILE

.

TIM

£Cc

t1PCN

ENT

ft!lSS

FLlJi

RATE

(LBl

S£C

)(S

£C)

AIR

VH2

0L

H2O

VHF

LHF

VU

f6S

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

1.640

E+01

120.

00.0

00£+

00O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO1.6

34£+

0124

0.0

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

1.628

£+01

360.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

001.6

21£+

0148

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

1.611

E+01

600.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO1.5

97E+

0172

0.0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO1.5

71E+

01

~ -:l~

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

AIRB

ORNE

SOLI

DS

DATA

GENE

RATE

DBY

FODR

fT--

AFO

RCED

DRAf

TVE

NTIL

ATI(}

ISY

STEM

TRtm

IENT

C(J1P

ARTH

ENT

MODE

L.

EXI¥l

UST

STRE

AM(FO

RCED

DRAf

T)RESIST~CE

TERM

=3.

798E

-07

PS!-S

EC**

VLBl

fT**

3

TIME

C(J1P

(}IEN

T~SS

FUW

RATE

(LB/

SEC)

TEMP

ERAT

URE

PRES

SURE

(SEC

)AI

RV

H2O

LH2

OV

HFL

HFV

UF6

SUF

6L

UF6

VU0

2F2

S(O

EGf)

(PSI

A)

0.0

9.60

3Et0

1O.

OOOE

tOO

1.253

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O90

.000

014

.750

012

0.0

1.15

7Et0

2O.O

OOEtO

O3.1

14E-

01O.

OOOE

tOO

2.661

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O9.

789E

tOO

134.

0796

14.78

7124

0.09.

284E

t01

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O2.6

91Et

OOO.

OOOE

tOO

O.OO

OEtO

O4.5

13Et

OO9.

328E

tOO

135.

9586

14.7

603

360.

09.

364E

t01O.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

O2.

715E

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.34

3EtO

O8.

959E

tOO

128.

3078

14.7

632

480.0

9.46

5Et01

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

2.744

EtOO

O.OO

OEtO

OO.

OOOE

tOO

1.27

2EtO

l8.

765E

tOO

123.

7446

14.7

659

600.

09.

503E

t01

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O2.

755E

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.49

6Et0

18.6

13Et

OO12

1.01

8814

.767

372

0.0

9.55

5Et01

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

2.770

EtOO

O.OO

OEtO

OO.

OOOE

tOO

1.64

1Et0

18.

539£

tOO

119.4

511

14.7

686

840.

09.

850E

t01

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O2.

855E

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.24

5£t0

18.7

24Et

OO12

4.08

0814

.770

696

0.0

9.811

Et01

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O2.8

44Et

OOO.

OOOE

tOO

O.OO

OEtO

O4.9

25Et

OO8.

645£

tOO

131.

6553

14.7

662

1080

.08.

501E

t01

O.OOO

EtOO

2.96

0E-0

2O.O

OOEtO

O2.3

98Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

7.217

EtOO

134.

7454

14.7

475

1200

.08.

856E

tOl

O.OO

OEtO

O3.6

50E-

OlO.O

OOEtO

O1.7

57Et

OOO.

OOO£

tOo

O.OO

OEtO

OO.

OOOE

tOO

4.78

6EtO

O11

8.40

6614

.74B3

1320

.09.

105E

t01

O.OO

OEtO

O6.1

12E-

Ol

O.OO

OEtO

O1.2

82Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

3.162

E+00

108.

1649

14,7

489

1440

.09.

271E

tOl

O.OO

OEtO

O7.9

04E-

OlO.O

OOEtO

O9.

319E

-Ol

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

O2.0

82Et

OO10

1.66

9714

.749

315

60.0

9.38

2EtO

lO.

OOOE

tOO

9.201

E-01

O.OO

OEtO

O6.

761E

-Ol

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O1.3

67Et

OO97

.519

514

.749

516

80.0

9.43

1EtO

lO.

OOOE

tOO

1.011

EtOO

O.OOO

EtOO

4.884

E-01

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O8.

945£

-01

94.8

546

14.7

494

~.. -::I

1800

.09.

487E

tOl

O.OOO

EtOO

1.079

EtOO

O.OO

OEtO

O3.

537E

-01

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

5.965

E-01

93.1

375

14.7

496

~

1920

.09.

513E

tOl

O.OO

OEtO

O1.1

26Et

OOO.

OOOE

tOO

2.55

6E-0

1O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O3.

838(

-01

92.0

294

14.7

496

2040

.09.

543E

tOl

O.OOO

E+OO

1.162

E+00

O.OO

OEtO

O1.

849E

-01

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

2.514

E-01

91.31

3114

.749

721

60.0

9.56

7EtO

lO.

OOOE

tOO

1.188

EtOO

O.OO

O£tO

O1.

338E

-Ol

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

1.647

E-01

90.8

528

14.7

499

2290

.09.

582E

tOl

O.OO

OEtO

O1.2

07E+

00O.

OOOE

tOO

9.67

3E-0

2O.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

1.07

8E-0

190

.553

814

.750

024

00.0

9.59

8£tO

lO.

OOOE

tOO

1.221

E+00

O.OOO

EtOO

6.99

5E-0

2O.

OOO£

tOO

O.OOO

E+OO

O.OO

O£tO

O7.

060E

-02

90.3

688

14.75

0125

20.0

9.57

8EtO

lO.

OOOE

tOO

1.227

EtOO

O.OO

OEtO

O5.

041E

-02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O4.

606E

-02

90.2

307

14.7

498

2640

.09.

579E

tOl

O.OO

OEtO

O1.2

34Et

OOO.O

OOEtO

O3.

641E

-02

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

3.01

3E-0

290

.148

914

.749

827

60.0

9.58

1EtO

lO.

OOOE

tOO

1.239

EtOO

O.OO

OEtO

O2.

630E

-02

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

1.97

0E-0

290

.095

914

.749

828

80.0

9.60

1Et0

1O.

OOOE

tOO

1.245

E+00

O.OOO

EtOO

1.90

4E-0

2O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.29

1£-0

290

.069

514

.750

030

00.0

9.60

2EtO

1O.

OOOE

tOO

1.247

EtOO

O.OO

OEtO

O1.

375E

-02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O8.

446E

-03

90.0

433

14.7

500

3120

.09.

602E

tOl

O.OOO

EtOO

1.249

EtOO

O.OOO

EtOO

9.93

2E-0

3O.

OOO£

tooO.

OOOE

tOO

O.OO

OEtO

O5.

524E

-03

90.0

302

14.7

500

3240

.09.

602E

tOl

O.OO

OEtO

O1.2

50Et

OOO.O

OOE+

OO7.

174E

-03

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O3.

613E

-03

90.01

7114

.750

033

60.0

9.60

2EtO

lO.

OOOE

tOO

1.251

EtOO

O.OOO

EtOO

5.18

2E-0

3O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.36

3[-0

390

.0171

14.7

500

3480

.09.

603E

t01

O.OO

OEtO

O1.2

52Et

OOO.

OOOE

tOO

3.74

3E-0

3O.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OO1.

545E

-03

90.01

7114

.750

036

00.0

9.60

3EtO

lO.

OOOE

tOO

1.252

EtOO

O.OO

OEtO

O2.

704E

-03

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O1.

011E

-03

90.00

4114

.750

0

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

AIRB

ORNE

SOLI

DS

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIL

ATIrt-

lSYS

TEMT~SIENT

ClliPA

RTME

NTMO

DEL.

0.03

30FT

/SEC

1250

0.FT

**2

UF6

L

0.000

£+00

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

O0.0

00£+

000.0

00£+

000.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOO£

tOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.O

OOEtO

O0.0

00£+

00O.

OOOH

OO

Crt-lD

ENSA

TEFA

LLOU

T

TIME

(SEC

)AI

RV

0.0

O.OOO

EtOO

120.

0O.O

OOEtO

O24

0.0

O.OOO

EtOO

360.

0O.

OOOH

OO48

0.0

0.000

£+00

600.

0O.

OOOH

OO72

0.0

O.OOO

EtOO

840.0

O.OOO

EtOO

960.

00.0

00£+

0010

80.0

O.OOO

EtOO

1200

.0O.O

OOEtO

O13

20.0

O.OOO

EtOO

1440

.0O.O

OOEtO

O15

60.0

O.OOO

EtOO

1680

.0O.O

OOEtO

O18

00.0

O.OOO

EtOO

1920

.0O.O

OOEtO

O20

40.0

O.OOO

EtOO

2160

.0O.O

OOEtO

O22

80.0

O.OOO

EtOO

2400

.0O.O

OOEtO

O25

20.0

O.OOO

EtOO

2640

.0O.O

OOEtO

O27

60.0

O.OO

O£tO

O28

80.0

O.OOO

EtOO

3000

.0O.O

OOEtO

O31

20.0

O.OOO

EtOO

3240

.0O.

OOO£

tOO

3360

.0O.O

OOEtO

O34

80.0

O.OOO

EtOO

3600

.0O.O

OOEtO

O

H20

L

0.000

£+00

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OO

OHOO

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OO

OHOO

O.OO

OHOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OO

OHOO

O.OO

OHOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OOO.

OOO£

tOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

H2O

V

0.000

£+00

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OOO.

OOO£

tOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

0.000

£+00

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOH

OOO.D

OO£+

OOO.

OOOH

OOO.

OOO£

tOO

O.OO

OHOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

0.000

£+00

O.OO

OHOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OO

OHOO

DEPO

SITIO

NVE

LOCI

TY=

D£PO

SITIO

NAR

EA=

ClliPO

NENT

MASS

FL(}J

RATE

(LB/

SEC)

HFL

HFV

UF6

S

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

UF6

V

O.OOO

EtOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OOO.O

OOEtO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OOO.O

OOEtO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OOO.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO0.0

00£+

00O.

OOOH

OO

U02F

2S

O.OOO

EtOO

2.262

HOO

2.651

£+00

2.547

HOO

2.478

£tOO

2.433

£+00

2.403

EtOO

2.37

1HOO

2.34

2EtO

O2.2

52HO

O1.

483E

+00

9.741

E-Ol

6.38

9£-0

14.1

86£-

012.

741E

-01

1.79

4E-O

l1.

174E

-01

7.682

E-02

5.02

6E-0

23.

287£

-02

2.15

0E-0

21.

406£

-02

9.19

9£-0

36.

017E

-03

3.93

5E-0

32.

574E

-03

1.68

4E-0

31.

101E

-03

7.202

E-04

4.71

0E-0

43.0

81E-

04

.... -:J '"

TITL

£:EX

.4,

CAS£

1.R£

LEAS

£(£

X.2.

2),

FORC

£DVE

NT,

AIRB

ORN£

SOLI

DS

DATA

G£N£

RATE

DBY

FODR

FT--

AFO

RC£D

DRAF

TVE

NTIL

ATIC

tiSY

ST£M

T(W

IISIE

NTW1

PART

MENT

HOD£

L.

CCtiD

ENSA

TEAC

CUMU

LAT£

DCti

FLOO

R

TIM£

COHP

CtiEN

TMA

SS(L

B)(S

EC)

AIR

VH2

OL

H2O

VHF

LHF

VUF

6S

UF6

LUF

6V

U02F

2S

0.0

0.000

£+00

0.000

£+00

0.000

£+00

O.OO

O£tO

OQ.

30GE

fOO

O.OO

O£tO

O0.0

00£+

000.0

00£+

00O.

OOO£

tOO

120.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO1.4

66E+

0224

0.00.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.

ooo£

tOO

0.000

£+00

4.633

E+02

360.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO7.7

48E+

0248

0.0

0.000

£+00

0.000

£+00

O.OO

O£tO

OO.

OOO£

tOO

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

1.07

6£t0

360

0.0

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

1.371

E+03

720.

00.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.

OOO£

tOO

1.661

£+03

840.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO1.9

47E+

0396

0.0

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OO

O£tO

O0.0

00£+

00O.O

OOE+

OOO.

OOO£

tOO

O.OOO

E+OO

2.230

£+03

1080

.00.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO2.5

10E+

0312

00.0

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

2.731

£+03

1320

.0O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO2.8

77E+

0314

40.0

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

0.000

£+00

0.000

£+00

2.97

2E+0

315

60.0

0.000

£+00

O.OOO

E+OO

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

0.000

£+00

3.035

E+03

....16

80.0

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

3.076

£+03

-::I

1800

.00.0

00£+

000.0

00£+

00O.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

003.1

03E+

03~

1920

.0O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO3.1

20£+

0320

40.0

O.OOO

E+OO

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

0.000

£+00

3.132

£+03

2160

.0O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

003.1

39£+

0322

80.0

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

3.144

E+03

2400

.0O.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OO3.1

48£+

0325

20.0

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

3.150

£+03

2640

.0O.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

003.1

51£+

0327

60.0

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

3.152

£+03

2880

.0O.

OOO£

tOO

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

3.153

£+03

3000

.00.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO3.1

53£+

0331

20.0

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

0.000

£+00

O.OOO

E+OO

0.000

£+00

3.153

£+03

3240

.00.0

00£+

000.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OO3.1

53E+

0333

60.0

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

3.153

£+03

3480

.0O.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OO3.1

54£+

0336

00.0

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

0.000

£+00

0.000

£+00

0.000

£+00

0.000

£+00

3.154

£+03

TITL

E:EX

.4,

CASE

1.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NTI

AIRB

ORNE

SOLI

DS

MTA

GENE

RATE

DBY

FOOR

FT--

AFO

RCED

DRAF

TVENTILATI~

SYST

EMTm

/SIE

NTCC

MPAR

TMEN

TMO

DEL.

U~Ilt1~D

HFRE

LEAS

ESl

ttlARY

~D

Cct1P

ARTH

ENTC~ENTRATI~S

TIME (SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

~298:8

Clt1U

LATI

VEMA

TERI

ALRE

LEAS

EDOR

FORM

EDFR

ct1RE

LEAS

EDMA

TERI

AL(L

B)UF

6U0

2F2

TOTA

LU

HFHF

FRct1

UF6

TOTA

LHF

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

6.40

1Ef0

24.9

46E+

021.

714E

+02

O.OOO

E+OO

1.71

4E+0

21.9

15E+

021.8

34E+

031.5

46E+

035.0

45E+

024.3

53E+

Ol5.

481E

+02

1.04

1Ef0

32.9

33E+

032.9

71E+

038.

301E

+02

2.36

8£+0

21.

067E

f03

2.382

E+03

4.001

E+03

4.702

E+03

1.15

9E+0

35.

416E

+02

1.70

1E+0

34.0

58E+

035.0

47E+

036.6

44E+

031.4

9OE+

039.2

26E+

022.4

13E+

035.9

53E+

036.0

79E+

038.7

23E+

031.

823E

+03

1.35

3E+0

33.

176E

+03

7.844

E+03

7.11

6£+0

31.0

8OE+

042.1

61E+

031.

783E

+03

3.94

4Ef0

38.8

61E+

038.1

54E+

031.2

29E+

042.5

02E+

032.0

15E+

034.5

16E+

039.1

20E+

039.1

73E+

031.3

26E+

042.8

37E+

032.0

73E+

034.9

11E+

039.1

20E+

039.8

84E+

031.3

8OE+

043.

085£

+03

2.073

E+03

5.158

E+03

9.12O

E+03

1.036

E+04

1.417

E+04

3.266

E+03

2.073

E+03

5.33

9E+0

39.1

20E+

031.0

67E+

041.4

41E+

043.3

98E+

032.0

73E+

035.

471E

+03

9.120

E+03

1.087

E+04

1.457

E+04

3.494

E+03

2.073

E+03

5.567

E+03

9.120

E+03

1.100

E+04

1.467

E+04

3.563

E+03

2.073

E+03

5.63

7E+0

39.1

2OE+

031.

109£

+04

1.474

E+04

3.61

4E+0

32.

073E

f03

5.68

1£+0

39.1

20E+

031.1

15E+

041.4

78E+

043.6

50E+

032.0

73E+

035.

723E

+03

9.12

0Ef0

31.1

19E+

041.4

81E+

043.

676E

f03

2.07

3Ef0

35.7

5OE+

039.1

20E+

031.1

21E+

041.4

83E+

043.6

95E+

032.0

73E+

035.

769E

+03

9.12O

Ef03

1.123

E+04

1.48

4Ef0

43.

709£

f03

2.073

E+03

5.78

2Ef0

39.1

20E+

031.

124£

+04

1.48

5£+0

43.7

19E+

032.0

73E+

035.7

92E+

039.1

2OEf

031.

125E

f04

1.48

6£+0

43.

726£

+03

2.073

E+03

5.79

9£f0

39.1

20E+

031.1

25E+

041.4

86E+

043.7

31E+

032.0

73E+

035.8

05E+

039.1

2OE+

031.

125£

+04

1.486

E+04

3.73

5£+0

32.0

73E+

035.

808£

+03

9.120

E+03

1.126

E+04

1.486

E+04

3.73

8E+0

32.0

73E+

035.8

11E+

039.

120E

f03

1.12

6Ef0

41.

487E

f04

3.740

E+03

2.073

E+03

5.81

3E+0

39.1

20E+

031.1

26E+

041.4

87E+

043.7

41E+

032.0

73E+

035.

814E

+03

9.120

E+03

1.126

E+04

1.487

E+04

3.742

E+03

2.07

3Ef0

35.

815E

+03

9.12

0£+0

31.1

26E+

041.4

87E+

043.7

43E+

032.0

73E+

035.8

16E+

03§:l~8~t8~

l:l~!~t8~

l:~B~~t8~

~:~~~t8H

~:8~H~t8H

5:BI~~t8~

CCMP

ARTM

ENTC~CENTRATI~S

(LB/

FT**

3)~1lt1

HF

O.OOO

E+OO

O.OOO

E+OO

4.23

7E-0

31.

491E

-03

7.06

8E-0

31.

854E

-03

9.12

6E-0

31.

871E

-03

1.05

4E-0

21.

881E

-03

1.14

9E-0

21.

886E

-03

1.20

7E-0

21.

890E

-03

9.99

2E-0

31.

882E

-03

6.57

5£-0

31.

868E

-03

4.21

9E-0

31.

815E

-03

2.77

8E-0

31.

319E

-03

1.82

5£-0

39.

572E

-04

1.19

1£-0

36.

934E

-04

7.84

3E-0

45.

018E

-04

5.13

6E-0

43.

629E

-04

3.36

2E-0

42.

623E

-04

2.20

0E-0

41.

896E

-04

1.43

9£-0

41.

370E

-04

9.415E~05

9.89

7E-0

56.

159£

-05

7.15

0E-0

54.

028E

-05

5.16

5£-0

52.

635E

-05

3.73

1E-0

51.

723E

-05

2.69

5E-0

51.

127E

-05

1.94

7E-0

57.

373E

-06

1.40

6£-0

54.

822E

-06

1.01

6E-0

53.

154E

-06

7.33

8E-0

62.

063E

-06

5.30

1E-0

61.

349E

-06

3.82

9E-0

6g:9,t~:8~

f:~~f:8g

.... -:l

c:n

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,AI

RBOR

NESO

lIDS

DATA

GENE

RATE

DBY

INDR

FT--~

INDU

CED

DRAF

TVENTILATl~

SYST

EMT~SIENT

CctlP

ARTM

ENT

MOD

EL

CctlP

ARTM

ENTC~DITI~S

5000

00.

FT**

27.7

33E+

00BT

U/SE

C-DE

GF

120.

0DE

GF

O.OOO

E+OO

BTu/S

EC

ur6

L

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OO

TIME

(SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

AIR

V

3.524

E+04

3.13

5E+0

43.

095E

t04

3.105

E+04

3.11

0E+0

43.

113E

t04

3.114

E+04

3.123

E+04

3.13

6Et0

43.1

46E+

043.

212E

+04

3.31

7E+0

43.3

86£+

043.4

32£+

043.4

62E+

043.

482E

+04

3.49

6Et0

43.5

05E+

043.5

11E+

043.

515E

+04

3.51

8Et0

43.

520E

+04

3.521

E+04

3.52

2E+0

43.

522E

+04

3.52

3E+0

43.

523E

+04

3.52

3E+0

43.

523E

+04

3.52

3E+0

43.5

23E+

04

H20

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

H2O

V

4.59

9E+0

25.

556E

tOl

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

6.46

3E+O

l1.7

55E+

022.5

51E+

023.1

23E+

023.

534E

t02

3.83

1E+0

24.

044E

t02

4.198

E+02

4.309

£+02

4.38

9E+0

24.

447E

+02

4.489

E+02

4.519

E+02

4.54

1Et0

24.

557E

+02

4.568

E+02

4.57

7Et0

24.

583E

+02

4.587

E+02

4.590

E+02

4.59

2E+0

2

CctlP

ARTM

ENT

VOLU

ME=

U*A

PROD

UCT

=SU

RFAC

ETE

MPER

ATUR

E=

COOL

ING

RATE

=Cc

tlPCN

ENT

MASS

(LB)

HFL

HFV

ur6

S

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

7.85

3E+0

2O.O

OOE+

OOO.O

OOE+

OO8.9

72E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

02E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

16E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

24E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

28E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

53E+

02O.O

OOE+

OOO.O

OOE+

OO9.0

91E+

02O.O

OOE+

OOO.O

OOE+

OO9.1

19£+

02O.O

OOE+

OOO.O

OOE+

OO7.8

75E+

02O.O

OOE+

OOO.O

OOE+

OO5.7

16E+

02O.O

OOE+

OOO.O

OOE+

OO4.1

49E+

02O.O

OOE+

OOO.O

OOE+

OO3.0

11E+

02O.O

OOE+

OOO.O

OOE+

OO2.1

86E+

02O.O

OOE+

OOO.O

OOE+

OO1.5

87E+

02O.O

OOE+

OOO.O

OOE+

OO1.1

52E+

02O.O

OOE+

OOO.O

OOE+

OO8.

359E

+Ol

O.OOO

E+OO

O.OOO

E+OO

6.067

E+01

O.OOO

E+OO

O.OOO

E+OO

4.404

E+01

O.OOO

E+OO

O.OOO

E+OO

3.19

6E+0

1O.O

OOE+

OOO.O

OOE+

OO2.

320E

+Ol

O.OOO

E+OO

O.OOO

E+OO

1.684

E+01

O.OOO

E+OO

O.OOO

E+OO

1.222

E+Ol

O.OOO

E+OO

O.OOO

E+OO

8.87

2E+0

0O.O

OOE+

OOO.O

OOE+

OO6.

440E

+00

O.OOO

E+OO

O.OOO

E+OO

4.67

4E+0

0O.O

OOE+

OOO.O

OOE+

OO3.3

93E+

00O.O

OOE+

OOO.O

OOE+

OO2.

462E

+00

O.OOO

E+OO

O.OOO

E+OO

1.787

E+00

O.OOO

E+OO

O.OOO

E+OO

1.297

E+00

O.OOO

E+OO

ur6

V

O.OOO

EtOO

O.OO

OEtO

O1.

996E

t03

3.76

7Et0

35.

027E

t03

5.90

4Et0

36.

482E

t03

5.076

£+03

2.57

6E+0

37.

612E

t02

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OO

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

E+OO

90.00

0014

.650

02.8

86£+

0314

8.67

1314

.6811

3.087

E+03

150.

8196

14.66

112.9

44E+

0314

6.12

2714

.660

82.8

47E+

0314

3.18

4814

.659

72.7

82E+

0314

1.38

9314

.661

02.7

39£+

0314

0.29

0514

.661

22.7

19E+

0314

0.66

5414

.659

02.7

13E+

0314

1.999

014

.660

82.7

10E+

0314

2.82

9014

.659

22.2

31E+

0313

2.929

114

.647

51.4

66E+

0311

7.190

014

.648

49.6

36E+

0210

7.38

9814

.648

96.3

33£+

0210

1.19

0814

.649

34.1

62E+

0297

.230

214

.649

62.7

36£+

0294

.700

514

.650

01.7

98E+

0293

.0491

14.6

500

1.182

£+02

91.9

873

14.65

017.

766E

+Ol

91.2

959

14.65

015.1

04E+

0190

.842

214

.6501

3.35

4E+O

l90

.545

414

.650

02.2

05E+

Ol90

.359

514

.650

01.4

49£+

0190

.2360

14.65

009.

522E

+00

90.1

553

14.6

500

6.25

8E+O

O90

.1020

14.6

500

4.113

E+00

90.0

626

14.6

499

2.703

E+00

90.0

494

14.6

500

1.777

E+00

90.0

363

14.6

500

1.168

E+00

90.0

232

14.6

500

7.674

E-Ol

90.0

102

14.6

500

5.043

E-O

l90

.010

214

.650

0

.... -:J

0)

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDl~ED

VENT

,AI

RBOR

NESO

lIDS

DATA

GENE

RATE

DBY

INDR

FT--

F«IN

DUCE

DDR

AFT

VENT

ILATIO

NSY

STEM

TRmS

IENT

Cct\P

ARTH

ENT

MODE

L.

INLE

TAI

RST

REAM

(INDU

CED

DRAF

T)4.

026£

-07

PSI-S

EC**

21LB

lFT*

*3SO

.OOO

DEG

F14

.700

PSIA

UF6

L

O.OOO

EtOO

O.OO

OEtoO

O.OO

OEtO

O0.0

00£+

00O.O

OOEtO

OO.

OOOE

tOO

0.000

£+00

O.OO

O£tO

o0.0

00£+

000.0

00£+

00O.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

0.000

£+00

O.OO

O£tO

O0.0

00£+

000.0

00£+

00O.

OOO£

tOO

0.000

£+00

O.OO

O£tO

O0.0

00£+

000.0

00£+

00O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

TIME

(S£C

)AI

RV

0.0

9.39

6EtO

l12

0.0

5.78

1£t0

124

0.0

8.28

5£tO

l36

0.0

8.31

9Et01

480.

08.

435£

tOl

600.

08.3

04Et

Ol

720.

08.2

77£+

0184

0.0

8.50

8Et0

196

0.0

8.321

EtO

l10

80.0

8.48

7£tO

l12

00.0

9.62

8£tO

l13

20.0

9.54

7£tO

l14

40.0

9.494

EtO

l15

60.0

9.46

0£t0

116

80.0

9.43

8£t01

1800

.09.

397£

tOl

1920

.09.

397£

tOl

2040

.09.

388£

tOl

2160

.09.

386£

tOl

2280

.09.3

91£+

0124

00.0

9.40

0EtO

l25

20.0

9.39

2EtO

l26

40.0

9.39

2£tO

l27

60.0

9.39

3£t0

128

80.0

9.39

4£tO

l30

00.0

9.40

2£t0

131

20.0

9.395

£+01

3240

.09.

395E

tOl

3360

.09.

396E

tOl

3480

.09.

396E

t0136

00.0

9.39

6£tO

l

H20

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

O£tO

O0.0

00£+

00O.O

OOEtO

O0.0

00£+

00O.O

OOEtO

Oo.

000E

tOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OO

O£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

H20

V

1.226

£+00

7.54

5£-0

11.0

81£+

001.0

86Et

OO1.1

01£+

001.0

84Et

OO1.0

80£+

001.1

10£+

001.0

86£tO

O1.1

08Et

OO1.

257E

tOO

1.246

£+00

1.239

EtOO

1.23

5£tO

O1.

232E

tOO

1.226

£+00

1.226

£+00

1.225

£+00

1.225

£+00

1.226

£+00

1.227

£+00

1.226

£+00

1.226

£+00

1.226

EtOO

1.22

6EtO

O1.

227£

tOO

1.226

EtOO

1.226

£+00

1.22

6£tO

O1.2

26£tO

O1.2

26Et

OO

RESIS

TF«C

ETE

RM=

AMBIE

NTTE

MPER

ATUR

£=

AMBIE

NTPR

ESSU

RE=

Cct\P

ONEN

T~SS

FUW

RATE

(LBI

SEC)

HFL

HFV

UF6

S

O.OO

O£tO

OO.

OOOE

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.oo

o£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.oo

o£tO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.oo

o£to

oO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

ooo£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.oo

o£tO

O

UF6

VO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£toO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

EtOO

0.000

£+00

0.000

£+00

0.000

£+00

O.OO

O£tO

O0.0

00£+

00O.O

OOEtO

O0.0

00£+

000.0

00£+

000.0

00£+

00O.

OOO£

tOO

0.000

£+00

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

000.0

00£+

00

TEMP

ERAT

UR£

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.70

00O.O

OOEtO

O80

.0000

14.7

000

O.OO

OEtO

O80

.0000

14.7

000

O.OO

O£tO

OSO

.OOOO

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.70

00O.

OOO£

tOO

80.00

0014

.700

0O.O

OOEtO

OSO

.OOOO

14.7

000

O.OO

O£tO

O80

.0000

14.7

000

O.OO

O£tO

OSO

.OOOO

14.7

000

O.OO

O£tO

O80

.0000

14.7

000

O.OO

O£tO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.

OOO£

tOO

80.00

0014

.7000

O.OO

O£tO

O80

.0000

14.7

000

O.OO

O£tO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.

OOO£

tOO

80.00

0014

.700

0O.

OOO£

tOO

80.00

0014

.700

0O.

OOO£

tOO

80.00

0014

.7000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

OSO

.OOOO

14.7

000

O.OOO

EtOO

80.00

0014

.7000

O.OOO

EtOO

80.00

0014

.700

0O.

OOO£

tOO

80.00

0014

.700

0O.

OOO£

tOO

SO.OO

OO14

.700

0O.

OOO£

tOO

80.00

0014

.7000

O.OO

O£tO

O80

.0000

14.7

000

......

-::J

-::J

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

EtOO

133.7

805

14.70

00O.O

OOEtO

O13

3.780

514

.7000

O.OOO

EtOO

133.7

805

14.70

00O.O

OOEtO

O13

3.780

514

.7000

O.OOO

EtOO

133.7

805

14.70

00O.O

OOE+

OO13

3.780

514

.7000

O.OOO

EtOO

133.7

805

14.70

00

UF6

V

1.72

7Et01

1.71

6Et0

11.

702E

t01

1.68

5Et01

1.663

Et01

1.63

1EtO

11.

575E

t01

UF6

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDUC

EDV~,

AIRB

ORNE

SOLI

DS

MTA

GENE

RATE

DBY

INDR

FT--

;«IND

UCED

DRAF

TV~ILATION

SYST

EMTR

#lSIE

NTCc

t1PAR

TMEN

TMO

DEL.

SOUR

CETE

RM:

SOUR

CETE

RM~SS

FUI4

RATE

S,TE

MPER

ATUR

E,AN

DPR

ESSU

REWE

RERE

ADFR

(JoIM

TAFI

LE.

TIME

CCtlPON~~SS

Fla-

lRA

TE(L

BISE

C)(S

EC)

AIR

VH2

0L

H20

VHF

LHF

VUF

6S

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.64

0Et0

112

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.63

4Et0

124

0.0O.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O1.

628E

t01

360.

0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O1.

621E

t01

480.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.61

1Et0

160

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.59

7Et0

172

0.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O1.

571E

t01

~ -::a 00

I-'

-::J

<:0

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(O£G

F)(P

SIA)

O.OOO

E+OO

90.0

000

14.6

500

7.696

£+00

148.

6713

14.6

811

8.232

EtOO

150.

8196

14.6

611

7.849

£+00

146.

1227

14.6

608

7.59

2E+0

014

3.18

4814

.659

77.4

20£+

0014

1.38

9314

.661

07.3

05Et

OO14

0.29

0514

.661

27.2

52£+

0014

0.66

5414

.659

07.2

36£+

0014

1.99

9014

.660

87.2

25£+

0014

2.82

9014

.659

25.9

49£+

0013

2.929

114

.647

53.9

10£+

0011

7.19

0014

.648

42.

570E

tOO

107.

3898

14.6

489

1.68

9£+0

010

1.19

0814

.649

31.1

10E+

0097

.230

214

.649

67.

295E

-Ol

94.7

005

14.6

500

4.794

E-O

l93

.0491

14.6

500

3.15

1£-0

191

.987

314

.650

12.0

71E-

Ol

91.2

959

14.6

501

1.36

1E-O

l90

.842

214

.650

18.

945E

-02

90.5

454

14.6

500

5.87

9£-0

290

.359

514

.650

03.

864E

-02

90.2

360

14.6

500

2.53

9£-0

290

.155

314

.650

01.

669£

-02

90.1

020

14.6

500

1.09

7£-0

290

.062

614

.649

97.

209E

-03

90.0

494

14.6

500

4.73

8£-0

390

.036

314

.650

03.

114E

-03

90.0

232

14.6

500

2.04

6£-0

390

.010

214

.650

01.

345E

-03

90.0

102

14.6

500

UF6

V

0.000

£+00

0.000

£+00

5.32

3E+0

01.0

05£+

011.3

40£+

011.5

74£+

011.

729E

tOl

1.354

£+01

6.86

9EtO

O2.0

30£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O

UF6

L

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.O

OOE+

OO0.0

00£+

00O.

OOOE

tOO

FLOW

RAT£

=80

000.

0AC

FM

CfJ1P~ENT~SS

FLOW

RATE

(LBl

S£C)

HFL

HFV

UF6

S

O.OOO

E+OO

O.OO

O£tO

oO.

ooo£

tOO

O.OO

O£tO

O2.0

94£+

000.0

00£+

00O.

OOO£

tOO

2.39

3£tO

OO.

OOOE

tOQ

O.OOO

E+OO

2.400

£+00

0.000

£+00

O.OOO

E+OO

2.404

EtOO

O.OOO

E+OO

0.000

£+00

2.406

£+00

0.000

£+00

O.OO

OEtO

O2.4

07£+

000.0

00£+

000.0

00£+

002.4

14£+

000.0

00£+

00O.

OOOE

tOO

2.424

EtOO

O.OO

OEtO

OO.

OOO£

tOO

2.432

£+00

0.000

£+00

O.OOO

E+OO

2.100

EtOO

O.OO

OEtO

O0.0

00£+

001.

524£

+00

0.000

£+00

0.000

£+00

1.106

EtOO

O.OO

O£tO

O0.0

00£+

008.

030£

-01

0.000

£+00

O.OO

OEtO

O5.

829E

-01

O.OO

OEtO

OO.

OOO£

tOO

4.23

1£-0

10.0

00£+

00O.O

OOE+

OO3.

071E

-01

O.OOO

E+OO

0.000

£+00

2.22

9E-0

10.0

00£+

00O.O

OOE+

OO1.

618E

-01

O.OO

OEtO

O0.0

00£+

001.

174£

-01

0.000

£+00

O.OO

OEtO

O8.

524E

-02

O.OOO

E+OO

0.000

£+00

6.18

7£-6

20.0

00£+

00O.

OOOE

tOO

4.49

1£-0

2O.O

OOE+

OO0.0

00£+

003.

259E

-02

0.000

£+00

O.OO

OEtO

O2.

366E

-02

O.OO

OEtO

O0.0

00£+

001.

717£

-02

0.000

£+00

0.000

£+00

1.24

6E-0

2O.O

OOE+

OO0.0

00£+

009.

047£

-03

0.000

£+00

O.OOO

E+OO

6.56

7£-0

3O.

OOOE

tOO

0.000

£+00

4.76

6£-0

30.0

00£+

00O.O

OOE+

OO3.

460E

-03

O.OO

OEtO

O

H20

V

1.22

6EtO

O1.

481E

-01

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

0.000

£+00

O.OO

OEtO

OO.

OOOE

tOO

1.72

4E-O

l4.

680£

-01

6.80

2E-O

l8.

328£

-01

9.42

5E-0

11.0

21£+

001.0

78E+

001.

119E

tOO

1.14

9£tO

O1.1

70£+

001.

186E

tOO

1.19

7£tO

O1.2

05Et

OO1.2

11Et

OO1.

215E

tOO

1.218

£+00

1.22

0EtO

O1.2

22£+

001.

223E

tOO

1.224

£+00

1.22

5E+0

0

H20

L

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,AI

RBOR

NESO

LIDS

DATA

GENE

RATE

DBY

INDR

fT--~

INDU

CED

DRAf

TVENTILATI~

SYST

EMT~IENT

CfJ1P

ARTM

ENT

HODE

l.

EX~UST

BUJ.lE

R

TIME

(SEC

)AI

RV

0.0

9.39

6EtO

l12

0.0

8.359

£+01

240.

08.

254E

+Ol

360.

08.

281E

tOl

480.

08.2

94E+

Ol60

0.0

8.302

E+Ol

720.

08.3

05E+

Ol84

0.0

8.328

£+01

960.

08.

363E

+Ol

1080

.08.3

89£+

0112

00.0

8.56

5EtO

l13

20.0

8.844

£+01

1440

.09.

029£

tOl

1560

.09.1

51£+

0116

80.0

9.23

2EtO

l18

00.0

9.28

6Et01

1920

.09.3

22£+

0120

40.0

9.346

£+01

2160

.09.

363E

tOl

2280

.09.3

73£+

0124

00.0

9.38

1EtO

l25

20.0

9.386

£+01

2640

.09.

389£

tOl

2760

.09.

391£

t01

2880

.09.

393E

tOl

3000

.09.

394E

+01

3120

.09.

394E

tOl

3240

.09.

395£

t01

3360

.09.

395E

+Ol

3480

.09.3

96£+

0136

00.0

9.39

6EtO

l

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDUC

EDV~,

AIRB

ORNE

SOLI

DS

DATA

GENE

PATE

DBY

INDR

FT--

ANIND

UCED

DPAF

TVE

NTIL

ATI(t.

lSY

STEM

TmlS

IENT

CIl1P

ARTM

ENT

MODE

L

C(t.lO

ENSA

TEFA

LLOU

TDE

POSI

TI(t.l

VELO

CITY

=0.0

330

FT/SE

CDE

POSI

TI(t.l

AREA

=12

500.

FT**

2

TIME

CIl1P

(}lOO

~SS

FL()4

PATE

(LB/

SEC)

(SEC

)AI

RV

H2O

LH2

OV

HFL

HFV

UF6

SUF

6l

UF6

VU0

2F2

S

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

120.

0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

O2.

381E

tOO

240.

0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OO2.

547E

tOO

360.0

O.OOO

EtOO

O.OOO

£tOO

O.OOO

£tOO

O.OOO

£tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

£tOO

2.42

8£tO

O48

0.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O2.3

49Et

OO60

0.0O.O

OOEtO

OO.O

OOEtO

OO.O

OO£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

2.29

6EtO

O72

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.260

EtOO

840.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.24

3£tO

O96

0.0

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.23

9EtO

O10

80.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

£tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.23

5£tO

O12

00.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.841

EtOO

1320

.0O.O

OOEtO

OO.O

OO£tO

OO.O

OOEtO

OO.O

OO£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

1.210

£tOO

1440

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O7.9

50E-

01...

1560

.0O.O

OO£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

O.oo

o£tO

O5.2

25£-

010

016

80.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

3.434

E-01

0

1800

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OO£tO

OO.O

OO£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O2.2

57E-

0119

20.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.483

E-01

2040

.0O.O

OOEtO

OO.O

OO£tO

OO.O

OO£tO

OO.O

OO£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.oo

o£tO

OO.

OOO£

tOO

9.74

8£-0

221

60.0

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

6.407

E-02

2280

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OO£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

£tOO

4.21

1£-0

224

00.0

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.767

E-02

2520

.0O.

OOO£

tooO.O

OO£tO

OO.O

OO£tO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

O1.

819£

-02

2640

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OO1.

195E

-02

2760

.0O.O

OOEtO

OO.O

OO£tO

OO.O

OOEtO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OO£tO

O7.

856£

-03

2880

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O5.1

63E-

0330

00.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

O£tO

OO.

ooo£

tOO

O.OOO

EtOO

3.39

3£-0

331

20.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

2.230

E-03

3240

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O1.4

66E-

0333

60.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

9.633

E-04

3480

.0O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O6.3

31E-

0436

00.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

4.161

E-04

.... 00 ....

U02F

2S

O.OOO

EtOO

1.51

9Et0

24.

637E

t027.

618E

t02

1.04

8Et0

31.

327E

+03

1,60

0Et0

31.

970E

t032.1

39E+

032.4

07£+

032.

664E

t032.

845E

t03

2.96

4Et03

3.042

E+03

3,09

3Et0

33.1

27E+

033.1

49E+

033.1

63E+

033.

173E

t03

3.17

9E+0

33,

183E

t03

3.18

6Et0

33.1

88E+

033.1

99£+

033.

190E

t03

3.19

0Et0

33.

191E

t03

3.191

£+03

3.191

E+03

3.191

£+03

3.191

E+03

UF6

V

O.OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

O0.0

00£+

00O,O

OOEtO

OO.

OOOE

tOO

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O0.0

00£+

00O.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO,O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

UF6

L

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OO0.0

00£+

00O,O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

O0.0

00£+

00O,O

OOEtO

OO,

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO,

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

O0.0

00£+

00O.O

OOEtO

O0.0

00£+

00O.

OOOE

tOO

C(t1P

et-lEN

THA

SS(L

B)HF

LHF

VUF

6S

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O,O

OOEtO

OO.

OOOE

tOO

O,OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O,OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

O0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO,

OOOE

tOO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O,OOO

EtOO

O,OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO,O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OOO.O

OOE+

OOO,O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O,OOO

E+OO

O,OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O,OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO,O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O,OOO

E+OO

H20

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O,OOO

EtOO

O.OOO

E+OO

O,OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O,OOO

EtOO

H20

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

AIR

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

TITL

E:(X

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDUC

EDVE

NT,

AIRB

ORNE

SOLI

DS

DATA

GENE

RATE

DBY

INDR

FT--

A'-l

INDUC

EDDR

AFT

VENT

ILATle

t-ISY

STEM

TRft.l

SIENT

C(t1P

ARTM

ENT

MODE

L.

Cet-lO

ENSA

TEAC

CUMU

LATE

Det-I

FLOO

R

TIME

(SEC

)

0.0

120.

024

0.036

0.0

480.

060

0.0

720.0

840.

0%

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

TITL

E:EX

.4,

CASE

2.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,AI

RBOR

NESO

LIDS

DATA

GENE

RATE

DBY

INDR

FT--

lV'4IN

DUCE

DDR

AFT

VENT

ILAT

lCN

SYST

EMTR

fflSI

ENT

CIl1P

ARTM

ENT

MODE

L.

URAN

IUM

lV'4D

HFRE

LEAS

ES~RY

lV'4D

C(}IPA

RTME

NTCC

NCEN

TRAT

ICNS

CIl1P

ARTM

ENT

CCNC

ENTR

ATIC

NSTI

MECU

MULA

TIVE

MATE

RIAL

RELE

ASED

ORFO

RMED

FRIl1

RELE

ASED

MATE

RIAL

(LB)

(LB/

FT**

3)(S

EC)

UF6

U02F

2TO

TAL

UHF

HFFR

Il1UF

6TO

TAL

HFUR

ANIU

MHF

0.0

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

120.

0O.

OOOE

tOO

4.90

6Et0

23.7

91E+

021.

314E

+02

O.OO

OEtO

O1.

314E

t02

4.46O

E-03

1.57

1E-0

324

0.0

2.75

6Et0

21.

499E

t03

1.34

5Et0

34.

148E

t02

6.26

7EtO

l4.

774E

t02

7.47

1E-0

31.

794E

-03

360.

01.

211E

t03

2.46

3Et0

32.

722E

t03

7.024

E+02

2.75

3Et0

29.

778E

t02

9.64

4E-0

31.

800E

-03

480.

02.

628E

t03

3.388

E+03

4.39

5Et0

39.

907E

t02

5.97

5Et0

21.

588E

t03

1.12

0E-0

21.

803E

-03

600.

04.

385E

t03

4.28

8Et0

36.

279E

t03

1.279

E+03

9.96

8Et0

22.

276E

t03

1.22

9E-0

21.

805E

-03

720.

06.

373E

t03

5.17

1Et0

38.

306E

t03

1.56

8Et0

31.

449E

t03

3.01

7Et0

31.

300E

-02

1.80

6E-0

384

0.0

8.36

3Et0

36.

044E

t03

1.03

3Et0

41.

857E

t03

1.90

1Et0

33.

759E

t03

1.10

7E-0

21.

811E

-03

960.

09.

570E

t03

6.91

3Et0

31.

181E

t04

2.14

8Et0

32.

176E

t03

4.32

3Et0

37.

677E

-03

1.81

8E-0

310

80.0

1.00

9Et0

47.

780E

t03

1.28

4Et0

42.4

39E+

032.2

94E+

034.

733E

t03

5.21

7E-0

31.

824E

-03

1200

.01.

016E

t04

8.61

1Et0

31.

352E

t04

2.722

E+03

2.30

9Et0

35.

031E

t03

3.44

8E-0

31.

575E

-03

1320

.01.

016E

t04

9.19

5Et0

31.

397E

t04

2.93

8Et0

32.

309E

t03

5.24

6Et0

32.

266E

-03

1.14

3E-0

314

40.0

1.01

6Et0

49.

579E

t03

1.42

7Et0

43.

094E

t03

2.30

9Et0

35.

403E

t03

1.48

9E-0

38.

298E

-04

I-'

1560

.01.

016E

t04

9.83

2Et0

31.

446E

t04

3.20

8Et0

32.

309E

t03

5.51

7Et0

39.

788E

-04

6.02

3E-0

40

0

1680

.01.

016E

t04

9.99

7Et0

31.

459E

t04

3.29

1Et0

32.

309E

t03

5.59

9Et0

36.

433E

-04

4.37

2E-0

4t-

:l

1800

.01.

016E

t04

1.01

1Et0

41.4

68E+

043.3

51E+

032.

309E

t03

5.65

9Et0

34.

228E

-04

3.17

3E-0

419

20.0

1.01

6Et0

41.

018E

t04

1.47

3Et0

43.

394E

t03

2.30

9Et0

35.

703E

t03

2.77

9E-0

42.

303E

-04

2040

.01.0

16E+

041.

023E

t04

1.47

7Et0

43.4

26E+

032.

309E

t03

5.73

4Et0

31.

826E

-04

1.67

2E-0

421

60.0

1.01

6Et0

41.0

26E+

041.

479E

t04

3.44

9Et0

32.

309E

t03

5.75

7Et0

31.

200E

-04

1.21

3E-0

422

80.0

1.01

6Et0

41.

028E

t04

1.48

1Et0

43.4

65E+

032.

309E

t03

5.77

4Et0

37.

8B8E

-05

8.80

7E-0

524

00.0

1.01

6Et0

41.

029E

t04

1.48

2Et0

43.

477E

t03

2.30

9Et0

35.

786E

t03

5.18

4E-0

56.

393E

-05

2520

.01.0

16E+

041.0

30E+

041.4

83E+

043.4

86E+

032.3

09E+

035.

795E

+03

3.40

7E-0

54.

640E

-05

2640

.01.

016E

t04

1.03

0Et0

41.

483E

t04

3.49

2Et0

32.

309E

t03

5.80

1Et0

32.

239E

-05

3.36

8E-0

527

60.0

1.016

E+04

1.031

E+04

1.483

E+04

3.497

E+03

2.30

9Et0

35.

806E

+03

1.47

2E-0

52.

445E

-05

2880

.01.

016E

t04

1.03

1Et0

41.

483E

t04

3.50

0Et0

32.

309E

t03

5.80

9Et0

39.

673E

-06

1.77

4E-0

530

00.0

1.016

E+04

1.03

1Et0

41.4

84E+

043.5

03E+

032.

309E

t03

5.81

2Et0

36.

357E

-06

1.28

8E-0

531

20.0

1.01

6Et0

41.

031E

t04

1.48

4Et0

43.

505E

t03

2.30

9Et0

35.

813E

t03

4.17

8E-0

69.

348E

-06

3240

.01.0

16E+

041.

031E

t04

1.48

4Et0

43.5

06E+

032.3

09E+

035.8

15E+

032.

746E

-06

6.78

5E-0

633

60.0

1.01

6Et0

41.

031E

t04

1.48

4Et0

43.

507E

t03

2.30

9Et0

35.

816E

t03

1.80

5E-0

64.

925E

-06

3480

.01.

016E

t04

1.03

1Et0

41.4

84E+

043.5

08E+

032.

309E

t03

5.816

E+03

1.18

6E-0

63.

575E

-06

3600

.01.

016E

t04

1.03

1Et0

41.

484E

t04

3.50

8Et0

32.

309E

t03

5.81

7Et0

37.

795E

-07

2.59

5E-0

6

TITL

E:EX

.4.

CASE

3.RE

LEAS

E(E

X.2.

2).

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

FODR

n--

AFO

RCED~T

VENT

ILATIC

NSY

STEM

T~SIENT

CIJ1P

ARTH

ENT

MOD

El.

ClJ1P

ARTM

ENT

CCNO

ITI()

lSClJ

1PAR

TMEN

TVO

LltIE

=50

0000

.n*

*2Ut

APR

ODUC

T=

7.903

EtOO

BTU/

SEC-

DEG

FSU

RFAC

ETE

MPER

ATUR

E=

120.

0OE

GF

COOL

ING

RATE

=O.

OOOE

tOO

BTu/S

EC

TIM

E(S

EC)

0.0

120.

024

0.0

360.0

480.

060

0.0

720.

084

0.0

960.

010

80.0

1200

.013

20.0

1440

.015

60.0

1680

.018

00.0

1920

.020

40.0

2160

.022

80.0

2400

.025

20.0

2640

.027

60.0

2880

.030

00.0

3120

.032

40.0

3360

.034

80.0

3600

.0

AIR

V

3.54

8Et0

43.3

51£+

043.

230E

t043.

158E

t04

3.13

2Et0

43.

141E

t04

3.14

7Et0

43.

156E

t04

3.28

4Et0

43.

372E

t04

3.431

E+04

3.47

0Et0

43.

496E

t04

3.513

E+04

3.52

4Et0

43.

532E

t04

3.53

7E+0

43.

541E

t04

3.54

3Et0

43.

544E

t043.

545E

t04

3.54

6Et0

43.

547E

t04

3.54

7Et0

43.

547E

t04

3.54

7Et04

3.54

7Et0

43.

547E

t043.

547E

t04

3.54

7Et04

3.54

7E+0

4

H20

L

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O0.0

00£+

00O.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O0.0

00£+

00O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O0.0

00£+

00O.O

OOEtO

O0.0

00£+

00

H2O

V

4.63

0Et0

22.

621E

t02

1.28

3Et0

23.

935£

tOl

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

1.27

8Et02

2.21

7Et0

22.8

94£+

023.

382E

t02

3.73

3Et02

3.98

5£t0

24.1

66£+

024.

297E

t02

4.390

£+02

4.45

7Et0

24.

506E

t02

4.540

£+02

4.56

5Et0

24.

583E

t02

4.596

£+02

4.60

6Et0

24.

612E

t02

4.61

7Et0

24.6

21E+

024.

623E

t02

4.625

£+02

4.62

6£t0

24.6

27£+

02

ClJ1P

()lENT

MASS

(LB)

HFL

HFV

UF6

S

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

O3.

893E

t02

O.OO

OEtO

OO.O

OOEtO

O6.5

14E+

02O.O

OOE+

OOO.O

OOEtO

O8.

280E

t02

O.OO

OEtO

OO.O

OOE+

OO9.0

79E+

02O.O

OOE+

OOO.O

OOEtO

O9.1

05E+

02O.

OOOE

tOO

O.OO

OEtO

O9.

122E

t02

O.OOO

E+OO

O.OOO

EtOO

9.149

E+02

O.OOO

E+OO

O.OOO

E+OO

6.681

E+02

O.OOO

E+OO

O.OO

OEtO

O4.8

52E+

02O.O

OOE+

OOO.O

OOE+

OO3.5

17E+

02O.O

OOE+

OOO.O

OOEtO

O2.

546E

t02

O.OOO

E+OO

O.OOO

E+OO

1.842

E+02

O.OOO

E+OO

O.OOO

E+OO

1.332

E+02

O.OOO

E+OO

O.OOO

E+OO

9.627

E+01

O.OOO

E+OO

O.OOO

E+OO

6.95

7E+O

lO.

OOOE

tOO

O.OOO

E+OO

5.o2

6E+0

1O.O

OOE+

OOO.O

OOEtO

O3.

631E

tOl

O.OOO

E+OO

O.OOO

E+OO

2.62

3E+O

lO.O

OOE+

OOO.O

OOE+

OO1.8

95£+

01O.O

OOE+

OOO.O

OOE+

OO1.3

69E+

OlO.O

OOE+

OOO.O

OOE+

OO9.

888E

+00

O.OOO

E+OO

O.OOO

E+OO

7.143

EtOO

O.OOO

E+OO

O.OOO

E+OO

5.160

EtOO

O.OO

OEtO

OO.O

OOE+

OO3.7

27E+

00O.O

OOE+

OOO.O

OOEtO

O2.

692E

tOO

O.OO

OEtO

OO.O

OOE+

OO1.9

45Et

OOO.O

OOE+

OOO.O

OOEtO

O1.4

05E+

00O.

OOOE

tOO

O.OOO

E+OO

1.015

E+00

O.OOO

E+OO

O.OOO

EtOO

7.32

9E-O

lO.

OOOE

tOO

O.OOO

EtOO

5.29

4E-O

lO.O

OOE+

OO

UF6

l

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

O

UF6

V

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

1.88

7Et0

25.

592E

t02

7.76

1Et0

21.

663E

tOl

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

E+OO

90.00

0014

.750

01.

431E

t03

118.

3174

14.7

714

2.303

E+03

136.

2934

14.7

693

2.83

3£t0

314

7.31

3414

.768

03.0

05E+

0315

0.61

0614

.762

62.

919£

t03

148.2

761

14.7

617

2.865

E+03

146.

9060

14.7

631

2.83

5Et0

314

6.17

5314

.760

61.8

77E+

0312

5.60

0514

.747

41.

234E

t03

112.

6702

14.7

483

8.100

E+02

104.

5255

14.74

B95.

310E

t02

99.3

438

14.7

493

3.478

E+02

96.0

259

14.7

495

2.27

7E+0

293

.892

214

.749

51.

490E

t02

92.5

164

14.7

497

9.75

0Et0

191

.639

814

.750

06.

379E

+01

91.06

1114

.750

04.1

73E+

0190

.6941

14.75

012.7

29E+

0190

.447

414

.750

01.

785E

tOl

90.2

935

14.7

500

1.168

E+Ol

90.1

848

14.7

498

7.63

7EtO

O90

.131

614

.750

04.9

95Et

OO90

.078

614

.750

03.

267E

tOO

90.0

523

14.7

500

2.137

E+00

90.03

9114

.750

01.3

98Et

OO90

.0261

14.7

500

9.142

E-01

90.01

3114

.750

05.9

79E-

0190

.0131

14.7

500

3.911

E-01

90.01

3114

.750

02.5

58E-

0190

.0131

14.7

500

1.67

3E-O

l90

.0131

14.7

500

~ 00

Cl:l

I-'

~

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DE6

F)(P

SIA)

O.OOO

EtOO

80.00

0014

.700

0O.O

OOE+

OO80

.0000

14.70

00O.

OOOE

tOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.70

00O.O

OOEtO

O80

.0000

14.7

000

O.OOO

E+OO

80.00

0014

.7000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOE+

OO80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOE+

OO80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOE+

OO80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OO

OEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.7000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.

OOOE

tOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

UF6

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

UF6

L

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O

H20

V

1.253

EtOO

1.253

EtOO

1.25

3£tO

O1.

253E

+00

1.253

£tOO

1.253

EtOO

1.253

E+00

1.253

EtOO

1.25

3EtO

O1.

253E

tOO

1.25

3E+0

01.2

53Et

OO1.2

53E+

001.

253E

+00

1.25

3EtO

O1.

253£

tOO

1.25

3EtO

O1.

253E

tOO

1.25

3£tO

O1.

253£

tOO

1.253

£tOO

1.253

EtOO

1.25

3E+0

01.

253E

tOO

1.253

£tOO

1.25

3EtO

O1.

253£

tOO

1.25

3EtO

O1.

253E

tOO

1.25

3EtO

O1.

253E

tOO

H20

L

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OHOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

AIR

V

9.603

Et01

9.60

3EtO

l9.6

03Et

019.

603E

t01

9.603

Et01

9.60

3Et0

19.

603£

t01

9.60

3EtO

l9.6

03Et

019.

603£

tO1

9.603

Et01

9.60

3EtO

l9.6

03Et

019.

603E

t01

9.603

Et01

9.60

3Et0

19.6

03Et

019.6

03E+

019.

603£

t01

9.60

3£tO

19.6

03Et

019.

603E

tOl

9.60

3£t0

19.

603E

t01

9.603

Et01

9.60

3Et0

19.6

03Et

019.

603E

+01

9.603

Et01

9.60

3£t0

19.6

03E+

01

TIME

(SEC

)

0.0

120.

024

0.036

0.0

480.

060

0.0

720.

084

0.0

960.

010

80.0

1200

.013

20.0

1440

.015

60.0

1680

.018

00.0

1920

.020

40.0

2160

.022

80.0

2400

.025

20.0

2640

.027

60.0

2880

.030

00.0

3120

.032

40.0

3360

.034

80.0

3600

.0

TITL

E:EX

.4,

CASE

3.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVENTILATI~

SYST

EMTm

lSIE

NTC(t

1PAR

TMEN

TMO

DEL.

INLE

TAI

RBU

llER

FL(].l

RATE

=0.

0AC

FMAM

BIENT

TEMP

ERAT

URE

=80

.000

DEG

FAM

BIENT

PRES

SURE

=14

.700

PSIA

C(t1P~ENT

MASS

FL(].l

RATE

(LBI

SEC)

HFL

HFV

UF6

S

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO(

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OO

TEMP

ERAT

URE

PRES

SURE

U02F

25

(DEG

F)(P

SIA)

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

EtOO

133.

7805

14.7

000

UF6

V

1.72

7EtO

l1.

716E

tOl

1.70

2Et0

11.

685E

tOl

1.663

E+Ol

1.63

1E+O

l1.

575E

+Ol

UF6

L

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

O

TITL

E:EX

.4,

CASE

3.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIL

ATIl}

/SY

STEM

TJW

.lSIE

NTCc

tlPAR

TMEN

TMO

DEL.

SOUR

CETE

RM:

SOUR

CETE

RMMA

SSFL

OWRA

TES,

TEMP

ERAT

URE,

AND

PRES

SURE

WERE

READ

FRctI

DATA

FILE

.

TIME

Cct!P

(f./EN

T~SS

FLOW

RATE

(LBI

SEC)

(SEC

)AI

RV

H20

LH2

0V

HFL

HFV

UF6

5

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

120.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO24

0.0

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

360.

0O.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO48

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

600.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO72

0.0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO

..... ~

~ ~

H20

l

0.000

£+00

O.OO

OEtO

O0.0

00£+

000.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

0..00

0£+0

00.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OO0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.

OOOE

tOO

O.OO

O£tO

O0.0

00£+

00

AIR

V

9.60

3£t0

11.

089£

+02

1.03

7Et0

21.0

06E+

029.

557E

tOl

9.467

£+01

9.555

£+01

9.488

£+01

8.70

7Et0

19.0

07E+

Ol9.2

07E+

019.3

40£+

019.4

29£+

019.4

64E+

Ol9.

511E

t01

9.568

£+01

9.57

7Et01

9.593

E+01

9.59

3Et01

9.59

9£t0

19.

580E

+01

9.601

E+01

9.60

1Et0

19.

602E

tOl

9.602

E+01

9.602

£+01

9.60

2Et0

19.6

03£+

019.

603E

t01

9.603

£+01

9.60

3Et0

1

TITL

£:EX

.4,

lASE

3.R£

LEAS

£(E

X.2.

2),

FORC

£DVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RAT£

DBY

FODR

FT--

AFO

RC£D

DRAF

TVE

NTILA

TION

SYST

EMTR

ANSIE

NTCO

MPAR

TMEN

TMO

D£L.

RESIS

TANC

ETE

RM=

3.79

8E-0

7PS

I-SEC

**21

lBlF

T**3

COMP

ONEN

TMA

SSFL

OWRA

TE(L

BISE

C)TE

MP£R

ATUR

£PR

ESSU

REH2

0V

HFL

HFV

UF6

SUF

6L

UF6

VU0

2F2

S(D

EGF)

(PSI

A)

1.253

E+00

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

90.0

000

14.7

500

8.51

7E-0

1O.O

OOE+

OO1.2

65E+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO4.6

51E+

0011

8.31

7414

.771

44.1

20E-

01O.O

OOE+

OO2.0

92£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OO7.

397E

+00

136.

2934

14.7

693

1.25

4E-O

lO.

OOOE

tOO

2.638

E+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

9.029

E+00

147.

3134

14.7

680

O.OOO

E+OO

O.OOO

E+OO

2.77

0E+0

0O.O

OOE+

OO0.0

00£+

005.

756£

-01

9.16

9E+0

015

0.61

0614

.762

6O.O

OOE+

OOO.O

OOE+

OO2.7

44E+

00O.

OOOE

tOO

O.OOO

E+OO

1.685

EtOO

8.79

8EtO

O14

8.27

6114

.761

70.0

00£+

00O.O

OOE+

OO2.7

70£+

000.0

00£+

000.0

00£+

002.3

57£+

008.6

98£+

0014

6.90

6014

.763

1O.

OOOE

tOO

O.OO

OEtO

O2.

750E

+00

O.OO

OEtO

OO.

OOOE

tOO

5.00

1E-0

28.

523E

+00

146.

1753

14.7

606

3.38

8E-0

1O.O

OOE+

OO1.7

72£+

00O.O

OOE+

OO0.0

00£+

000.0

00£+

004.9

76E+

0012

5.60

0514

.747

45.

920£

-01

O.OO

OEtO

O1.2

96E+

00O.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

3.29

6EtO

O11

2.67

0214

.748

37.

767£

-01

O.OOO

E+OO

9.43

9£-0

1O.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO2.1

74£+

0010

4.52

5514

.748

99.

104E

-Ol

O.OOO

E+OO

6.85

4E-O

lO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

O1.4

29Et

OO99

.343

814

.749

31.0

07£+

00O.O

OOE+

OO4.

968£

-01

0.000

£+00

0.000

£+00

0.000

£+00

9.38

0£-0

196

.025

914

.749

51.0

74£tO

OO.

OOOE

tOO

3.58

8E-O

lO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO6.

134E

-01

93.8

922

14.7

495

1.124

£+00

0.000

£+00

2.59

8£-0

1O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO4.

021£

-01

92.5

164

14.7

497

1.164

E+00

O.OO

OEtO

O1.

885E

-01

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

2.64

1E-O

l91

.639

814

.750

01.1

89£+

00O.O

OOE+

OO1.

361£

-01

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

1.72

7E-O

l91

.0611

14.7

500

1.208

E+00

O.OOO

E+OO

9.83

8E-0

2O.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

1.13

1E-0

190

.694

114

.750

11.2

20£+

000.0

00£+

007.

103£

-02

O.OOO

E+OO

O.OO

O£tO

OO.O

OOE+

OO7.

390£

-02

90.4

474

14.7

500

1.230

E+00

O.OOO

E+OO

5.13

2E-0

2O.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

4.83

5E-0

290

.293

514

.750

01.2

34E+

00O.

OOO£

tOO

3.69

9£-0

2O.O

OOE+

OOO.

OOOE

tOO

O.OO

O£tO

O3.

155£

-02

90.1

848

14.7

498

1.241

E+00

O.OO

OEtO

O2.

677£

-02

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

2.06

8E-0

290

.131

614

.750

01.2

44£+

000.0

00£+

001.

934£

-02

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O1.

352£

-02

90.0

786

14.7

500

1.247

E+00

O.OO

OEtO

O1.

397E

-02

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

8.84

5£-0

390

.052

314

.750

01.2

49£+

000.0

00£+

001.

009£

-02

0.000

£+00

0.000

£+00

O.OO

O£tO

O5.

785£

-03

90.0

391

14.7

500

1.250

E+00

O.OOO

E+OO

7.28

8E-0

3O.

OOOE

tOO

O.OO

O£tO

oO.O

OOE+

OO3.

784E

-03

90.0

261

14.7

500

1.251

£+00

0.000

£+00

5.26

4£-0

3O.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

2.47

5£-0

390

.0131

14.7

500

1.252

E+00

O.OOO

E+OO

3.80

2E-0

3O.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

1.61

8E-0

390

.013

114

.750

01.2

52£+

000.0

00£+

002.

747£

-03

0.000

£+00

0.000

£+00

0.000

£+00

1.05

9£-0

390

.0131

14.7

500

1.252

£tOO

O.OOO

E+OO

1.98

4£-0

30.

000£

+00

0.000

£+00

O.OOO

E+OO

6.92

3E-0

490

.013

114

.750

01.2

53£+

00O.O

OOE+

OO1.

433£

-03

0.000

£+00

O.OOO

E+OO

0.000

£+00

4.52

8£-0

490

.0131

14.7

500

EXI-~UST

STRE

AM(FO

RCED

DRAF

T)

TIM£ (SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

TITL

E:EX

.4,

CASE

3.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

Foom

--A

FORC

EDDR

AFT

VENT

ILATIC

HSY

STEM

T(W

.ISIE

NTCrt

1PAR

TMEN

TMO

DEL.

0.03

30FT

/SEC

1250

0.FT

**2

UF6

L

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

CCHO

ENSA

TEFA

LLOU

T

TIME

(SEC

)AI

RV

0.0

O.OO

OEtO

O12

0.0

O.OOO

EtOO

240.

0O.O

OOEtO

O36

0.0

O.OO

OEtO

O48

0.0

O.OOO

E+OO

600.

0O.O

OOEtO

O72

0.0

O.OOO

EtOO

840.

0O.O

OOE+

OO96

0.0

O.OO

OEtO

O10

80.0

O.OOO

E+OO

1200

.0O.O

OOE+

OO13

20.0

O.OOO

E+OO

1440

.0O.O

OOE+

OO15

60.0

O.OOO

E+OO

1680

.0O.O

OOEtO

O18

00.0

O.OOO

E+OO

1920

.0O.O

OOEtO

O20

40.0

O.OOO

E+OO

2160

.0O.O

OOEtO

O22

80.0

O.OOO

E+OO

2400

.0O.O

OOE+

OO25

20.0

O.OOO

E+OO

2640

.0O.O

OOE+

OO27

60.0

O.OOO

E+OO

2880

.0O.O

OOEtO

O30

00.0

O.OOO

E+OO

3120

.0O.O

OOE+

OO32

40.0

O.OOO

E+OO

3360

.0O.O

OOE+

OO34

80.0

O.OOO

E+OO

3600

.0O.O

OOE+

OO

H2O

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O0.0

00£+

00O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

H2O

V

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

O

OEPO

SITIC

HVE

LOCI

TY=

D£PO

SITIC

HAR

EA=

C(J'1P

CHEN

TMA

SSFL

(}lRA

TE(L

B/SE

C)HF

LHF

VUF

6S

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOE+

OO0.0

00£+

00O.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

0.000

£+00

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

UF6

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

U02F

2S

O.OO

OEtO

O1.1

81Et

OO1.9

00Et

OO2.3

38£+

002.

479E

tOO

2.408

EtOO

2.36

3E+0

02.

339E

tOO

1.54

8EtO

O1.0

18£+

006.6

82E-

Ol

4.380

E-Ol

2.86

9E-O

l1.

878£

-01

1.22

9E-O

l8.

044E

-02

5.26

2E-0

23.

442E

-02

2.25

2E-0

21.

473E

-02

9.63

4E-0

36.

301E

-03

4.12

1E-0

32.

696E

-03

1.76

3E-0

31.

153E

-03

7.54

2E-0

44.

933£

-04

3.22

6E-0

42.

110E

-04

1.38

0E-0

4

.... ~

~ ~

U02F

2S

O.OO

OrtO

O7.

611£

t01

2.64

1rt0

25.

204£

t02

8.15

1Ef0

21.1

08£+

031.

394r

t03

1.67

6£t0

31.

907E

f03

2.05

9Ef0

32.

159E

f03

2.224

£+03

2.26

7Ef0

32.

295£

t03

2.31

4Ef0

32.

326£

t03

2.334

£+03

2.33

9Et0

32.

342E

f03

2.34

4£t0

32.

346E

f03

2.34

7£t0

32.

347£

t03

2.348

£+03

2.348

£+03

2.34

8£t0

32.

348£

t03

2.34

8E+0

32.

349H

032.

349£

t03

2.34

9H03

UF6

V

0.000

£+00

O.OO

OHOO

O.OO

OHOO

0.000

£+00

O.OO

OHOO

O.OOO

EtOO

O.OO

OrtO

OO.

OOO£

tOO

O.oo

ortO

OO.

OOOH

OOO.

OOOH

OOO.

OOOH

OOO.

OOO£

tOO

O.OO

O£tO

OO.

OOOr

tOO

O.OO

OHOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O0.0

00£+

00O.

OOOr

tOO

O.OO

OHOO

O.OO

OrtO

OO.

OOOH

OOO.

OOOr

tOO

O.OO

O£tO

OO.O

OOEfO

OO.

OOOH

OOO.

OOOr

tOO

O.OO

OrtO

OO.

OOOr

tOO

UF6

L

O.OO

OrtO

OO.

ooo£

tOO

O.OO

OrtO

OO.

OOO£

tOO

O.OO

OrtO

OO.

OOOH

OO0.0

00£+

00O.

OOOH

OOO.O

OOEfO

OO.

OOO£

tOO

O.OOO

EfOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOH

OOO.

OOOH

OOO.

OOOH

OOO.

OOOH

OOO.

OOOH

OOO.

ooor

tOO

O.OO

OHOO

O.OO

OHOO

O.OO

O£tO

OO.

OOOH

OOO.

OOOE

tOO

O.OO

OHOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

O.OOO

EfOO

Cct1P~ENT

It'SS

(LB)

HFL

HFV

UF6

S

O.oo

o£tO

oO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOo

O.OO

O£too

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

ooo£

tOO

O.OO

O£tO

O0.0

00£+

00O.

OOO£

tOO

O.oo

o£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

0.000

£+00

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

H20

V

O.OOO

EfOO

O.OO

O£tO

OO.

OOOH

OOO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

OrtO

OO.O

OOEfO

OO.

OOOr

tOO

O.OOO

EfOO

O.OOO

EfOO

O.OO

OHOO

O.OOO

EfOO

O.OO

O£tO

OO.O

OOEfO

OO.O

OOEfO

OO.

OOOr

tOO

O.OOO

EfOO

O.OOO

EfOO

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOH

OOO.

OOO£

tOO

O.OO

O£tO

OO.O

OOEfO

OO.

OOO£

tOO

O.OO

OHOO

O.OO

OHOO

O.o

oorto

o

H20

L

O.OOO

EfOO

O.OOO

EfOO

O.OO

OrtO

OO.

OOO£

tOO

O.OO

OrtO

OO.

OOOH

OOO.

OOOr

tOO

0.000

£+00

O.OO

OrtO

OO.

OOO£

tOO

O.OOO

EfOO

O.OO

O£tO

OO.

OOOr

tOO

O.oo

o£tO

OO.

OOOr

tOO

0.000

£+00

O.o

oorto

oO.

OOOH

OOO.

OOOr

tOO

0.000

£+00

O.OO

OrtO

OO.O

OOEfO

OO.

OOOr

tOO

O.OO

O£tO

OO.O

OOEfO

O0.0

00£+

00O.

OOOr

tOO

0.000

£+00

O.OOO

EfOO

O.OO

O£tO

OO.

OOOH

OO

AIR

V

O.OO

OrtO

OO.O

OOEtO

OO.

OOOr

tOO

O.OO

OHOO

O.OO

OHOO

O.OO

OHOO

O.OO

OrtO

O0.0

00£+

00O.

OOOr

tOO

O.OO

OHOO

O.OO

OrtO

OO.

OOOH

OOO.

OOOH

OOO.

OOO£

tOO

O.OO

OHOO

O.OO

O£tO

OO.

Ooort

OOO.O

OOEfO

OO.

OOOH

OOO.

OOO£

tOO

O.OO

OrtO

OO.O

OOEfO

OO.O

OOEtO

OO.

OOOH

OOO.O

OOEfO

OO.

OOO£

tOO

O.OO

OrtO

O0.0

00£+

00O.

OOOr

tOO

O.OO

OHOO

O.OO

OrtO

O

TITL

E:EX

.4,

CASE

3.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

MTA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVENTILATI~

SYST

EMTm

-ISIE

NTCc

t1PAR

TMEN

TMO

DEL.

C~DENSATE

ACCU

MULA

TED~

FLOO

R

TIME

(SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

0no

.o84

0.0

960.

010

80.0

1200

.013

20.0

1440

.015

60.0

1680

.018

00.0

1920

.020

40.0

2160

.022

80.0

2400

.025

20.0

2640

.027

60.0

2880

.030

00.0

3120

.032

40.0

3360

.034

80.0

3600

.0

TITL

E:EX

.4,

CASE

3.RE

LEAS

E(E

X.2.

2),

FORC

EDVE

NT,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIL

ATIO

NSY

STEM

TRAN

SIENT

COMP

ARTM

ENT

MODE

L.

URAN

Il.t1

{t.ID

HFRE

LEAS

ES~RY

{t.ID

CctlP

ARTM

ENT

CONC

ENTR

ATIO

NS

TIME (SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

CUMU

LATIV

EMA

TERI

ALRE

LEAS

EDOR

FORM

EDFR

ctIRE

LEAS

EDMA

TERI

AL(L

B)UF

6U0

2F2

TOTA

LU

HFHF

FRctI

UF6

TOTA

LHr

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O3.

015E

t02

2.33

0Et0

28.

073E

t01

O.OO

OEtO

O8.

073E

t01

O.OO

OEtO

O1.

037E

t03

8.01

4Et0

22.

851E

t02

O.OO

OEtO

O2.

851E

t02

O.OO

OEtO

O2.0

30E+

031.

569E

t03

5.70

9Et0

2O.

OOOE

tOO

5.70

9Et0

21.

303E

t01

3.14

7Et0

32.

441E

t03

9.023

E+02

2.96

3E+0

09.

053£

+02

1.53

9Et0

24.

226E

t03

3.370

E+03

1.23

4Et0

33.

500E

t01

1.26

9E+0

34.

014£

+02

5.2BO

£+03

4.35

2£+0

31.5

66E+

039.

125£

t01

1.65

7£+0

36.

233E

t02

6.31

3Et0

35.

300E

t03

1.89

8Et0

31.

417E

t02

2.03

9Et0

36.2

34E+

027.

055£

+03

5.87

4£+0

32.

148E

t03

1.41

7£+0

22.

290£

+03

6.23

4Et0

27.

546E

t03

6.25

3Et0

32.3

31E+

031.

417E

t02

2.47

3Et0

36.

234£

+02

7.870

E+03

6.50

3Et0

32.

464£

+03

1.41

7E+0

22.6

06E+

036.

234E

t02

8.08

3Et0

36.

668E

t03

2.562

E+03

1.41

7E+0

22.7

03E+

036.

234£

+02

8.22

4£+0

36.

777£

+03

2.63

2£+0

31.

417E

+02

2.77

4£+0

36.

234E

t02

8.31

6Et0

36.

848E

+03

2.68

3Et0

31.

417E

t02

2.825

E+03

6.234

E+02

8.37

6£+0

36.8

94E+

032.

720£

+03

1.41

7£+0

22.8

62E+

036.

234E

t02

8.415

E+03

6.925

E+03

2.747

E+03

1.41

7E+0

22.

888E

+03

6.23

4Et0

28.4

41E+

036.

945£

+03

2.76

6£+0

31.

417E

t02

2.90

8£t0

36.

234E

t02

8.45

8Et0

36.

958E

t03

2.78

0Et0

31.

417E

t02

2.92

2£t0

36.2

34E+

028.4

69E+

036.

966£

+03

2.79

0£+0

31.

417£

t02

2.932

E+03

6.234

E+02

8.476

E+03

6.97

2Et0

32.

797E

t03

1.41

7Et0

22.

939E

t03

6.234

E+02

8.481

E+03

6.97

6£+0

32.

802£

+03

1.41

7£+0

22.

944£

+03

6.23

4Et0

28.

484E

t03

6.97

8Et0

32.

806E

t03

1.41

7E+0

22.

948E

t03

6.23

4£+0

28.4

86E+

036.

980E

t03

2.80

9£t0

31.

417E

t02

2.95

1Et0

36.

234E

t02

8.48

8Et0

36.

981£

t03

2.81

1£t0

31.

417E

t02

2.95

3£+0

36.

234E

t02

8.48

8Et0

36.

981E

t03

2.81

2£+0

31.

417E

t02

2.95

4£+0

36.2

34E+

028.

489E

t03

6.98

2Et0

32.

813E

t03

1.41

7Et0

22.

955£

t03

6.234

E+02

8.48

9Et0

36.

982£

t03

2.81

4Et0

31.

417£

+02

2.95

6Et0

36.2

34E+

028.4

90E+

036.

982E

t03

2.81

5Et0

31.

417E

+02

2.95

6Et0

36.

234£

+02

8.49

0£t0

36.

982£

+03

2.81

5£t0

31.

417£

+02

2.95

7£t0

36.

234E

t02

8.49

0Et0

36.

982E

t03

2.81

5£+0

31.

417E

t02

2.95

7Et0

36.

234£

t02

8.49

0Et0

36.

982£

+03

2.81

6£+0

31.

417£

+02

2.95

7£t0

3

CctlP

ARTM

ENT

CONC

ENTR

ATIO

NS(L

B/FT

**3)

URAN

lltIHF

O.OO

O£tO

O0.

000£

+00

2.21

2E-0

37.

785E

-04

3.56

0£-0

31.

303£

-03

4.37

9E-0

31.

656£

-03

4.89

9£-0

31.

816£

-03

5.26

8£-0

31.

821E

-03

5.47

7£-0

31.

824£

-03

4.40

4E-0

31.

830E

-03

2.90

0£-0

31.

336£

-03

1.90

7E-0

39.

704E

-04

1.25

2£-0

37.

035E

-04

8.20

6E-0

45.

093E

-04

5.37

5£-0

43.

684£

-04

3.51

9E-0

42.

664E

-04

2.30

3£-0

41.

925£

-04

1.50

7£-0

41.

391£

-04

9.85

9£-0

51.

005E

-04

6.44

9£-0

57.

262E

-05

4.21

8£-0

55.

247E

-05

2.75

9E-0

53.

790E

-05

1.80

5£-0

52.

738E

-05

1.18

0E-0

51.

978E

-05

7.72

1£-0

61.

429£

-05

5.05

0E-0

61.

032E

-05

3.30

3£-0

67.

454E

-06

2.16

0E-0

65.

384E

-06

1.41

3£-0

63.

889£

-06

9.24

1E-0

72.

809E

-06

6.04

4£-0

72.

029E

-06

3.95

3E-0

71.

466E

-06

2.58

5E-0

71.

059E

-06

..... 00~

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,SO

LIDS

TOFL

OOR

MTA

GENE

RATE

DBY

INDR

FT--

ANIN

DUCE

DDR

AFT

VENT

ILAT

lctf

SYST

EMTr

w.lSI

ENT

Cct1P

ARTM

ENT

MODE

L.

Cct1P

ARTM

ENT

CctfD

ITIc

tfSCc

t1PAR

TMEN

TVO

LLtlE

=50

0000

.FT

**2

U*A

PROD

UCT

=7.7

33Et

OOBT

U/SE

C-DE

GF

SURF

ACE

TEMP

ERAT

URE

=12

0.0

DEG

FCO

OLIN

GRA

TE=

O.OO

OEtO

OBT

u/SEC

TIME

CIJ1P

ctfEN

TMA

SS(L

B)TE

MPER

ATUR

EPR

ESSU

RE(S

EC)

AIR

VH2

Ol

H2O

VHF

LHF

VUF

6S

UF6

lUF

6V

1I02F

2S

(DEG

n(P

SIA)

0.0

3.52

4Et0

4O.O

OOEtO

O4.

599E

t02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

90.0

000

14.6

500

120.

03.

322E

t04

O.OOO

EtOO

2.52

3Et0

2O.

OOOE

tOO

4.02

6Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O1.

479E

t03

119.

0574

14.6

681

240.

03.

191E

t04

O.OOO

EtOO

1.05

0Et0

2O.

OOOE

tOO

6.91

8Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.44

1Et0

313

8.77

0314

.666

936

0.03.

108E

t04

O.OO

OEtO

O1.2

79Et

OOO.

OOOE

tOO

8.98

2Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O3.

060E

t03

151.

5805

14.6

660

480.0

3.12

1Et0

4O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.04

6Et0

2O.

OOOE

tOO

O.OO

OEtO

O6.

112E

t02

2.93

9Et0

314

7.98

2514

.660

660

0.0

3.13

0Et0

4O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.07

3Et0

2O.

OOOE

tOO

O.OO

OEtO

O1.

037E

t03

2.85

3Et0

314

5.51

0614

.659

772

0.0

3.13

5Et0

4O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.08

9Et0

2O.

OOOE

tOO

O.OO

OEtO

O1.

307E

t03

2.79

5Et0

314

3.96

5414

.658

884

0.0

3.14

3Et0

4O.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

O9.

112E

t02

O.OO

OEtO

OO.

OOOE

tOO

5.76

6Et0

22.

761E

t03

143.

6034

14.6

593

960.

03.

225E

t04

O.OOO

EtOO

8.02

6Et0

1O.

OOOE

tOO

7.56

5Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O2.

154E

t03

131.

0129

14.6

476

1080

.03.

325E

t04O.O

OOEtO

O1.

867E

t02

O.OO

OEtO

O5.

491E

t02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O1.

415E

t03

116.

0086

14.6

484

1200

.03.

391E

t04

O.OOO

EtOO

2.63

2Et0

2O.

OOOE

tOO

3.98

6Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O9.

302E

t02

106.

6472

14.6

490

....13

20.0

3.43

5Et0

4O.

OOOE

tOO

3.18

1Et0

2O.

OOOE

tOO

2.89

3Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

6.11

3Et0

210

0.71

8314

.649

3~

1440

.03.

465E

t04

O.OOO

EtOO

3.57

6Et0

2O.

OOOE

tOO

2.10

0Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O4.

018E

t02

96.9

272

14.6

496

0

1560

.03.

484E

t04

O.OOO

EtOO

3.86

1Et0

2O.

OOOE

tOO

1.52

4Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.64

1Et0

294

.4881

14.6

495

1680

.03.

497E

t04

O.OOO

EtOO

4.06

6Et0

2O.

OOOE

tOO

1.10

6Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O1.

735E

t02

92.9

118

14.6

496

1800

.03.

506E

t04

O.OOO

EtOO

4.21

4Et0

2O.

OOOE

tOO

8.03

0Et0

1O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.14

1Et0

291

.8911

14.6

496

1920

.03.

511E

t04

O.OOO

EtOO

4.32

0Et0

2O.

OOOE

tOO

5.82

8Et0

1O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

7.49

6Et0

191

.233

214

.649

920

40.0

3.51

5Et0

4O.O

OOEtO

O4.

397E

t02

O.OO

OEtO

O4.

230E

tOl

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O4.

927E

tOl

90.8

073

14.6

501

2160

.03.

518E

t04

O.OO

OEtO

O4.

453E

t02

O.OO

OEtO

O3.

071E

t01

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O3.

238E

t01

90.5

266

14.6

500

2280

.03.

520E

t04

O.OOO

EtOO

4.49

3Et0

2O.O

OOEtO

O2.

229E

t01O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.128

EtO

l90

.3421

14.6

500

2400

.03.

521E

t04

O.OOO

EtOO

4.52

2Et0

2O.

OOOE

tOO

1.61

8Et0

1O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.39

9Et0

190

.2311

14.6

500

2520

.03.

522E

t04O.O

OOEtO

O4.

543E

t02

O.OOO

EtOO

1.17

4Et0

1O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.192

EtOO

90.1

499

14.6

500

2640

.03.

522E

t04

O.OOO

EtOO

4.55

9Et0

2O.

OOOE

tOO

8.52

3EtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

6.041

EtOO

90.0

967

14.6

500

2760

.03.

523E

t04O.O

OOEtO

O4.

570E

t02

O.OO

OEtO

O6.1

86Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O3.

970E

tOO

90.0

704

14.6

500

2880

.03.

523E

t04

O.OO

OEtO

O4.

578E

t02

O.OO

OEtO

O4.4

90Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.609

EtOO

90.0

443

14.6

500

3000

.03.

523E

t04

O.OOO

EtOO

4.58

3Et0

2O.

OOOE

tOO

3.25

9EtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O1.7

15Et

OO90

.031

214

.650

031

20.0

3.52

3Et0

4O.O

OOEtO

O4.

588E

t02

O.OO

OEtO

O2.

366E

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O1.1

27Et

OO90

.0181

14.6

500

3240

.03.

523E

t04

O.OO

OEtO

O4.

591E

t02

O.OO

OEtO

O1.7

17Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

7.408

E-O

l90

.0181

14.6

500

3360

.03.

523E

t04

O.OOO

EtOO

4.59

3Et0

2O.

OOOE

tOO

1.246

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O4.

868E

-Ol

90.01

8114

.650

034

80.0

3.52

3Et0

4O.O

OOEtO

O4.

594E

t02

O.OO

OEtO

O9.

046E

-Ol

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O3.2

00E-

Ol

90.00

5114

.650

036

00.0

3.52

3Et0

4O.O

OOEtO

O4.

595E

t02

O.OO

OEtO

O6.

566E

-01

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O2.

103E

-01

90.0

051

14.6

500

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,SO

LIDS

TOFL

OOR

DATA

GENE

RATE

DBY

INDR

FT--~

INDU

CED

DRAF

TVE

NTIL

ATlC

NSY

STEM

T~SIENT

CCtlP

ARTM

ENT

MODE

L.

INLE

TAI

RST

RErtI

(INDU

CED

DRAF

T)4.

026E

-07

PSI-S

EC**

21LB

lFT*

*380

.000

DEG

F14

.700

PSIA

UF6

L

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOH

OOO.

OOOH

OOO.

OOOH

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOH

OOO.

OOOE

tOO

O.OO

OEtO

OO.

OOOH

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOH

OOO.O

OOE+

OOO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOH

OOO.O

OOE+

OO

TIME

(SEC

)AI

RV

H20

L

0.0

9.39

6Et01

O.OOO

EtOO

120.

07.5

00E+

OlO.O

OOEtO

O24

0.0

7.648

EtO

lO.O

OOEtO

O36

0.0

7.74

9EtO

lO.O

OOEtO

O48

0.0

8.34

5EtO

lO.O

OOEtO

O60

0.0

8.43

2Et0

1O.O

OOEtO

O72

0.0

8.52

9Et0

1O.O

OOEtO

O84

0.0

8.47

9Et0

1O.O

OOEtO

O96

0.0

9.618

E+Ol

O.OOO

EtOO

1080

.09.

541E

tOl

O.OOO

EtOO

1200

.09.4

90Et

01O.O

OOEtO

O13

20.0

9.45

7Et01

O.OOO

EtOO

1440

.09.4

36Et

01O.O

OOEtO

O15

60.0

9.44

7Et0

1O.O

OOEtO

O16

80.0

9.42

9EtO

lO.O

OOEtO

O18

00.0

9.43

0EtO

lO.O

OOEtO

O19

20.0

9.406

EtO

lO.O

OOEtO

O20

40.0

9.39

1Et01

O.OOO

EtOO

'216

0.0

9.39

2E+0

1O.O

OOE+

OO22

80.0

9.39

5EtO

lO.O

OOEtO

O24

00.0

9.39

2Et01

O.OOO

EtOO

2520

.09.

394E

t01O.O

OOE+

OO26

40.0

9.39

4E+0

1O.O

OOEtO

O27

60.0

9.39

5Et01

O.OOO

EtOO

2880

.09.

395E

+01

O.OOO

EtOO

3000

.09.

396E

tOl

O.OOO

EtOO

3120

.09.

396E

t01O.O

OOEtO

O32

40.0

9.39

6EtO

lO.O

OOEtO

O~~B8:8

§:~i!ft8i

8:888

ft88

3600

.09.

396E

t01O.O

OOEtO

O

H20

V

1.22

6EtO

O9.

789E

-Ol

9.981

E-01

1.011

EtOO

1.089

£tOO

1.101

HOO

1.113

E+00

1.107

EtOO

1.25

5EtO

O1.2

45HO

O1.2

39£tO

O1.

234H

OO1.

231E

tOO

1.23

3EtO

O1.2

31Et

OO1.

231E

tO0

1.22

8HOO

1.22

6HOO

1.226

EtOO

1.226

HOO

1.22

6EtO

O1.

226H

OO1.

226E

tOO

1.22

6HOO

1.22

6£tO

O1.

226E

tOO

1.22

6E+0

01.2

26Et

OOi:~~gft88

1.22

6EtO

O

RESIST~CE

TERM

=~BI

ENT

TEMP

ERAT

URE

=AM

BIENT

PRES

SURE

=

CCtlP

CNEN

T~SSFL~

RATE

(LBI

SEC)

HFL

HFV

UF6

S

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O8.0

00Et

OOO.

OOOE

tOO

O.OOO

EtOO

.000E

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

O

UF6

V

O.OO

OEtO

OO.O

OOE+

OOO.

OOOH

OOO.

OOOE

tOO

O.OOO

E+OO

O.OO

OHOO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOH

OOO.

OOOE

tOO

O.OO

OHOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOH

OOO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOH

OOO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.000

014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

E+OO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OO

OEtO

O80

.0000

14.7

000

O.OO

OEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OO

OEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOEtO

O80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0O.O

OOE+

OO80

.0000

14.7

000

O.OOO

EtOO

80.00

0014

.700

0

..... to .....

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

EtOO

133.

7805

14.7

000

O.OOO

EtOO

133.

7805

14.7

000

O.OOO

EtOO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

O.OOO

E+OO

133.

7805

14.7

000

UF6

V

1.72

7Et01

1.71

6Et0

11.

702E

t01

1.685

E+01

1.66

3Et0

11.6

31E+

011.

575E

t01

UF6

L

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OO

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,SO

LIDS

TOFL

OOR

DATA

GENE

RATE

DBY

INDR

FT--

f:t4IN

DUCE

DDR

AFT

VENT

ILAT

ION

SYST

EMTR

f:t4SI

ENT

Cct1P

ARTM

ENT

HODE

L.

SOUR

CETE

RM:

SOUR

CETE

RM~SS

FLlJ.

lRA

TES,

TEMP

ERAT

URE,

f:t4D

PRES

SURE

WERE

READ

FRct1

DATA

FILE

.

TIM

ECc

t1PON

ENT

MASS

FLlJ.

lRA

TE(L

BISE

C)(S

EC)

AIR

VH2

0L

H20

VHF

LHF

VUF

6S

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

120.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO24

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

360.

0O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

O48

0.0

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OO60

0.0

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

720.0

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

..... ~

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

CEDV~,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

INDR

FT--~

INDU

CED

DRAF

TV~ILATI(N

SYST

EMT~SI~

C(tIPARTM~

MOD£

L.

EXAA

UST

8UII£

R

TIME

(S£C

)AI

RV

0.0

9.39

6H01

120.

08.

859E

tOl

240.0

8.50

9£t0

136

0.0

8.28

9EtO

l48

0.08.

321H

Ol

600.

08.

346E

tOl

720.0

8.36

1HO

l84

0.0

8.38

2EtO

l96

0.0

8.59

9EtO

l10

80.0

8.86

7£tO

l12

00.0

9.044

Et01

1320

.09.

161E

tOl

1440

.09.

239E

t0115

60.0

9.29

1EtO

l16

80.0

9,32

5£tO

l18

00.0

9.34

8EtO

l19

20.0

9.36

4EtO

l20

40.0

9.37

4EtO

l21

60.0

9,38

1EtO

l22

80.0

9.38

6EtO

l24

00.0

9.38

9EtO

l25

20.0

9.39

1EtO

l26

40.0

9.39

3EtO

l27

60.0

9.39

4£tO

l28

80.0

9.39

4Et01

3000

.09.

395£

tOl

3120

.09.

395E

tOl

3240

.09.

395E

+01

3360

.09.

395E

t0134

80.0

9.396

£+01

3600

.09.

396E

t01

H20

L

O.OO

OHOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

0.000

£+00

O.OO

OEtO

O0.0

00£+

000.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOEtO

O0.0

00£+

00O.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O,OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

FLOW

RAT£

=80

000.

0AC

FM

C(tIP(N~

MASS

FL(t..

IRA

T£(L

BISE

C)H2

0V

HFL

HFV

Uf6

SUF

6L

1.226

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

6.72

9E-O

lO.O

OOE+

OO1.0

74Et

OOO.O

OOE+

OOO.

OOOE

tOO

2.800

E-01

O.OO

OEtO

O1.8

45E+

00O.

OOOE

tOO

O.OO

OEtO

O3.

409E

-03

O.OOO

E+OO

2.395

E+00

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

2.412

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OO2.4

19Et

OOO.O

OOE+

OOO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

O2.

424E

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

2.430

EtOO

O.OOO

E+OO

O.OO

OEtO

O2.1

40E-

01O.O

OOEtO

O2.0

17Et

OOO.

OOOE

tOO

O.OO

OEtO

O4.9

80E-

Ol

O.OOO

E+OO

1.464

E+00

O.OOO

E+OO

O.OO

OEtO

O7.0

18E-

Ol

O.OO

OEtO

O1.0

63£t

OOO.

OOOE

tOO

O.OO

OEtO

O8.

483E

-Ol

O.OOO

E+OO

7.71

4E-O

lO.O

OOE+

OOO.

OOOE

tOO

9.53

7E-0

1O.

OOOE

tOO

5.59

9E-O

lO.

OOOE

tOO

O.OO

OEtO

O1.0

30Et

OOO.O

OOE+

OO4.

064E

-Ol

O.OOO

E+OO

O.OOO

E+OO

1.084

EtOO

O.OO

OEtO

O2.9

50E-

Ol

O.OO

OEtO

OO.

OOOE

tOO

1.124

EtOO

O.OOO

EtOO

2.14

1E-O

lO.O

OOE+

OOO.O

OOE+

OO1.1

52Et

OOO.O

OOEtO

O1.

554E

-Ol

O.OO

OEtO

OO.

OOOE

tOO

1.173

EtOO

0.000

£+00

1.12

8E-O

lO.O

OOE+

OOO.

OOOE

tOO

1.187

£tOO

O.OO

OEtO

O8.

188£

-02

O.OO

OEtO

OO,

OOOE

tOO

1.198

£+00

O.OOO

E+OO

5.94

3E-0

2O.O

OOE+

OOO.O

OOE+

OO1.2

06Et

OOO.

OOOE

tOO

4.31

4E-0

2O.

OOOE

tOO

O.OO

OEtO

O1.2

12E+

00O.

OOOE

tOO

3.13

1E-0

2O.

OOOE

tOO

O.OO

O£tO

O1.2

16Et

OOO.

OOOE

tOO

2.27

3£-0

2O.

OOOE

tOO

O.OOO

E+OO

1.219

EtOO

O.OOO

E+OO

1.65

0E-0

2O.O

OOE+

OOO.

OOOE

tOO

1.221

EtOO

O.OO

O£tO

O1.

197E

-02

O.OO

OEtO

OO.

OOOE

tOO

1.222

EtOO

O.OOO

EtOO

8.69

1E-0

3O.O

OOE+

OOO.O

OOE+

OO1.2

23Et

OOO.

OOOE

tOO

6.30

8E-0

3O.

OOO£

tOO

O.OO

O£tO

O1.2

24Et

OOO.O

OOEtO

O4.

579E

-03

O.OOO

E+OO

O.OOO

E+OO

1.225

EtOO

O.OOO

EtOO

3.32

3E-0

3O.

OOOE

tOO

O.OO

OEtO

O1.2

25E+

00O.O

OOE+

OO2.

412E

-03

O.OO

OEtO

OO.

OOOE

tOO

1.225

EtOO

O.OO

O£tO

O1.

751E

-03

O.OO

OEtO

OO.

OOOE

tOO

UF6

V

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.630

EtOO

2.76

6EtO

O3.

485E

tOO

1.538

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

EtOO

90.00

0014

.650

03.

945E

+00

119.

0574

14.6

681

6.509

EtOO

138.

7703

14.6

669

8.15

9E+0

015

1.58

0514

.666

07.

837E

tOO

147.

9825

14.6

606

7.607

EtOO

145.

5106

14.6

597

7.45

4E+0

014

3.96

5414

.658

87.

363E

+00

143.

6034

14.6

593

5.74

3E+0

013

1.01

2914

.647

63.

774E

tOO

116.

0086

14.6

484

2.481

E+00

106.

6472

14.6

490

1.630

EtOO

100.

7183

14.6

493

1.071

EtOO

96.9

272

14.6

496

7.042

E-O

l94

.4881

14.6

495

4.628

E-01

92.9

118

14.6

496

3.04

2E-O

l91

.8911

14.6

496

1.999

E-O

l91

.233

214

.649

91.

314E

-01

90.8

073

14.6

501

8.63

5E-0

290

.526

614

.650

05.

675E

-02

90.34

2114

.650

03.

730£

-02

90.23

1114

.650

02.

451E

-02

90.1

499

14.6

500

1.61

1E-0

290

.096

714

.650

01.

059E

-02

90.0

704

14.6

500

6.95

8E-0

390

.044

314

.650

04.

573E

-03

90.0

312

14.6

500

3.00

6E-0

390

.0181

14.6

500

1.97

5E-0

390

.0181

14.6

500

1.29

8E-0

390

.0181

14.6

500

8.53

2E-0

490

.0051

14.6

500

5.60

8E-0

490

.0051

14.6

500

..... ~ I:.r.:I

TITL

E:EX

.4,

CAS£

4.R£

L£AS

£(E

X.2.

2),

INDU

CEDV~,

SOLI

DSTO

FLOO

R

DATA

GENE

RATE

DBY

INDR

FT--~

INDU

CED

DRAF

TV~ILATI(}l

SYST

EMT~SI~

CCtlP

ARTM

ENT

MODE

L.

0.03

30FT

/SEC

1250

0.FT

**2

UF6

L

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EfOO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

0.000

£+00

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O0.0

00£+

00O.

OOOE

tOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

O0.0

00£+

000.0

00£+

00

COND

ENSA

T£FA

LLOU

T

TIM£ (SEC

)AI

RV

H20

L

0.0

O.OO

O£tO

OO.

OOO£

tOO

120.

0O.O

OOEtO

OO.

OOO£

tOO

240.

0O.O

OOEtO

OO.

OOO£

tOO

360.0

O.OOO

EtOO

O.OOO

EtOO

480.

0O.

OOO£

tOO

O.OO

O£tO

O60

0.0O.O

OOEtO

OO.O

OOEtO

O72

0.0

O.OO

O£tO

OO.

OOO£

tOO

840.

0O,O

OOEtO

OO.O

OOEtO

O96

0.0

O.OO

O£tO

OO.O

OOEtO

O10

80.0

O.OO

O£tO

OO.

OOO£

tOO

1200

.0O.

OOO£

tOO

O.OO

O£tO

O13

20.0

O.OOO

EtOO

O.OO

O£tO

O14

40.0

O.OO

O£tO

OO.

OOO£

tOO

1560

.0O.O

OOEtO

OO.

OOO£

tOO

1680

.0O.

OOO£

tOO

O.OO

O£tO

O18

00.0

O.OOO

EtOO

O.OO

O£tO

O19

20.0

O.OOO

EtOO

O.OOO

EtOO

2040

.0O.O

OOEtO

OO.

OOO£

tOO

2160

.0O.O

OOEtO

OO.O

OOEtO

O22

80.0

O.OOO

EtOO

O.OOO

EtOO

2400

.0O.

OOO£

tOO

O.OO

O£tO

O25

20.0

O.OOO

EtOO

O.OOO

EtOO

2640

.0O.

OOO£

tOO

O.OO

O£tO

O27

60.0

O.OO

O£tO

OO.

OOO£

tOO

2880

.0O.

OOO£

tOO

O.OO

O£tO

O30

00.0

O.OOO

EtOO

O.OOO

EtOO

3120

.0O.

OOO£

tOO

O.OOO

EtOO

3240

.0O.O

OOEtO

OO.O

OOEtO

O33

60.0

O.OO

O£tO

OO.

OOO£

tOO

3480

.0O.O

OOEtO

OO.

OOO£

tOO

3600

.0O.

OOO£

tOO

O.OO

O£tO

O

H20

V

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EfOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

DEPO

SITIO

NVE

LOCI

TY=

DEPO

SITIO

NAR

EA=

CIJ'1PON~

MASS

FL(Jo

lRAT

£(L

B/SE

C)HF

LHF

VUF

6S

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.oo

o£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.

ooo£

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

O

UF6

V

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

0.000

£+00

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

OO.

OOO£

tOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O0.0

00£+

00O.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

O£tO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

U02F

2S

O.OOO

EtOO

1.22

1EtO

O2.0

14Et

OO2.5

24£+

002.

425£

tOO

2.35

4EtO

O2.3

06Et

OO2.2

78Et

OO1.7

77Et

OO1.1

68£+

007.

674E

-01

5.04

4£-0

13.

315E

-01

2.17

9£-0

11.

432E

-01

9.41

0E-0

26.

184E

-02

4.06

5E-0

22.

671E

-02

1.75

6E-0

21.

154E

-02

7.58

3E-0

34.

984E

-03

3.27

6[-0

32.

153E

-03

1.41

5£-0

39.

299E

-04

6.11

1£-0

44.

017E

-04

2.64

0E-0

41.

735E

-04

~ ~

..... c.c 01

U02F

2S

O.OOO

EtOO

7.78

3Et01

2.74

9Et02

5.49

2Et0

28.

462E

t02

1.13

3Et0

31.

412E

t03

1.68

7Et0

31.

942E

t03

2.11

6Et0

32.

231E

t03

2.30

6Et0

32.

356E

t03

2.38

8Et0

32.

410E

t03

2.42

4Et0

32.

433£

t03

2.43

9Et0

32.

443E

t03

2.44

5Et0

32.

447E

t03

2.44

8Et0

32.

449E

t032.

450E

t03

2.45

0Et0

32.

450E

t03

2.45

0Et0

32.

450E

t03

2.450

£+03

2.45

0Et0

32.

450E

t03

UF6

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O

UF6

L

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

CctlP

CNEN

TMA

SS(L

B)HF

LHF

VUF

6S

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

O

H20

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

H20

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

&.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

O

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

CED

VENT

,SO

LIDS

TOFL

OOR

DATA

GENE

RATE

DBY

INDR

rT--~

INDU

CED

DRAF

TVE

NTILA

TICN

SYST

EMTr

w.lSI

ENT

CctlP

ARTH

ENT

MODE

L.

CCND

ENSA

TEAC

CUMU

LATE

DON

FLOO

R

TIME

(SEC

)AI

RV

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.084

0.0

960.

010

80.0

1200

.013

20.0

1440

.015

60.0

1680

.018

00.0

1920

.020

40.0

2160

.022

80.0

2400

.025

20.0

2640

.027

60.0

2880

.030

00.0

3120

.032

40.0

336f

l..C34

80.0

3600

.0

TITL

E:EX

.4,

CASE

4.RE

LEAS

E(E

X.2.

2),

INDU

C£D

VENT

,SO

LIDS

TOFL

OOR

DATA

GEN£

RATE

DBY

INDR

FT--

;t~

INDU

CED

DRAF

TVE

NTIL

ATIC

NSY

STEM

TfW

.lSIE

NTCC

tlPAR

TMEN

THO

DEL

UIW

lIlt1

Fl-ID

HFRE

LEAS

ESl.

ttVlR

Yf!t.

lDC(

tIPAR

TMEN

TCC

NCEN

TRAT

IlJIlS

TIHE (SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

Clt1U

LATI

VEMA

TERI

ALRE

LEAS

£DOR

FORM

EDFR

(tIRE

LEAS

EDMA

TERI

AL(L

B)UF

6U0

2F2

TOTA

LU

HFHF

FROM

UF6

TOTA

LHF

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O2.

516E

t02

1.94

4Et0

26.

739£

t01

O.OO

O£tO

O6.

739E

t01

O.OO

O£tO

O8.

886E

t02

6.86

7Et0

22.

447£

t02

O.OO

OEtO

O2.

447E

t02

O.OO

OEtO

O1.

775£

t03

1.37

2Et0

35.

007£

t02

O.OO

O£tO

O5.

007E

t02

1.01

4£t0

22.

735E

t03

2.18

2Et0

37.

895E

t02

2.30

6EtO

l8.

126E

t02

3.69

2Et0

23.

661E

t03

3.07

9Et0

31.

079£

t03

8.39

3£tO

l1.

163£

t03

7.47

7Et0

24.

564E

t03

4.03

3Et0

31.

370E

t03

1.70

0Et0

21.

54O

Et03

1.11

9£t0

35.

452E

t03

4.97

0Et0

31.

661£

t03

2.54

4Et0

21.

916£

t03

1.157

E+03

6.276

E+03

5.633

E+03

1.93

8Et0

32.6

31E+

022.

201£

t03

1.15

7Et0

36.

840E

t03

6.06

8Et0

32.

146E

t03

2.63

1Et0

22.

409E

t03

1.15

7£+0

37.

210£

+03

6.35

5£+0

32.

296E

t03

2.63

1£+0

22.

559E

t03

1.15

7Et0

37.

454E

t03

6.54

3£t0

32.

405£

t03

2.63

1Et0

22.

669E

t03

1.15

7£+0

37.

614£

t03

6.66

7£t0

32.

485£

+03

2.63

1£+0

22.

748£

+03

1.15

7Et0

37.

719£

t03

6.74

8Et0

32.

542E

t03

2.63

1Et0

22.

805£

t03

1.15

7£+0

37.

788£

+03

6.801

E+03

2.584

E+03

2.63

1E+0

22.

847£

+03

1.15

7Et0

37.

834E

t03

6.836

E+03

2.61

4£+0

32.

631E

t02

2.87

8Et0

31.

157£

+03

7.86

4£+0

36.

859£

+03

2.63

6£+0

32.

631£

+02

2.90

0£+0

31.1

57E+

037.

883E

t03

6.87

5£t0

32.

652E

t03

2.63

1Et0

22.

916£

+03

1.15

7£+0

37.

896£

+03

6.88

5£+0

32.6

64E+

032.

631£

t02

2.92

7£+0

31.

157E

t03

7.905

E+03

6.89

1Et0

32.

672E

t03

2.63

1Et0

22.

936£

t03

1.15

7£+0

37.9

10E+

036.

895£

+03

2.67

9£t0

32.

631£

t02

2.94

2£+0

31.

157E

t03

7.914

E+03

6.89

8Et0

32.6

83E+

032.

631E

t02

2.94

6£t0

31.

157£

+03

7.916

E+03

6.90

0£+0

32.

686£

+03

2.63

1Et0

22.9

49E+

031.

157E

t03

7.91

8Et0

36.9

01E+

032.6

89E+

032.

631£

t02

2.952

E+03

1.15

7E+0

37.

919£

t03

6.90

2£+0

32.

690£

+03

2.631

E+02

2.95

3Et0

31.

157E

t03

7.92

0Et0

36.

903£

+03

2.69

1£t0

32.

631£

t02

2.955

E+03

1.157

E+03

7.920

E+03

6.90

3£+0

32.6

92E+

032.6

31E+

022.9

56E+

031.

157£

+03

7.92

0£t0

36.

903£

t03

2.69

3£+0

32.

631£

t02

2.95

6£t0

31.

157E

t03

7.92

1£+0

36.9

03E+

032.6

93E+

032.6

31E+

022.

957£

+03

1.15

7£+0

37.

921£

t03

6.904

E+03

2.69

4£+0

32.

631£

t02

2.95

7£t0

31.1

57E+

037.9

21E+

036.9

04E+

032.6

94E+

032.

631E

+02

2.957

E+03

C(tIP

ARTM

ENT

CCNC

ENTR

ATIC

NS(L

BlFT

**3)

UIW

lllt1

HF

0.000

£+00

0.00

0£+0

02.

287E

-03

8.05

2E-0

43.

772£

-03

1.38

4£-0

34.

729E

-03

1.79

6E-0

35.

369E

-03

1.80

9£-0

35.

812E

-03

1.B1

5E-0

36.

087£

-03

1.81

8E-0

35.

047£

-03

1.82

2E-0

33.

328£

-03

1.51

3E-0

32.

187E

-03

1.09

8E-0

31.

438£

-03

7.97

1£-0

49.

449£

-04

5.78

6£-0

46.

210E

-04

4.20

0E-0

44.

081E

-04

3.04

8E-0

42.

682£

-04

2.21

3£-0

41.

763E

-04

1.60

6£-0

41.

159£

-04

1.16

6£-6

47.

615£

-05

8.46

1£-0

55.

004E

-05

6.14

1£-6

53.

289£

-05

4.45

7E-0

52.

162£

-05

3.23

SE-6

S1.

421£

-05

2.34

8E-0

59.

337E

-06

1.70

5£-O

S6.

136E

-06

1.23

7E-0

54.

033£

-06

8.98

0E-0

62.

651£

-06

6.51

8E-0

61.

742E

-06

4.73

1E-0

61.

145E

-06

3.43

4E-0

67.

S25£

-07

2.49

3E-0

64.

945£

-07

1.80

9E-0

63.

250E

-07

1.31

3E-0

6

.­ CJ:

) ""

TlTl

E:EX

.5.

REPE

ATOF

EX.

4.1

WIRE

lEASE

(EX.

2)SE

mm

ED

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIlA

TI(t.l

SYST

EMTf

W.IS

IENT

CCtlP

ARTH

ENT

HODE

L

INlE

TAI

RBU

J..jER

Fl(}.j

RATE

=0.

0AC

FM/tI

BIEN

TTE

MPER

ATUR

E=

eo.o

ooDE

GF

/tIBI

ENT

PRES

SURE

=14

.700

PSIA

TIME

COMP

(t.lEN

T~SS

Fl(}.j

RATE

(lBlS

EC)

TEMP

ERAT

URE

PRES

SURE

(SEC

)AI

RV

H2O

lH2

OV

HFl

HFV

UF6

SUF

6l

UF6

VU0

2F2

S(D

EGF)

(PSI

A)

0.0

9.603

Ef01

O.OOO

EfOO

1.253

£fOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

eo.o

ooo

14.7

000

120.

09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO80

.0000

14.7

000

240.

09.6

03E+

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

Oeo

.ooo

o14

.700

036

0.0

9.603

E+01

O.OOO

E+OO

1.253

EfOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

80.00

0014

.700

048

0.0

9.60

3£f0

1O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

O80

.0000

14.7

000

600.

09.6

03Ef

01O.O

OOE+

OO1.2

53E+

00O.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEfO

O80

.0000

14.7

000

720.0

9.603

Ef01

O.OOO

EfOO

1.253

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

EfOO

80.00

0014

.700

084

0.09.6

03E+

01O.O

OOE+

OO1.2

53E+

00O.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

O80

.000

014

.700

096

0.0

9.603

Ef01

O.OOO

E+OO

1.253

£fOO

O.OOO

EfOO

O.OOO

EfOO

0.000

£+00

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

80.00

0014

.700

010

80.0

9.603

E+01

O.OOO

E+OO

1.253

E+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

80.00

0014

.700

012

00.0

9.603

Ef01

O.OOO

EfOO

1.253

£fOO

O.OOO

EfOO

O.OOO

EfOO

O.OO

O£fO

OO.

OOO£

fOO

O.OOO

EfOO

O.OOO

E+OO

80.00

0014

.700

013

20.0

9.603

E+01

O.OOO

EfOO

1.253

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

EfOO

80.00

0014

.700

0.....

1440

.09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.

OOO£

fOO

O.OO

O£fO

OO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

O80

.0000

14.7

000

<:C>

1560

.09.6

03Ef

01O.O

OOE+

OO1.2

53Ef

OOO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

O80

.0000

14.7

000

-1

1680

.09.

603£

f01

O.OOO

E+OO

1.253

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OO

O£fO

OO.O

OOEfO

O80

.0000

14.7

000

1800

.09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEfO

O80

.0000

14.7

000

1920

.09.

603£

f01

O.OOO

EfOO

1.253

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

E+OO

80.00

0014

.700

020

40.0

9.603

Ef01

O.OOO

E+OO

1.253

E+00

O.OOO

E+OO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

80.00

0014

.700

021

60.0

9.603

Ef01

O.OOO

EfOO

1.253

EfOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

EfOO

80.00

0014

.700

022

80.0

9.603

E+01

O.OOO

EfOO

1.253

E+00

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

E+OO

80.00

0014

.700

024

00.0

9.603

Ef01

O.OOO

EfOO

1.253

£fOO

O.OOO

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

EfOO

O.OOO

EfOO

0.000

£+00

80.00

0014

.700

025

20.0

9.603

Ef01

O.OOO

E+OO

1.253

EfOO

O.OOO

E+OO

O.OOO

EfOO

O.OO

O£fO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OO80

.0000

14.7

000

2640

.09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

O0.0

00£+

0080

.0000

14.7

000

2760

.09.6

03Ef

01O.O

OOE+

OO1.2

53Ef

OOO.O

OOE+

OOO.O

OOEfO

OO.

OOO£

fOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

80.00

0014

.700

028

80.0

9.603

Ef01

O.OOO

E+OO

1.253

EfOO

O.OOO

EfOO

O.OOO

E+OO

O.OOO

E+OO

O.OO

O£fO

OO.O

OOEfO

OO.O

OOE+

OO80

.0000

14.7

000

3000

.09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

00O.O

OOE+

OO80

.0000

14.7

000

3120

.09.6

03Ef

01O.O

OO£fO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

OO.

OOO£

fOO

O.OOO

E+OO

80.00

0014

.700

032

40.0

9.60

3E+0

1O.O

OOEfO

O1.2

53£+

00O.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOE+

OO80

.0000

14.7

000

3360

.09.6

03Ef

01O.O

OOEfO

O1.2

53£f

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.

OOO£

fOO

O.OOO

EfOO

O.OO

O£fO

O80

.0000

14.7

000

3480

.09.6

03Ef

01O.O

OOEfO

O1.2

53£f

OOO.O

OOE+

OOO.O

OOEfO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOEfO

OO.O

OOEfO

O80

.0000

14.7

000

3600

.09.6

03Ef

01O.O

OOEfO

O1.2

53Ef

OOO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

OO.O

OOEfO

O80

.0000

14.7

000

TITL

E:EX

.5.

REPE

ATO

fEX

.4.

1WI

RELE

ASE

(EX.

2)SE~frED

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTIL

ATI(}

ISY

STEM

TIW

-lSIE

NTCIl

1PAR

TMEN

TMO

DEL.

CIl1P

ARTM

ENT

C(}ID

ITI(

}ISCIl

1PAR

TMEN

TVO

LltlE

=50

0000

.FT

**2

U*A

PROD

UCT

=7.9

03Et

OOBT

U/S£

C-DE

GF

SURF

ACE

TEMP

ERAT

URE

=12

0.0

DEG

FCO

OLIN

GRA

TE=

O.OO

OEtO

OBT

U/SE

C

TIME

CIl1P

(}IEN

T~SS

(LB)

TEMP

ERAT

URE

PRES

SURE

(SEC

)AI

RV

H2O

LH2

OV

HFL

HFV

UF6

SUF

6L

UF6

VU0

2F2

S(D

£GF)

(PSI

A)

0.0

3.54

8Et0

4O.

OOOE

tOO

4.63

0Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O90

.0000

14.7

500

120.

03.

240E

t04

O.OO

O£tO

O8.

779£

tOl

O.OO

OEtO

O7.

443£

t02

O.OO

O£tO

OO.

OOO£

tOO

O.OO

O£tO

O2.

738E

t03

134.

0015

14.7

871

240.

03.1

9BEt

04O.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

O9.

270E

t02

O.OO

OEtO

OO.

OOOE

tOO

1.55

1Et0

33.

213£

t03

135.

9653

14.7

603

360.

03.

227E

t04

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O9.

355£

t02

O.OO

O£tO

OO.

OOOE

tOO

3.21

7Et0

33.

088E

t03

128.

3547

14.7

646

480.0

3.24

4Et0

4O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.40

4Et0

2O.

OOOE

tOO

O.OO

OEtO

O4.

351E

t03

3.00

4Et0

312

3.77

8814

.766

760

0.0

3.25

4Et0

4O.

OOO£

tOO

O.OOO

EtOO

O.OO

O£tO

O9.

433E

t02

O.OO

O£tO

OO.

OOOE

tOO

5.13

0Et0

32.

949£

t03

120.

9825

14.7

673

720.

03.

261E

t04

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O9.

454E

t02

O.OO

OEtO

OO.

OOOE

tOO

5.78

9Et0

32.

915E

t03

118.

8497

14.7

690

840.

03.

245£

t04

O.OO

O£tO

OO.O

OOEtO

OO.

OOOE

tOO

9.40

6Et0

2O.

OOO£

tOO

O.OO

OEtO

O4.

062E

t03

2.87

4£t0

312

4.22

4914

.770

596

0.0

3.22

2Et04

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

9.33

9Et0

2O.

OOOE

tOO

O.OO

OEtO

O1.

589E

t03

2.83

9£t0

313

1.75

0614

.766

210

80.0

3.21

7£t0

4O.

OOOE

tOO

1.32

4EtO

lO.

OOOE

tOO

9.03

3£t0

2O.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

2.71

4Et0

313

4.46

6614

.747

412

00.0

3.327

£+04

O.OOO

EtOO

1.38

6Et0

2O.O

OOEtO

O6.

568E

t02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O1.

787E

t03

118.

2330

14.7

483

~

1320

.03.

401E

t04

O.OO

O£tO

O2.

293£

t02

O.OO

O£tO

O4.

765£

t02

O.OO

O£tO

OO.

OOO£

tOO

O.oo

o£tO

O1.

174£

t03

108.

0553

14.7

489

e:J

1440

.03.

45OE

t04O.

OOOE

tOO

2.94B

Et02

O.OO

OEtO

O3.

451E

t02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O7.

699E

t02

101.

5999

14.7

493

00

1560

.03.

482£

t04

O.OOO

EtOO

3.42

0Et0

2O.

OOO£

tOO

2.49

8Et0

2O.

OOOE

tOO

O.OO

OEtO

OO.

ooo£

tOO

5.04

5£t0

297

.474

714

.749

516

80.0

3.50

4Et0

4O.O

OOEtO

O3.

760E

t02

O.OO

OEtO

O1.

806E

t02

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O3.

303E

t02

94.8

434

14.7

500

1800

.03.

518E

t04

O.OOO

EtOO

4.00

4£t0

2O.O

OOEtO

O1.

306E

t02

O.OO

OEtO

OO.

OOO£

tOO

O.OO

O£tO

O2.

162E

t02

93.1

303

14.7

500

1920

.03.

528E

t04

O.OOO

EtOO

4.17

9£t0

2O.O

OOEtO

O9.

436E

t01O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.41

5Et0

292

.024

814

.749

920

40.0

3.53

4Et0

4O.

OOO£

tOO

4.30

6Et0

2O.

OOO£

tOO

6.81

8EtO

lO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

9.25

7EtO

l91

.310

114

.749

921

60.0

3.53

9£t0

4O.O

OOEtO

O4.

396E

t02

O.OO

OEtO

O4.

926E

tOl

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O6.

056E

t01

90.8

509

14.7

500

2280

.03.

541E

t04

O.OOO

EtOO

4.46

2Et0

2O.

OOOE

tOO

3.55

9EtO

lO.

OOOE

tOO

O.OO

OEtO

OO.

OOO£

tOO

3.96

1£tO

l90

.552

614

.750

024

00.0

3.54

3Et0

4O.O

OOEtO

O4.

509£

t02

O.OO

O£tO

O2.

571E

tOl

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O2.

591E

tOl

90.3

666

14.7

501

2520

.03.

545E

t04

O.OOO

EtOO

4.54

3Et0

2O.

OOOE

tOO

1.85

7EtO

lO.

OOOE

tOO

O.OO

O£tO

OO.O

OOEtO

O1.

695E

tOl

90.2

413

14.7

500

2640

.03.

546E

t04

O.OOO

EtOO

4.56

7Et0

2O.

OOOE

tOO

1.34

2Et0

1O.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O1.

109E

t01

90.15

9814

.750

027

60.0

3.54

6Et0

4O.O

OOEtO

O4.

585E

t02

O.OO

OEtO

O9.

690E

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

O7.

250E

tOO

90.1

064

14.7

500

2880

.03.

547E

t04

O.OO

OEtO

O4.

597£

t02

O.OO

O£tO

O7.0

00Et

OOO.

OOOE

tOO

O.OO

O£tO

OO.

OOO£

tOO

4.742

EtOO

90.0

666

14.7

500

3000

.03.

547E

t04

O.OO

OEtO

O4.

606E

t02

O.OO

OEtO

O5.0

56£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

3.102

EtOO

90.0

404

14.7

500

3120

.03.

547E

t04

O.OOO

EtOO

4.61

3Et0

2O.

OOOE

tOO

3.65

2EtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O2.0

29Et

OO90

.027

214

.750

032

40.0

3.54

7Et0

4O.

OOOE

tOO

4.61

8Et0

2O.

OOO£

tOO

2.63

8EtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.327

EtOO

90.0

272

14.7

500

3360

.03.

547E

t04

O.OOO

EtOO

4.62

1Et0

2O.

OOOE

tOO

1.906

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

8.67B

E-01

90.0

142

14.7

500

3480

.03.

547E

t04

O.OO

O£tO

O4.

623E

t02

O.OO

OEtO

O1.3

77Et

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O5.

676£

-01

90.0

142

14.7

500

3600

.03.

547E

t04O.

OOOE

tOO

4.62

5Et0

2O.

OOOE

tOO

9.94

3E-0

1O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

3.71

2E-0

190

.014

214

.750

0

~ ~

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DEG

F)(P

SIA)

O.OOO

E+OO

133.8

915

14.75

00O.O

OOE+

OO13

3.89

1514

.7500

O.OOO

E+OO

133.9

108

14.7

587

O.OOO

E+OO

133.9

108

14.7

587

O.OOO

E+OO

133.9

257

14.7

654

O.OOO

E+OO

133.

9298

14.7

673

O.OOO

E+OO

133.9

298

14.7

673

PRES

SURE

(PSI

A)

LIQU

IDLI

QUID

LIQU

IDLI

QUID

LIQU

ID

UF6

V

1.71

7Et01

1.71

7Et0

11.

693E

t011.

693E

tOl

1.657

E+01

1.69

5Et01

1.69

5Et01

UF6

L

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

H2O

V

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

H2O

L

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

AIR

V

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

TIME

(SEC) 0.0

120.0

240.0

360.0

480.0

600.

072

0.0

TITL

E:EX

.5.

REPE

ATOF

EX.

4.1

101/

RElEA

SE(E

X.2)

SElJ1

ENTE

D

MTA

GENE

RATE

DBY

FODR

n--

AFO

RCED

DRAn

VENT

ILATlC

NSY

STEM

TPJl.I

SIENT

Cct1P

ARTH

ENT

MOD

EL

SOUR

CETE

RM:

UF6

LIQU

IDIN

CRE-

DURA

TlCN

MASS

TEMP

ERAT

URE

HENT

(SEC

)(L

B)(D

EGF)

120

0.0

6709

.018

9.600

220

0.066

39.0

188.7

003

200.

065

38.0

187.3

004

140.

047

28.0

185.1

005

40.0

977.

018

3.000

TOTA

L78

0.0

2559

1.0

CltIPC

NENT

MASS

FL~

RATE

(LBI

SEC)

HFL

HFV

UF6

S

O.OOO

E+OO

O.OOO

E+OO

1.637

E+01

O.OOO

E+OO

O.OOO

E+OO

1.637

E+Ol

O.OOO

E+OO

O.OOO

E+OO

1.627

E+01

O.OOO

E+OO

O.OOO

E+OO

1.627

E+01

O.OOO

E+OO

O.OOO

E+OO

1.612

E+01

O.OOO

E+OO

O.OOO

E+OO

1.68

2E+0

1O.O

OOE+

OOO.O

OOE+

OO1.6

82E+

01

FLAS

HBA

SIS:

ISENT

HALP

ICUF

6MO

LECU

LAR

WEIG

HT=

352.0

25

~ g

TEMP

ERAT

URE

PRES

SURE

U02F

2S

(DE6

F)(P

SIA)

O.OOO

EtOO

90.00

0014

.750

09.

776E

tOO

134.

0015

14.7

871

9.32

9EtO

O13

5.96

5314

.760

39.0

63Et

OO12

8.35

4714

.764

68.8

24Et

OO12

3.77

8814

.766

78.6

11Et

OO12

0.98

2514

.767

38.

545E

tOO

118.

8497

14.7

690

8.72

2EtO

O12

4.22

4914

.770

58.6

44Et

OO13

1.75

0614

.766

27.1

70Et

OO13

4.46

6614

.747

44.

758E

tOO

118.

2330

14.7

483

3.144

EtOO

108.

0553

14.7

489

2.070

EtOO

101.

5999

14.7

493

1.359

EtOO

97.4

747

14.7

495

8.944

E-01

94.84

3414

.750

05.

853E

-Ol

93.1

303

14.7

500

3.827

E-01

92.0

248

14.7

499

2.504

E-O

l91

.3101

14.7

499

1.639

E-01

90.8

509

14.7

500

1.07

2E-O

l90

.552

614

.750

07.

018£

-02

90.3

666

14.75

014.

590E

-02

90.2

413

14.7

500

3.00

1E-0

290

.159

814

.750

01.

963E

-02

90.1

064

14.7

500

1.28

4E-0

290

.066

614

.750

08.

396E

-03

90.0

404

14.7

500

5.49

2E-0

390

.027

214

.750

03.

592E

-03

90.0

272

14.7

500

2.34

9E-0

390

.014

214

.750

01.

536E

-03

90.0

142

14.7

500

1.00

5£-0

390

.014

214

.750

0

UF6

V

O.OOO

EtOO

O.OOO

EtOO

4.502

EtOO

9.44

3EtO

O1.

278E

t011.

498E

tOl

1.69

7Et0

11.

233E

tOl

4.838

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

O

UF6

L

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

C01P

ONEN

T~SS

FL(Io

IRA

TE(L

BISE

C)HF

LHF

VUF

6S

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

2.65

8EtO

OO.

OOOE

tOO

O.OO

OEtO

O2.6

91Et

OOO.

OOOE

tOO

O.OOO

EtOO

2.746

EtOO

O.OO

OEtO

OO.O

OOEtO

O2.

762E

tOO

O.OO

OEtO

OO.

OOOE

tOO

2.754

EtOO

O.OO

OEtO

OO.O

OOEtO

O2.7

71Et

OOO.

OOOE

tOO

O.OOO

EtOO

2.855

EtOO

O.OO

OEtO

OO.O

OOEtO

O2.

844E

tOO

O.OO

OEtO

OO.O

OOEtO

O2.

386E

tOO

O.OO

OEtO

OO.

OOOE

tOO

1.749

EtOO

O.OO

OEtO

OO.

OOOE

tOO

1.276

EtOO

O.OO

OEtO

OO.

OOOE

tOO

9.27

8E-O

lO.

OOOE

tOO

O.OOO

EtOO

6.73

0E-0

1O.

OOOE

tOO

O.OOO

EtOO

4.890

E-01

O.OO

OEtO

OO.O

OOEtO

O3.

534E

-01

O.OO

OEtO

OO.

OOOE

tOO

2.55

2E-0

1O.

OOOE

tOO

O.OOO

EtOO

1.84

5E-0

1O.

OOO£

tOO

O.OOO

EtOO

1.33

3E-0

1O.

OOOE

tOO

O.OO

OEtO

O9.

635E

-02

O.OO

OEtO

OO.O

OOEtO

O6.

963E

-02

O.OO

OEtO

OO.

OOOE

tOO

5.02

9E-0

2O.

OOOE

tOO

O.OOO

EtOO

3.63

2E-0

2O.

OOOE

tOO

O.OO

O£tO

O2.

624E

-02

O.OO

O£tO

OO.O

OOEtO

O1.

895£

-02

O.OO

OEtO

OO.

OOOE

tOO

1.36

9E-0

2O.

OOOE

tOO

O.OO

OEtO

O9.

887E

-03

O.OO

OEtO

OO.

OOOE

tOO

7.14

2£-0

3O.

OOO£

tOO

O.OOO

EtOO

5.15

9E-0

3O.

OOOE

tOO

O.OOO

EtOO

3.72

6E-0

3O.

OOOE

tOO

O.OO

OEtO

O2.

692E

-03

O.OO

OEtO

O

H20

V

1.25

3EtO

O3.1

35E-

01O.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O3.

498E

-02

3.690

E-01

6.141

E-01

7.92

5E-0

19.2

16E-

Ol

1.018

EtOO

1.084

EtOO

1.130

EtOO

1.16

5EtO

O1.1

90Et

OO1.2

08Et

OO1.

221E

tOO

1.23

0£tO

O1.2

37Et

OO1.

241E

tOO

1.24

5EtO

O1.2

47Et

OO1.

249E

tOO

1.250

EtOO

1.25

1EtO

O1.

252E

tOO

1.252

EtOO

H20

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

toOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

toOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

9.603

Et01

1.15

7Et0

29.

285E

t019.

473E

t01

9.52

8EtO

l9.

501E

tOl

9.561

EtO

l9.

848E

t019.8

10Et

018.

499E

tOl

8.86

0Et01

9.10

8EtO

l9.

273E

tOl

9.38

3Et01

9.48

7EtO

l9.

523E

t019.

542E

tOl

9.56

2EtO

l9.

57BE

tOl

9.58

8EtO

l9.

598E

tOl

9.59

9Eto

l9.6

00Et

019.

601E

tOl

9.601

EtO

l9.

602E

tOl

9.602

EtO

l9.

602E

t01

9.602

Et01

9.60

3EtO

19.6

03Et

01

EX~UST

STRE

It!(FO

RCED

DRAF

T)

TIME

(SEC

)AI

RV

0.0

120.

024

0.036

0.048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

TITL

E:EX

.5.

REPE

ATOF

EX.

4.1

WIRE

LEAS

E(E

X.2)

SErn

NTED

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVE

NTILA

TION

SYST

EMTI

W4S

IENT

C01P

ARTM

ENT

MODE

L.

RESIS

TANC

ETE

RM=

3.79

8E-0

7PS

I-SEC

**21

LBlF

T**3

~ ....

l102F

2S

O.OO

OEtO

O2.2

59£+

002.

651E

tOO

2.54

7E+0

02.

479E

tOO

2.433

E+00

2.405

£+00

2.371

EtOO

2.34

2EtO

O2.2

39£+

001.4

74£+

009.

684£

-01

6.35

2£-0

14.1

62E-

012.

725£

-01

1.78

4£-0

11.

167£

-01

7.63

7£-0

24.

996E

-02

3.26

8£-0

22.

138E

-02

1.39

8£-0

29.

145£

-03

5.98

2£-0

33.

912£

-03

2.55

9£-0

31.

674E

-03

1.09

5£-0

37.

159E

-04

4.68

3£-0

43.

063£

-04

UF6

V

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOEtO

O

UF6

L

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.

OOO£

tOO

O.OO

OEtO

OO.O

OOEtO

O0.0

00£+

00O.O

OOEtO

OO.

OOOE

tOO

0.000

£+00

0.000

£+00

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOO£

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOO£

tOO

O.OOO

EtOO

H2O

L

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

O£tO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

AIR

V

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

0.000

£+00

O.OOO

EtOO

O.OOO

EtOO

TITL

E:EX

.5.

REPE

ATOF

EX.

4.1

WI

RELE

ASE

(EX.

2)SE

GMEN

TED

MTA

GENE

RATE

DBY

FODR

H--

AFO

RCED

DRAF

TVE

NTlL

ATl(t.

lSY

STEM

TR#lS

IENT

CCI1P

ARTH

ENT

MODE

L.

COND

ENSA

TEFA

LLOU

TDE

POSI

TI(t.I

VELO

CITY

=0.

0330

FT/SE

CDE

POSI

TI(t.I

AREA

=12

500.

H**

2

COMP

(t.I[N

TMA

SSFL

lllRA

TE(L

BISE

C)H2

0V

HFL

HFV

UF6

S

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

O0.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

000.0

00£+

000.0

00£+

00O.O

OOE+

OOO.

OOOE

tOO

O.OOO

E+OO

0.000

£+00

O.OOO

E+OO

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

0.000

£+00

0.000

£+00

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

EtOO

0.000

£+00

0.000

£+00

O.OO

OEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

00O.O

OOE+

OOO.

OOOE

tOO

O.OO

OEtO

O0.0

00£+

00O.

OOO£

tOO

0.000

£+00

O.OOO

EtOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

0.000

£+00

O.OOO

EtOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

O£tO

OO.O

OOE+

OO0.0

00£+

00O.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OO0.0

00£+

000.0

00£+

00O.

OOO£

tOO

TIME

(SEC

)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

096

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

TITL

E:EX

.5.

REPE

ATOF

EX.

4.1

WI

RELE

ASE

(EX.

2)SE

IJ1EN

TED

DATA

GENE

RATE

DBY

FODR

F1--

AFO

RCED

DRAF

lVE

NTIL

ATle

NSY

STEM

Tm.lS

IEN

TCC

tlPAR

THEN

THO

DEL.

CeNO

ENSA

TEAC

CLtlU

LATE

OeN

FLOO

R

TIME

(SEC

)

0.0

120.

024

0.0

360.

048

0.0

6/10.0

720.

084

0.0

%0.

010

80.0

1200

.013

20.0

1440

.015

60.0

1680

.018

00.0

1920

.020

40.0

2160

.022

80.0

2400

.025

20.0

2640

.027

60.0

2880

.030

00.0

3120

.032

40.0

3360

.034

80.0

3600

.0

AIR

V

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

H20

l

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.

OOOE

tOO

O.OOO

EtOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OO

OHOO

O.OOO

EtOO

O.OOO

EtOO

O.OOO

E+OO

O.OOO

EtOO

H20

V

O.OOO

E+OO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.

OOOH

OOO.

OOOH

OOO.O

OOEtO

OO.O

OOEtO

OO.

OOOH

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

O

CCtlP

eNEN

TMA

SS(L

B)HF

LHF

VUF

6S

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

UF6

L

O.OO

OHOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOH

OOO.

OOOE

tOO

O.OO

OHOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOE+

OOO.

OOOH

OOO.O

OOEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.O

OOEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OEtO

OO.

OOOE

tOO

O.OOO

E+OO

O.OO

OEtO

OO.

OOOE

tOO

O.OO

OHOO

O.OOO

E+OO

O.OO

OHOO

O.OO

OEtO

OO.

OOOH

OO

UF6

V

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OHOO

O.OOO

E+OO

O.OOO

E+OO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OHOO

O.OOO

EtOO

O.OO

OEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOEtO

OO.O

OOE+

OOO.O

OOE+

OOO.

OOOH

OOO.O

OOE+

OOO.

OOOH

OOO.O

OOE+

OOO.O

OOE+

OOO.O

OOEtO

OO.O

OOE+

OOO.O

OOEtO

OO.

OOOH

OOO.O

OOE+

OOO.

OOOH

OO

U02F

2S

O.OOO

EtOO

1.46

3E+0

24.

629£

+02

7.74

4Et0

21.0

76E+

031.

370E

+03

1.66

0Et0

31.

947E

t03

2.23

0Et0

32.5

09E+

032.

729H

032.

874E

t03

2.96

9£+0

33.

031E

t03

3.07

2Et0

33.

099E

t03

3.116

£+03

3.12

8Et0

33.

135E

+03

3.14

0E+0

33.

143£

+03

3.14

6E+0

33.

147E

+03

3.14

8E+0

33.

148H

033.

149E

t03

3.14

9H03

3.14

9Et0

33.

149£

+03

3.14

9Et0

33.

149H

03

~ t>:l

TITL

E:EX

.5.

REPE

ATOF

EX.

4.1

WI

RELE

ASE

(EX.

2)SE

9'lEN

TED

DATA

GENE

RATE

DBY

FODR

FT--

AFO

RCED

DRAF

TVOOILATI~

SYST

EMT~SIENT

C(IoI

PART

MENT

MOD

El.

U~lltI

AND

HFRE

LEAS

ES~RY

AND

C(tIfl

ARTM

ENTC~CENTRATI~S

TIM

E(S

EC)

0.0

120.

024

0.0

360.

048

0.0

600.

072

0.0

840.

0%

0.0

1080

.012

00.0

1320

.014

40.0

1560

.016

80.0

1800

.019

20.0

2040

.021

60.0

2280

.024

00.0

2520

.026

40.0

2760

.028

80.0

3000

.031

20.0

3240

.033

60.0

3480

.036

00.0

CltIU

LATI

VEHA

TERI

ALRE

LEAS

EDOR

FORM

EDFR

(IoI

RELE

ASED

HATE

RIAL

(LB)

UF6

U02F

2TO

TAL

UHF

HFFR

(IoI

UF6

TOTA

LHF

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

O.OOO

E+OO

6.384

E+02

4.933

E+02

1.70

9E+0

2O.O

OOE+

OO1.

709E

+02

1.913

E+02

1.832

E+03

1.545

E+03

5.04

1E+0

24.

350E

+Ol

5.47

6E+0

21.0

39E+

032.9

31E+

032.9

68E+

038.2

96E+

022.3

63E+

021.

066E

+03

2.379

E+03

3.999

E+03

4.699

E+03

1.15

9E+0

35.4

09E+

021.

700E

+03

4.053

E+03

5.045

E+03

6.639

E+03

1.49

0E+0

39.2

14E+

022.4

11E+

035.9

78E+

036.0

75E+

038.7

37E+

031.

822E

+03

1.35

9E+0

33.

181E

+03

7.887

E+03

7.115

E+03

1.083

E+04

2.161

E+03

1.79

3E+0

33.9

54E+

038.8

92E+

038.1

53E+

031.2

31E+

042.5

01E+

032.0

21E+

034.5

23E+

039.1

42E+

039.1

69E+

031.3

27E+

042.8

36E+

032.0

78E+

034.9

15E+

039.1

42E+

039.8

76E+

031.3

81E+

043.

083E

+03

2.078

E+03

5.16

1E+0

39.1

42E+

031.0

34E+

041.4

18E+

043.2

63E+

032.0

78E+

035.

342E

+03

9.142

E+03

1.065

E+04

1.441

E+04

3.394

E+03

2.07

8E+0

35.

473E

+03

9.142

E+03

1.086

E+04

1.457

E+04

3.490

E+03

2.078

E+03

5.56

8E+0

39.1

42E+

031.0

99E+

041.4

67E+

043.

559E

+03

2.078

E+03

5.63

7E+0

39.1

42E+

031.1

08E+

041.4

74E+

043.6

09E+

032.0

78E+

035.

687E

+03

9.142

E+03

1.113

E+04

1.479

E+04

3.645

E+03

2.078

E+03

5.72

4E+0

39.1

42E+

031.1

17E+

041.4

82E+

043.6

71E+

032.0

78E+

035.

750E

+03

9.142

E+03

1.120

E+04

1.483

E+04

3.690

E+03

2.078

E+03

5.769

E+03

9.142

E+03

1.121

E+04

1.485

E+04

3.704

E+03

2.078

E+03

5.78

2E+0

39.1

42E+

031.1

22E+

041.4

86E+

043.7

14E+

032.0

78E+

035.7

92E+

039.1

42E+

031.1

23E+

041.4

86E+

043.7

21E+

032.0

78E+

035.

799£

+03

9.142

E+03

1.123

E+04

1.486

E+04

3.726

E+03

2.078

E+03

5.805

E+03

9.142

E+03

1.124

E+04

1.487

E+04

3.73O

E+03

2.078

E+03

5.80

8E+0

39.1

42E+

031.1

24E+

041.4

87E+

043.

733E

+03

2.078

E+03

5.81

1E+0

39.1

42E+

031.1

24E+

041.4

87E+

043.7

35E+

032.0

78E+

035.

813E

+03

9.142

E+03

1.124

E+04

1.48

7E+0

43.7

36E+

032.0

78E+

035.8

14E+

039.1

42E+

031.1

24E+

041.4

87E+

043.

737E

+03

2.078

E+03

5.815

E+03

9.142

E+03

1.124

E+04

1.487

E+04

3.738

E+03

2.07

8£+0

35.8

16E+

039.1

42E+

031.1

24E+

041.4

87E+

043.

738E

+03

2.078

E+03

5.817

E+03

9.142

E+03

1.124

E+04

1.487

E+04

3.73

9E+0

32.0

78E+

035.

817E

+03

CCtlP

ARTM

ENT

CH

OO

RAT

I~S

(LB

lFT*

*3)

~lltI

HF

O.OOO

E+OO

O.OOO

E+OO

4.23

1E-0

31.

489E

-03

7.06

3E-0

31.

854E

-03

9.12

3E-0

31.

871E

-03

1.05

3E-0

21.

881E

-03

1.15

0E-0

21.

887E

-03

1.23

3E-0

21.

891E

-03

9.93

6E-0

31.

881E

-03

6.53

6E-0

31.

868E

-03

4.19

5E-0

31.

807E

-03

2.76

2E-0

31.

314E

-03

1.81

4E-0

39.

529E

-04

1.19

0E-0

36.

903E

-04

7.79

7E-0

44.

995E

-04

5.10

6E-0

43.

612E

-04

3.34

2E-0

42.

611E

-04

2.18

7E-0

41.

887E

-04

1.43

1E-0

41.

364E

-04

9.36

0E-0

59.

852E

-05

6.12

2E-0

57.

118E

-05

4.00

5E-0

55.

142E

-05

2.61

9E-0

53.

714E

-05

1.71

3E-0

52.

683E

-05

1.12

1E-0

51.

938E

-05

7.32

9E-0

61.

400E

-05

4.79

4E-0

61.

011E

-05

3.13

5E-0

67.

305E

-06

2.05

1E-0

65.

276E

-06

1.34

1E-0

63.

811E

-06

8.77

2E-0

72.

753E

-06

5.73

7E-0

71.

989E

-06

~ C.:l