calculo 4

47
 CALCULO 4 UNIVERSIDAD PRIVADA DEL NORTE FACULTAD DE INGENIERIA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA DE MINAS CURS O: CÁLCUL O IV CICLO: V TRABAJO: “ELEMENTO TETRAE DRIO LINEAL DOCENTE: HU AMÁN ROJAS EVER ALUMNOS:  N  K  K  K  L ELEMENTO TETRAÉDRICO LINEAL (SÓLIDO)

Upload: nathy-salazar

Post on 04-Nov-2015

212 views

Category:

Documents


0 download

DESCRIPTION

en este imforme se habla de las matrices en un plano tetraedro mediante el software maple

TRANSCRIPT

ELEMENTO TETRADRICO LINEAL

UNIVERSIDAD PRIVADA DEL NORTE

FACULTAD DE INGENIERIA

ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA DE MINASCURSO: CLCULO IVCICLO: V

TRABAJO:ELEMENTO TETRAEDRIO LINEALDOCENTE:HUAMN ROJAS EVERALUMNOS: N K K Kcalculo 4

L

ELEMENTO TETRADRICO LINEAL (SLIDO) 46

INTRODUCCION:

OBJETIVOS:

EL ELEMENTO TETRADRICO LINEAL (SLIDO)

El elemento tetradrico lineal (slido) es un elemento finito tridimensional con ambas coordenadas locales y globales. Se caracteriza por funciones de forma lineales. Tambin se le llama el tetraedro tensin constante. El elemento tetradrico lineal tiene un mdulo de elasticidad E y la relacin de Poisson . Cada tetraedro lineal tiene cuatro nodos con tres grados de libertad en cada nodo, como se muestra en la Fig. 15.1. Las coordenadas globales de los cuatro nodos se designan por (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), y (x4, y4, z4). La numeracin de los nodos de cada elemento es muy importante - usted debe numerar los nodos de tal manera que el volumen del elemento es positivo. Se aconseja comprobar realmente esto usando la funcin TetrahedronElementVolume MATLAB que est escrito especficamente para este propsito. En este caso la matriz de rigidez elemento est dada por:

[k] = V [B]T [D][B]

DondeVeselvolumendelelementodadopor

Elelemento(slido)tetradricolineal ylamatriz[B]estdadapor.

LasfuncionesdeformaN1,N2,N3yN4estndadaspor:

Donde 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3 estn dada por:

Lamatriz[D]estdadapor

Est claro que el elemento tetradrico lineal tiene doce grados de libertad - tres en cada nodo. En consecuencia, para una estructura con n nodos, la matriz de rigidez global K ser de tamao 3n 3n (ya que tenemos tres grados de libertad en cada nodo). El K matriz de rigidez global est montado al hacer llamadas a la funcin TetrahedronAssemble MATLAB que est escrito especficamente para este propsito. Este proceso se ilustra en detalle en los ejemplos.Una vez obtenida la matriz de rigidez global K tenemos la siguiente estructura ecuacin:

Donde T es el vector global de desplazamiento nodal y F es la fuerza vector nodal global. En este paso las condiciones de contorno se aplican manualmente a los vectores u y F. Entonces la matriz se resuelve mediante la separacin y eliminacin de Gauss.Finalmente, una vez se encuentran los desplazamientos y reacciones desconocidas, el vector de tensin se obtiene para cada elemento de la siguiente manera:

Donde es el vector de la tensin en el elemento (del tamao de 6 x 1 ) y u es el 12 1 elemento vector de desplazamiento . El vector est escrito para cada elemento como {} = [x y z xy yz zx] T.FUNCIONES USADAS DE MATLAB

Las cinco funciones de MATLAB utilizados para el elemento tetradrico lineal (slido) son:

TetrahedronElementVolume (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4): Esta funcin devuelve el volumen elemento dado las coordenadas del nodo de primera (x1, y1, z1), las coordenadas del segundo nodo (x2, y2, z2), las coordenadas de la tercera nodo (x3, y3, z3), y las coordenadas del cuarto nodo (x4, y4, z4).

TetrahedronElementStiffness (E, NU, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4): Esta funcin calcula la matriz de elemento de rigidez para cada tetraedro lineal con mdulo de elasticidad E, la relacin de Poisson NU, y las coordenadas (x1, y1, z1) para el nodo en primer lugar, (x2, y2, z2) para el segundo nodo, (x3, y3, z3) para el tercer nodo, y (x4, y4, z4) para el cuarto nodo. Devuelve el 12 12 matriz de rigidez elemento k.

TetrahedronAssemble (K, k, i, j, m, n): Esta funcin ensambla la matriz k elemento de rigidez del tetraedro lineal unirse a los nodos i, j, m, y n en la matriz de rigidez global K. Devuelve el 3n 3n matriz global de rigidez K cada vez que un elemento se monta.

TetrahedronElementStresses (E, NU, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4): Esta funcin calcula el elemento subraya usando el mdulo de elasticidad E, coeficiente de Poisson NU, las coordenadas (x1, y1, z1) para el nodo en primer lugar, (x2, y2, z2) para el segundo nodo, (x3, y3, z3) para el tercer nodo, y (x4, y4, z4) para el cuarto nodo , y el vector de elemento de desplazamiento u. Devuelve el vector de esfuerzo para el elemento.

TetrahedronElementPStresses (sigma): Esta funcin calcula las tres tensiones principales para el elemento utilizando el elemento de tensin vector sigma. Devuelve un vector de 3 1 en la forma [sigma1sigma2sigma3]T, donde sigma1, sigma2 y sigma3 son los esfuerzos principales para el elemento. Esta funcin no devuelve los principales ngulos.

LISTADO DEL CDIGO FUENTE DE MATLAB

Para cada funcin tenemos:

Funcin y=TetrahedronElementVolume(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)% TetrahedronElementVolume Esta funcin devuelve el volumen% Del elemento tetradrico lineal% Cuyo primer nodo tiene coordenadas% (X1, y1, z1), segundo nodo tiene% Coordenadas (x2, y2, z2), tercer nodo% Tiene coordenadas (x3, y3, z3), yCuarto nodo% tiene coordiantes% (X4, y4, z4).xyz = [y1 z1 1 x1; Z2 y2 x2 1; Z3 y3 1 x3; 1 x4 y4 z4];y = det (xyz) / 6;

funcin y=TetrahedronElementStiffness(E, NU, x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)% TetrahedronElementStiffness Esta funcin devuelve el elemento% Matriz de rigidez para un linealElemento tetradrico% (slido) con% Mdulo de elasticidad E,% Ratio de NU, coordenadas de Poisson% Del primer nodo (x1, y1, z1),% Coordenadas del segundo nodo% (X2, y2, z2), coordenadas del% Tercer nodo (x3, y3, z3), y% Coordenadas del cuarto nodo% (X4, y4, z4).% El tamao del elemento de rigidez% Matriz es de 12 x 12.XYZ=[1x 1y1z1;1x 2y2z2;1x 3y3z3z41x 4y4];V = det(xyz)/6;mbeta1 = [1 y2 z2 ; 1 y3 z3 ; 1 y4 z4];mbeta2 = [1 y1 z1 ; 1 y3 z3 ; 1 y4 z4];mbeta3 = [1 y1 z1 ; 1 y2 z2 ; 1 y4 z4];mbeta4 = [1 y1 z1 ; 1 y2 z2 ; 1 y3 z3];mgamma1 = [1 x2 z2 ; 1 x3 z3 ; 1 x4 z4];mgamma2 = [1 x1 z1 ; 1 x3 z3 ; 1 x4 z4];mgamma3 = [1 x1 z1 ; 1 x2 z2 ; 1 x4 z4];mgamma4 = [1 x1 z1 ; 1 x2 z2 ; 1 x3 z3];mdelta1 = [1 x2 y2 ; 1 x3 y3 ; 1 x4 y4];mdelta2 = [1 x1 y1 ; 1 x3 y3 ; 1 x4 y4];mdelta3 = [1 x1 y1 ; 1 x2 y2 ; 1 x4 y4];mdelta4 = [1 x1 y1 ; 1 x2 y2 ; 1 x3 y3];beta1 = 1*det(mbeta1);beta2 = det(mbeta2);beta3 = 1*det(mbeta3);beta4 = det(mbeta4);gamma1 = det(mgamma1);gamma2 = 1*det(mgamma2);gamma3 = det(mgamma3);gamma4 = 1*det(mgamma4);delta1 = 1*det(mdelta1);delta2 = det(mdelta2);delta3 = 1*det(mdelta3);delta4 = det(mdelta4);B1 = [beta1 0 0 ; 0 gamma1 0 ; 0 0 delta1 ;gamma1 beta1 0 ; 0 delta1 gamma1 ; delta1 0 beta1];B2 = [beta2 0 0 ; 0 gamma2 0 ; 0 0 delta2 ;gamma2 beta2 0 ; 0 delta2 gamma2 ; delta2 0 beta2];B3 = [beta3 0 0 ; 0 gamma3 0 ; 0 0 delta3 ;gamma3 beta3 0 ; 0 delta3 gamma3 ; delta3 0 beta3];B4 = [beta4 0 0 ; 0 gamma4 0 ; 0 0 delta4 ;gamma4 beta4 0 ; 0 delta4 gamma4 ; delta4 0 beta4];B = [B1 B2 B3 B4]/(6*V);D = (E/((1+NU)*(12*NU)))*[1NU NU NU 0 0 0 ;NU 1NU NU 0 0 0 ;NU NU 1NU 0 0 0 ;0 0 0 (12*NU)/2 0 0 ; 0 0 0 0 (1 2*NU)/2 0 ; 0 0 0 0 0 (12*NU)/2];y = V*B*D*B;

funcin y = TetrahedronAssemble(K,k,i,j,m,n)

% TetrahedronAssemble esta funcin ensambla la rigidez del elemento% matriz k del elemento lineal tetradrico (slido) % con nodos i, j, m y n en la% matriz de rigidez global K.% Esta funcin devuelve la rigidez global % matriz K despus de la matriz de rigidez del elemento% k est montado.K(3*i2,3*i2) = K(3*i2,3*i2) + k(1,1);K(3*i2,3*i1) = K(3*i2,3*i1) + k(1,2);K(3*i2,3*i) = K(3*i2,3*i) + k(1,3);K(3*i2,3*j2) = K(3*i2,3*j2) + k(1,4);K(3*i2,3*j1) = K(3*i2,3*j1) + k(1,5);K(3*i2,3*j) = K(3*i2,3*j) + k(1,6);K(3*i2,3*m2) = K(3*i2,3*m2) + k(1,7);K(3*i2,3*m1) = K(3*i2,3*m1) + k(1,8);K(3*i2,3*m) = K(3*i2,3*m) + k(1,9);K(3*i2,3*n2) = K(3*i2,3*n2) + k(1,10);K(3*i2,3*n1) = K(3*i2,3*n1) + k(1,11);K(3*i2,3*n) = K(3*i2,3*n) + k(1,12);K(3*i1,3*i2) = K(3*i1,3*i2) + k(2,1);K(3*i1,3*i1) = K(3*i1,3*i1) + k(2,2);K(3*i1,3*i) = K(3*i1,3*i) + k(2,3);K(3*i1,3*j2) = K(3*i1,3*j2) + k(2,4);K(3*i1,3*j1) = K(3*i1,3*j1) + k(2,5);K(3*i1,3*j) = K(3*i1,3*j) + k(2,6);K(3*i1,3*m2) = K(3*i1,3*m2) + k(2,7);K(3*i1,3*m1) = K(3*i1,3*m1) + k(2,8);K(3*i1,3*m) = K(3*i1,3*m) + k(2,9);K(3*i1,3*n2) = K(3*i1,3*n2) + k(2,10);K(3*i1,3*n1) = K(3*i1,3*n1) + k(2,11);K(3*i1,3*n) = K(3*i1,3*n) + k(2,12);K(3*i,3*i2) = K(3*i,3*i2) + k(3,1);K(3*i,3*i1) = K(3*i,3*i1) + k(3,2);K(3*i,3*i) = K(3*i,3*i) + k(3,3);K(3*i,3*j2) = K(3*i,3*j2) + k(3,4);K(3*i,3*j1) = K(3*i,3*j1) + k(3,5);K(3*i,3*j) = K(3*i,3*j) + k(3,6);K(3*i,3*m-2) = K(3*i,3*m2) + k(3,7);K(3*i,3*m1) = K(3*i,3*m1) + k(3,8);K(3*i,3*m) = K(3*i,3*m) + k(3,9);K(3*i,3*n2) = K(3*i,3*n2) + k(3,10);K(3*i,3*n1) = K(3*i,3*n1) + k(3,11);K(3*i,3*n) = K(3*i,3*n) + k(3,12);K(3*j2,3*i2) = K(3*j2,3*i2) + k(4,1);K(3*j2,3*i1) = K(3*j2,3*i1) + k(4,2);K(3*j2,3*i) = K(3*j2,3*i) + k(4,3);K(3*j2,3*j2) = K(3*j2,3*j2) + k(4,4);K(3*j2,3*j1) = K(3*j2,3*j1) + k(4,5);K(3*j2,3*j) = K(3*j2,3*j) + k(4,6);K(3*j2,3*m2) = K(3*j2,3*m2) + k(4,7);K(3*j2,3*m1) = K(3*j2,3*m1) + k(4,8);K(3*j2,3*m) = K(3*j2,3*m) + k(4,9);K(3*j2,3*n2) = K(3*j2,3*n2) + k(4,10);K(3*j2,3*n1) = K(3*j2,3*n1) + k(4,11);K(3*j2,3*n) = K(3*j2,3*n) + k(4,12);K(3*j1,3*i2) = K(3*j1,3*i2) + k(5,1);K(3*j1,3*i1) = K(3*j1,3*i1) + k(5,2);K(3*j1,3*i) = K(3*j1,3*i) + k(5,3);K(3*j1,3*j2) = K(3*j1,3*j2) + k(5,4);K(3*j1,3*j1) = K(3*j1,3*j1) + k(5,5);K(3*j1,3*j) = K(3*j1,3*j) + k(5,6);K(3*j1,3*m2) = K(3*j1,3*m2) + k(5,7);K(3*j1,3*m1) = K(3*j1,3*m1) + k(5,8);K(3*j1,3*m) = K(3*j1,3*m) + k(5,9);K(3*j1,3*n2) = K(3*j1,3*n2) + k(5,10);K(3*j1,3*n1) = K(3*j1,3*n1) + k(5,11);K(3*j1,3*n) = K(3*j1,3*n) + k(5,12);K(3*j,3*i2) = K(3*j,3*i2) + k(6,1);K(3*j,3*i1) = K(3*j,3*i1) + k(6,2);K(3*j,3*i) = K(3*j,3*i) + k(6,3);K(3*j,3*j2) = K(3*j,3*j2) + k(6,4);K(3*j,3*j1) = K(3*j,3*j1) + k(6,5);K(3*j,3*j) = K(3*j,3*j) + k(6,6);K(3*j,3*m2) = K(3*j,3*m2) + k(6,7);K(3*j,3*m1) = K(3*j,3*m1) + k(6,8);K(3*j,3*m) = K(3*j,3*m) + k(6,9);K(3*j,3*n2) = K(3*j,3*n2) + k(6,10);K(3*j,3*n1) = K(3*j,3*n1) + k(6,11);K(3*j,3*n) = K(3*j,3*n) + k(6,12);K(3*m2,3*i2) = K(3*m2,3*i2) + k(7,1);K(3*m2,3*i1) = K(3*m2,3*i1) + k(7,2);K(3*m2,3*i) = K(3*m2,3*i) + k(7,3);K(3*m2,3*j2) = K(3*m2,3*j2) + k(7,4);K(3*m2,3*j1) = K(3*m2,3*j1) + k(7,5);K(3*m2,3*j) = K(3*m2,3*j) + k(7,6);K(3*m2,3*m2) = K(3*m2,3*m2) + k(7,7);K(3*m2,3*m1) = K(3*m2,3*m1) + k(7,8);K(3*m2,3*m) = K(3*m2,3*m) + k(7,9);K(3*m2,3*n2) = K(3*m2,3*n2) + k(7,10);K(3*m2,3*n1) = K(3*m2,3*n1) + k(7,11);K(3*m2,3*n) = K(3*m2,3*n) + k(7,12);K(3*m1,3*i2) = K(3*m1,3*i2) + k(8,1);K(3*m1,3*i1) = K(3*m1,3*i1) + k(8,2);K(3*m1,3*i) = K(3*m1,3*i) + k(8,3);K(3*m1,3*j2) = K(3*m1,3*j2) + k(8,4);K(3*m1,3*j1) = K(3*m1,3*j1) + k(8,5);K(3*m1,3*j) = K(3*m1,3*j) + k(8,6);K(3*m1,3*m2) = K(3*m1,3*m2) + k(8,7);K(3*m1,3*m1) = K(3*m1,3*m1) + k(8,8);K(3*m1,3*m) = K(3*m1,3*m) + k(8,9);K(3*m1,3*n2) = K(3*m1,3*n2) + k(8,10);K(3*m1,3*n1) = K(3*m1,3*n1) + k(8,11);K(3*m1,3*n) = K(3*m1,3*n) + k(8,12);K(3*m,3*i2) = K(3*m,3*i2) + k(9,1);K(3*m,3*i1) = K(3*m,3*i1) + k(9,2);K(3*m,3*i) = K(3*m,3*i) + k(9,3);K(3*m,3*j2) = K(3*m,3*j2) + k(9,4);K(3*m,3*j1) = K(3*m,3*j1) + k(9,5);K(3*m,3*j) = K(3*m,3*j) + k(9,6);K(3*m,3*m2) = K(3*m,3*m2) + k(9,7);K(3*m,3*m1) = K(3*m,3*m1) + k(9,8);K(3*m,3*m) = K(3*m,3*m) + k(9,9);K(3*m,3*n2) = K(3*m,3*n2) + k(9,10);K(3*m,3*n1) = K(3*m,3*n1) + k(9,11);K(3*m,3*n) = K(3*m,3*n) + k(9,12);K(3*n2,3*i2) = K(3*n2,3*i2) + k(10,1);K(3*n2,3*i1) = K(3*n2,3*i1) + k(10,2);K(3*n2,3*i) = K(3*n2,3*i) + k(10,3);K(3*n2,3*j2) = K(3*n2,3*j2) + k(10,4);K(3*n2,3*j1) = K(3*n2,3*j1) + k(10,5);K(3*n2,3*j) = K(3*n2,3*j) + k(10,6);K(3*n2,3*m2) = K(3*n2,3*m2) + k(10,7);K(3*n2,3*m1) = K(3*n2,3*m1) + k(10,8);K(3*n2,3*m) = K(3*n2,3*m) + k(10,9);K(3*n2,3*n2) = K(3*n2,3*n2) + k(10,10);K(3*n2,3*n1) = K(3*n2,3*n1) + k(10,11);K(3*n2,3*n) = K(3*n2,3*n) + k(10,12);K(3*n1,3*i2) = K(3*n1,3*i2) + k(11,1);K(3*n1,3*i1) = K(3*n1,3*i1) + k(11,2);K(3*n1,3*i) = K(3*n1,3*i) + k(11,3);K(3*n1,3*j2) = K(3*n1,3*j2) + k(11,4);K(3*n1,3*j1) = K(3*n1,3*j1) + k(11,5);K(3*n1,3*j) = K(3*n1,3*j) + k(11,6);K(3*n1,3*m2) = K(3*n1,3*m2) + k(11,7);K(3*n1,3*m1) = K(3*n1,3*m1) + k(11,8);K(3*n1,3*m) = K(3*n1,3*m) + k(11,9);K(3*n1,3*n2) = K(3*n1,3*n2) + k(11,10);K(3*n1,3*n1) = K(3*n1,3*n1) + k(11,11);K(3*n1,3*n) = K(3*n1,3*n) + k(11,12);K(3*n,3*i2) = K(3*n,3*i2) + k(12,1);K(3*n,3*i1) = K(3*n,3*i1) + k(12,2);K(3*n,3*i) = K(3*n,3*i) + k(12,3);K(3*n,3*j2) = K(3*n,3*j2) + k(12,4);K(3*n,3*j1) = K(3*n,3*j1) + k(12,5);K(3*n,3*j) = K(3*n,3*j) + k(12,6);K(3*n,3*m2) = K(3*n,3*m2) + k(12,7);K(3*n,3*m1) = K(3*n,3*m1) + k(12,8);K(3*n,3*m) = K(3*n,3*m) + k(12,9);K(3*n,3*n2) = K(3*n,3*n2) + k(12,10);K(3*n,3*n1) = K(3*n,3*n1) + k(12,11);K(3*n,3*n) = K(3*n,3*n) + k(12,12);y = K;

funcin y = TetrahedronElementStresses(E, NU, x 1, y1, z1, x 2, y2, z2, x 3, y3, z3, x 4, y4, z4, u)% TetrahedronElementStresses esta funcin devuelve el elemento% vector de tensin de forma linealelemento (slido) tetradrico % con% mdulo de elasticidad E, Cociente de Poisson % NU, coordenadas% del primer nodo (x 1, y1, z1), coordenadas % del segundo nodo% (x 2, y2, z2), coordenadas de la% tercer nodo (x 3, y3, z3), coordenadas % del cuarto nodo% (x 4, y4, z4) y el desplazamiento del elemento% vector u.% El tamao de la tensin del elemento% vector es 6 x 1xyz = [1 x1 y1 z1 ; 1 x2 y2 z2 ; 1 x3 y3 z3 ; 1 x4 y4 z4];V = det(xyz)/6;mbeta1 = [1 y2 z2 ; 1 y3 z3 ; 1 y4 z4];mbeta2 = [1 y1 z1 ; 1 y3 z3 ; 1 y4 z4];mbeta3 = [1 y1 z1 ; 1 y2 z2 ; 1 y4 z4];mbeta4 = [1 y1 z1 ; 1 y2 z2 ; 1 y3 z3];mgamma1 = [1 x2 z2 ; 1 x3 z3 ; 1 x4 z4];mgamma2 = [1 x1 z1 ; 1 x3 z3 ; 1 x4 z4];mgamma3 = [1 x1 z1 ; 1 x2 z2 ; 1 x4 z4];mgamma4 = [1 x1 z1 ; 1 x2 z2 ; 1 x3 z3];mdelta1 = [1 x2 y2 ; 1 x3 y3 ; 1 x4 y4];mdelta2 = [1 x1 y1 ; 1 x3 y3 ; 1 x4 y4];mdelta3 = [1 x1 y1 ; 1 x2 y2 ; 1 x4 y4];mdelta4 = [1 x1 y1 ; 1 x2 y2 ; 1 x3 y3];beta1 = 1*det(mbeta1);beta2 = det(mbeta2);beta3 = 1*det(mbeta3);beta4 = det(mbeta4);gamma1 = det(mgamma1);gamma2 = 1*det(mgamma2);gamma3 = det(mgamma3);gamma4 = 1*det(mgamma4);delta1 = 1*det(mdelta1);delta2 = det(mdelta2);delta3 = 1*det(mdelta3);delta4 = det(mdelta4);B1 = [beta1 0 0 ; 0 gamma1 0 ; 0 0 delta1 ;gamma1 beta1 0 ; 0 delta1 gamma1 ; delta1 0 beta1];B2 = [beta2 0 0 ; 0 gamma2 0 ; 0 0 delta2 ;gamma2 beta2 0 ; 0 delta2 gamma2 ; delta2 0 beta2];B3 = [beta3 0 0 ; 0 gamma3 0 ; 0 0 delta3 ;gamma3 beta3 0 ; 0 delta3 gamma3 ; delta3 0 beta3];B4 = [beta4 0 0 ; 0 gamma4 0 ; 0 0 delta4 ;gamma4 beta4 0 ; 0 delta4 gamma4 ; delta4 0 beta4];B = [B1 B2 B3 B4]/(6*V);D = (E/((1+NU)*(12*NU)))*[1NU NU NU 0 0 0 ; NU 1NU NU 0 0 0 ;NU NU 1NU 0 0 0 ; 0 0 0 (12*NU)/2 0 0 ; 0 0 0 0 (12*NU)/2 0 ;0 0 0 0 0 (12*NU)/2];y = D*B*u;

funcin y = TetrahedronElementPStresses(sigma)% TetrahedronElementPStresses esta funcin devuelve los trestensiones % principales del elemento%dado el vector de tensin del elemento.% Los ngulos principales no son devueltos.s1 = sigma (1) + sigma(2) + sigma(3);s2 = sigma(1)*sigma(2) + sigma(1)*sigma(3) + sigma(2)*sigma(3) sigma(4)*sigma(4) sigma(5)*sigma(5) sigma(6)*sigma(6);ms3 = [sigma(1) sigma(4) sigma(6) ; sigma(4) sigma(2) sigma(5) ;sigma(6) sigma(5) sigma(3)];s3 = det(ms3);y = [s1; s2 ; s3];

EJEMPLO DE APLICCION:

Considere la placa delgada se somete a una carga uniformemente distribuida. Utilice cinco elementos tetradricos lineales para resolver este problema. Dado E = 210 GPa, = 0,3, t = 0.025 m, y w = 3000 kN / m2, determine:

1. la matriz de rigidez global para la estructura.2. los desplazamientos en los nodos 3, 4, 7 y 8.3. Las reacciones en los nodos 1, 2, 5 y 6.4. las tensiones en cada elemento.5. los esfuerzos principales para cada elemento.

Desratizacin de placa delgada en Cinco lineal Tetraedros

SOLUCIN:

Utilice los seis pasos descritos en el Cap. 1 para resolver este problema usando el elemento lineal tetradrico.

PASO 1 - discretizar el dominio:: Subdividimos la placa en cinco elementos lineales tetradricos solamente para fines ilustrativos. Ms elementos deben ser utilizados con el fin de obtener resultados fiables. As, el dominio se subdivide en cinco elementos y ocho nodos. La fuerza total debido a la carga distribuida se divide por igual entre los nodos 3, 4, 7, y 8 en la proporcin 1: 2: 2: 1. Esta relacin se obtiene considerando que los nodos 4 y 7 soportan cargas a partir de dos elementos cada uno de los nodos, mientras 3 y 8 soportan cargas de cada uno de los elementos. Las unidades utilizadas en los clculos de MATLAB son kN y metro.

Tabla. Elemento de conectividad para el ejemplo:

Nmero de elementoNodo iNodo jNodo mNodo n

11246

21437

36571

46784

51647

PASO 2 - Escribiendo el Elemento Rigidez Matrices:Las cinco matrices de elemento de rigidez k1, k2, k3, k4 y k5 se obtienen al colocar la funcin TetrahedronElementStiffness en el MATLAB. Cada matriz tiene un tamao de 12 12. E=210e6

E =210000000

NU=0.3

NU =

0.3000

k1=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0,0.025,0.5,0,0.025,0,0.25)

k1 =

1.0e+008 *

Columns 1 through 72.355800-2.35580.05050.10100

00.673100.0337-0.67310-0.0337

000.67310.06730-0.67310

-2.35580.03370.06732.3642-0.0841-0.1683-0.0017

0.0505-0.67310-0.08410.68570.00840.0337

0.10100-0.6731-0.16830.00840.69830

0-0.03370-0.00170.033700.0017

-0.0505000.0505-0.0059-0.00500

0000-0.0034-0.00170

00-0.0673-0.006700.06730

0000-0.0067-0.00340

-0.1010000.1010-0.0050-0.02360

Columns 8 through 12-0.0505000-0.1010

00000

00-0.067300

0.05050-0.006700.1010

-0.0059-0.00340-0.0067-0.0050

-0.0050-0.00170.0673-0.0034-0.0236

00000

0.00590000.0050

00.001700.00340

000.006700

00.003400.00670

0.00500000.0236

k2=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0.5,0,0,0.5,0,0,0.5,0.25)

k2 =

1.0e+008 *

Columns 1 through 7

0.0017000-0.03370-0.0017

00.00590-0.0505000.0505

000.00170000

0-0.050502.355800-2.3558

-0.03370000.673100.0337

000000.6731-0.0673

-0.00170.05050-2.35580.0337-0.06732.3642

0.0337-0.00590.00340.0505-0.67310-0.0841

00.0050-0.0017-0.10100-0.67310.1683

000000.0673-0.0067

00-0.00340000

0-0.005000.101000-0.1010

Columns 8 through 120.03370000

-0.00590.005000-0.0050

0.0034-0.00170-0.00340

0.0505-0.1010000.1010

-0.67310000

0-0.67310.067300

-0.08410.1683-0.00670-0.1010

0.6857-0.00840-0.00670.0050

-0.00840.6983-0.06730.0034-0.0236

0-0.06730.006700

-0.00670.003400.00670

0.0050-0.0236000.0236

k3=TetrahedronElementStiffness(E,NU,0.025,0,0.25,0,0,0.25,0,0.5,0.25,0,0,0)

k3 =

1.0e+008 *Columns 1 through 7

2.355800-2.3558-0.05050.10100

00.67310-0.0337-0.673100.0337

000.67310.06730-0.67310

-2.3558-0.03370.06732.36420.0841-0.1683-0.0017

-0.0505-0.673100.08410.6857-0.0084-0.0337

0.10100-0.6731-0.1683-0.00840.69830

00.03370-0.0017-0.033700.0017

0.050500-0.0505-0.00590.00500

00000.0034-0.00170

00-0.0673-0.006700.06730

0000-0.00670.00340

-0.1010000.10100.0050-0.02360

Columns 8 through 12

0.0505000-0.1010

00000

00-0.067300

-0.05050-0.006700.1010

-0.00590.00340-0.00670.0050

0.0050-0.00170.06730.0034-0.0236

00000

0.0059000-0.0050

00.00170-0.00340

000.006700

0-0.003400.00670

-0.00500000.0236

k4=TetrahedronElementStiffness(E,NU,0.025,0,0.25,0,0.5,0.25,0.025,0.5,0.25,0.025,0.5,0)

k4 =

1.0e+008 *

Columns 1 through 7

0.00170000.03370-0.0017

00.005900.050500-0.0505

000.00170000

00.050502.355800-2.3558

0.03370000.67310-0.0337

000000.6731-0.0673

-0.0017-0.05050-2.3558-0.0337-0.06732.3642

-0.0337-0.0059-0.0034-0.0505-0.673100.0841

0-0.0050-0.0017-0.10100-0.67310.1683

000000.0673-0.0067

000.00340000

00.005000.101000-0.1010

Columns 8 through 12

-0.03370000

-0.0059-0.0050000.0050

-0.0034-0.001700.00340

-0.0505-0.1010000.1010

-0.67310000

0-0.67310.067300

0.08410.1683-0.00670-0.1010

0.68570.00840-0.0067-0.0050

0.00840.6983-0.0673-0.0034-0.0236

0-0.06730.006700

-0.0067-0.003400.00670

-0.0050-0.0236000.0236

k5=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0.25,0.025,0.5,0,0,0.5,0.25)

k5 =

1.0e+008 *

Columns 1 through 71.18210.04210.0841-1.18040.0084-0.0841-1.1754

0.04210.34280.0042-0.0084-0.3370-0.0008-0.0421

0.08410.00420.3492-0.08410.0008-0.3475-0.0168

-1.1804-0.0084-0.08411.1821-0.04210.08411.1737

0.0084-0.33700.0008-0.04210.3428-0.0042-0.0084

-0.0841-0.0008-0.34750.0841-0.00420.34920.0168

-1.1754-0.0421-0.01681.1737-0.00840.01681.1821

-0.0421-0.3361-0.00080.00840.33020.00420.0421

0.01680.0008-0.3256-0.01680.00420.3239-0.0841

1.17370.00840.0168-1.17540.0421-0.0168-1.1804

-0.00840.3302-0.00420.0421-0.33610.00080.0084

-0.0168-0.00420.32390.0168-0.0008-0.32560.0841

Columns 8 through 12-0.04210.01681.1737-0.0084-0.0168

-0.33610.00080.00840.3302-0.0042

-0.0008-0.32560.0168-0.00420.3239

0.0084-0.0168-1.17540.04210.0168

0.33020.00420.0421-0.3361-0.0008

0.00420.3239-0.01680.0008-0.3256

0.0421-0.0841-1.18040.00840.0841

0.3428-0.0042-0.0084-0.33700.0008

-0.00420.34920.0841-0.0008-0.3475

-0.00840.08411.1821-0.0421-0.0841

-0.3370-0.0008-0.04210.34280.0042

0.0008-0.3475-0.08410.00420.3492

PASO 3 - Montaje de la matriz Global de Rigidez:Dado que la estructura tiene ocho nodos , el tamao de la matriz de rigidez global es de 24 24 .Por lo tanto para obtener K primero establecimos una matriz cero de tamao 24 24 a continuacin, hacer cinco llamadas a la funcin TetrahedronAssemble MATLAB ya que tenemos cinco elementos en la estructura. Cada llamada a la funcin reunir a un elemento. Los siguientes son los comandos de MATLAB. El resultado final se muestra slo despus de que el quinto elemento tiene ha montado.

K=zeros(24,24);

K=TetrahedronAssemble(K,k1,1,2,4,6);

K=TetrahedronAssemble(K,k2,1,4,3,7);

K=TetrahedronAssemble(K,k3,6,5,7,1);

K=TetrahedronAssemble(K,k4,6,7,8,4);

K=TetrahedronAssemble(K,k5,1,6,4,7)

K =

1.0e+008 *

Columns 1 through 7

3.54630.04210.0841-2.35580.05050.1010-0.0017

0.04211.02850.00420.0337-0.673100.0505

0.08410.00421.04750.06730-0.67310

-2.35580.03370.06732.3642-0.0841-0.16830

0.0505-0.67310-0.08410.68570.00840

0.10100-0.6731-0.16830.00840.69830

-0.00170.050500002.3642

0.0337-0.00590.0034000-0.0841

00.0050-0.00170000.1683

-1.1754-0.1262-0.0168-0.00170.03370-2.3558

-0.1262-0.3361-0.00080.0505-0.0059-0.00500.0337

0.01680.0008-0.32560-0.0034-0.0017-0.0673

-0.006700.10100000

0-0.00670.00500000

0.06730.0034-0.02360000

-1.1804-0.0084-0.2524-0.006700.06730

0.0084-0.33700.00080-0.0067-0.00340

-0.2524-0.0008-0.34750.1010-0.0050-0.02360

1.17370.00840.0168000-0.0067

-0.00840.3302-0.01260000

-0.0168-0.01260.3239000-0.1010

0000000

0000000

0000000

Columns 8 through 14

Columns 15 through 210.0673-1.18040.0084-0.25241.1737-0.0084-0.0168

0.0034-0.0084-0.3370-0.00080.00840.3302-0.0126

-0.0236-0.25240.0008-0.34750.0168-0.01260.3239

0-0.006700.1010000

00-0.0067-0.0050000

00.0673-0.0034-0.0236000

0000-0.00670-0.1010

00000-0.00670.0050

0000-0.06730.0034-0.0236

01.1737-0.00840.0168-1.18040.00840.2524

00.00840.33020.0126-0.0084-0.33700.0008

0-0.01680.01260.32390.2524-0.0008-0.3475

-0.1683-2.3558-0.03370.0673-0.0017-0.05050

-0.0084-0.0505-0.67310-0.0337-0.00590.0034

0.69830.10100-0.673100.0050-0.0017

0.10103.5463-0.04210.0841-1.17540.12620.0168

0-0.04211.0285-0.00420.1262-0.3361-0.0008

-0.67310.0841-0.00421.0475-0.01680.0008-0.3256

0-1.17540.1262-0.01683.5463-0.0421-0.0841

0.00500.1262-0.33610.0008-0.04211.02850.0042

-0.00170.0168-0.0008-0.3256-0.08410.00421.0475

0-0.0017-0.05050-2.3558-0.0337-0.0673

0-0.0337-0.0059-0.0034-0.0505-0.67310

00-0.0050-0.0017-0.10100-0.6731

Columns 22 through 24

Paso 4 - la aplicacin de las condiciones de contorno:La matriz para esta estructura se puede escribir utilizando la matriz de rigidez global obtenido en la etapa anterior. Las condiciones de contorno para este problema se dan como:

U1x = U1y = U1z = U2x = U2y = U2z = 0U5x = U5y = U5z = U6x = U6y = U6z = 0F3x = 0, F3y = 3.125, F3z = 0F4x = 0, F4y = 6.25, F4z = 0F7x = 0, F7y = 6.25, F7z = 0F8x = 0, F8y = 3.125, F8z = 0

A continuacin insertamos las condiciones anteriores en la ecuacin matricial para esta estructura (no se muestra aqu) y proceder al paso de la solucin a continuacin.

PASO 5 - Solucin de las ecuaciones:Resolviendo el sistema de ecuaciones resultante ser realizada por particin (manualmente) y la eliminacin de Gauss (con MATLAB). Primero dividimos la ecuacin resultante extrayendo los sub-matrices en filas 7 a 12, 19 a 24 filas y columnas 7 a 12, columnas 19 a 24. Por lo tanto, obtenemos la siguiente ecuacin sealando que los nmeros se muestran slo a dos cifras decimales aunque MATLAB realiza los clculos utilizando al menos cuatro cifras decimales.

Se obtiene la solucin del sistema anterior usando MATLAB como sigue. Tenga en cuenta que el operador barra invertida "\" se utiliza para la eliminacin de Gauss.

K = [K (7: 12,7: 12) K (7: 12,19: 24); K (19: 24,7: 12) K (19: 24,19: 24)]

k =

1.0e+008 *

Columns 1 through 7

2.3642-0.08410.1683-2.35580.0337-0.0673-0.0067

-0.08410.6857-0.00840.0505-0.673100

0.1683-0.00840.6983-0.10100-0.6731-0.0673

-2.35580.0505-0.10103.54630.0421-0.0841-1.1804

0.0337-0.673100.04211.0285-0.0042-0.0084

-0.06730-0.6731-0.0841-0.00421.04750.2524

-0.00670-0.0673-1.1804-0.00840.25243.5463

0-0.00670.00340.0084-0.3370-0.0008-0.0421

-0.10100.0050-0.02360.25240.0008-0.3475-0.0841

000-0.00670-0.1010-2.3558

0000-0.0067-0.0050-0.0505

000-0.0673-0.0034-0.0236-0.1010

Columns 8 through 120-0.1010000

-0.00670.0050000

0.0034-0.0236000

0.00840.2524-0.00670-0.0673

-0.33700.00080-0.0067-0.0034

-0.0008-0.3475-0.1010-0.0050-0.0236

-0.0421-0.0841-2.3558-0.0505-0.1010

1.02850.0042-0.0337-0.67310

0.00421.0475-0.06730-0.6731

-0.0337-0.06732.36420.08410.1683

-0.673100.08410.68570.0084

0-0.67310.16830.00840.6983

f=[0 ; 3.125 ; 0 ; 0 ; 6.25 ; 0 ; 0 ; 6.25 ; 0 ; 0 ;3.125 ;0]

f = 03.1250 0 06.2500 0 06.2500 0 03.1250 0

u=k\f

u =

1.0e-005 *

-0.00040.60820.0090-0.01270.60780.00560.01270.6078-0.00560.00040.6082-0.0090

Ahora est claro que el desplazamiento horizontal a lo largo de la direccin y en ambos nodos 3 y 8 es 0,6082 m, y el desplazamiento horizontal a lo largo de la direccin y en ambos nodos 4 y 7 es 0,6078 m. Estos resultados se comparan con el resultado de aproximadamente 0.7mobtained en los ejemplos anteriores y problemas en el cap. 11 a travs de 14 usando otros elementos.

PASO 6 - Post-procesamiento:En este paso, se obtienen las reacciones en los nodos 1, 2, 5, y 6, y las tensiones en cada elemento usando MATLAB como sigue. Primero creamos el vector de desplazamiento nodal U global, entonces calculamos la fuerza nodal vector F.

U=[0;0;0;0;0;0;u(1:6);0;0;0;0;0;0;u(7:12)]

U =

1.0e-005 *

0 0 0 0 0 0-0.0004 0.6082 0.0090-0.0127 0.6078 0.0056 0 0 0 0 0 0 0.0127 0.6078-0.0056 0.0004 0.6082-0.0090

F=K*U

F =

-31.3296-5.3492 -9.328630.7045 -4.0258 -3.0777 0.0000 3.1250 0 0.0000 6.2500 0.0000-30.7045-4.0258 3.077731.3296-5.3492 9.3286 0.0000 6.2500 0.0000 0.0000 3.1250 0.0000

Las reacciones de la fuerza a lo largo de las tres direcciones estn claramente aparecen arriba. Obviamente equilibrio de fuerzas se satisface para este problema. Siguiente hemos creado el elemento de desplazamiento nodal vectores u1, u2, u3, u4, y u5 entonces calculamos las tensiones de elemento sigma1, sigma2, sigma3, Sigma4 y sigma5 haciendo llamadas a los funcin de MATLAB TetrahedronElementStresses.

u1=[U(1) ; U(2) ; U(3) ; U(4) ; U(5) ; U(6) ; U(10) ;U(11) ; U(12) ; U(16) ; U(17) ; U(18)]

u1 =

1.0e-005 *

0 0 0 0 0 0-0.0127 0.6078 0.0056 0 0 0

u2=[U(1) ; U(2) ; U(3) ; U(10) ; U(11) ; U(12) ; U(7) ;U(8) ;U(9) ; U(19) ; U(20) ; U(21)]

u2 =

1.0e-005 *

0 0 0-0.0127 0.6078 0.0056-0.0004 0.6082 0.0090 0.0127 0.6078-0.0056

u3=[U(16) ; U(17) ; U(18) ; U(13) ; U(14) ; U(15) ;U(19) ; U(20) ; U(21) ; U(1) ; U(2) ; U(3)]

u3 =

1.0e-005 *

0 0 0 0 0 0 0.0127 0.6078-0.0056 0 0 0

u4=[U(16) ; U(17) ; U(18) ; U(19) ; U(20) ; U(21) ;U(22) ; U(23) ; U(24) ; U(10) ; U(11);U(12)]u4 =

1.0e-005 *

0 0 0 0.0127 0.6078-0.0056 0.0004 0.6082-0.0090-0.0127 0.6078 0.0056

u5=[U(1) ; U(2) ; U(3) ; U(16) ; U(17) ; U(18) ;U(10) ; U(11); U(12) ; U(19) ; U(20) ; U(21)]

u5 =

1.0e-005 *

0 0 0 0 0 0-0.0127 0.6078 0.0056 0.0127 0.6078-0.0056

sigma1=TetrahedronElementStresses(E,NU,0,0,0,0.025,0,0,0.025,0.5,0,0.025,0,0.25,u1)

sigma1 =

1.0e+003 *

1.4728 3.4365 1.4728-0.0205 0.0090 0 sigma2=TetrahedronElementStresses(E,NU,0,0,0,0.025,0.5,0,0,0.5,0,0,0.5,0.25,u2)

sigma2 =

1.0e+003 *

0.0064 2.7694 0.7102-0.0129 0.0134-0.0704

sigma3=TetrahedronElementStresses(E,NU,0.025,0,0.25,0,0,0.25,0,0.5,0.25,0,0,0,u3)

sigma3 =

1.0e+003 *

1.4728 3.4365-0.0090 0

sigma4=TetrahedronElementStresses(E,NU,0.025,0,0.25,0,0.5,0.25,0.025,0.5,0.25,0.025,0.5,0,u4)

sigma4 =

1.0e+003 *

0.0064 2.7694 0.7102 0.0129-0.0134-0.0704

sigma5=TetrahedronElementStresses(E,NU,0,0,0,0.025,0,0.25,0.025,0.5,0,0,0.5,0.25,u5)

sigma5 =

1.0e+003 *

0.00962.79410.79450.00000.00000.2204

Por lo tanto es evidente que las tensiones normales y a lo largo de la direccin y en elementos 1, 2, 3, 4, y 5 son 3.4365MPa (traccin), 2.7694MPa (traccin), 3.4365MPa (traccin), 2.7694MPa (traccin), y 2.7941MPa (traccin), respectivamente. Es claro que las tensiones en el enfoque de la direccin y de cerca el valor correcto de 3 MPa (traccin) .Siguiente calculamos los esfuerzos principales para cada elemento, haciendo llamadas a la funcin MATLAB TetrahedronElementPStresses funcin.

s1=TetrahedronElementPStresses(sigma1)

s1 =

1.0e+009 *

0.00000.01237.4534

s2=TetrahedronElementPStresses(sigma2)

s2 =

1.0e+006 *

0.00351.9839-1.2296

s3=TetrahedronElementPStresses(sigma3)

s3 =

1.0e+009 *

0.00000.01237.4534

s4=TetrahedronElementPStresses(sigma4)

s4 =

1.0e+006 *

0.00351.9839-1.2296

s5=TetrahedronElementPStresses(sigma5)s5 =

1.0e+008 *

0.00000.0221-1.1431

Los esfuerzos principales en las tres direcciones se muestran claramente por encima de cada uno de los cinco elementos en este ejemplo.

DESARROLLO EN MATLAB:>> E=210e6

E =

210000000

>> NU=0.3

NU =

0.3000

>> k1=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0,0.025,0.5,0,0.025,0,0.25)

k1 =

1.0e+08 *

Columns 1 through 7 2.3558 0 0 -2.3558 0.0505 0.1010 0 0 0.6731 0 0.0337 -0.6731 0 -0.0337 0 0 0.6731 0.0673 0 -0.6731 0 -2.3558 0.0337 0.0673 2.3642 -0.0841 -0.1683 -0.0017 0.0505 -0.6731 0 -0.0841 0.6857 0.0084 0.0337 0.1010 0 -0.6731 -0.1683 0.0084 0.6983 0 0 -0.0337 0 -0.0017 0.0337 0 0.0017 -0.0505 0 0 0.0505 -0.0059 -0.0050 0 0 0 0 0 -0.0034 -0.0017 0 0 0 -0.0673 -0.0067 0 0.0673 0 0 0 0 0 -0.0067 -0.0034 0 -0.1010 0 0 0.1010 -0.0050 -0.0236 0Columns 8 through 12 -0.0505 0 0 0 -0.1010 0 0 0 0 0 0 0 -0.0673 0 0 0.0505 0 -0.0067 0 0.1010 -0.0059 -0.0034 0 -0.0067 -0.0050 -0.0050 -0.0017 0.0673 -0.0034 -0.0236 0 0 0 0 0 0.0059 0 0 0 0.0050 0 0.0017 0 0.0034 0 0 0 0.0067 0 0 0 0.0034 0 0.0067 0 0.0050 0 0 0 0.0236

>> k2=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0.5,0,0,0.5,0,0,0.5,0.25)

k2 =

1.0e+08 *

Columns 1 through 7 0.0017 0 0 0 -0.0337 0 -0.0017 0 0.0059 0 -0.0505 0 0 0.0505 0 0 0.0017 0 0 0 0 0 -0.0505 0 2.3558 0 0 -2.3558 -0.0337 0 0 0 0.6731 0 0.0337 0 0 0 0 0 0.6731 -0.0673 -0.0017 0.0505 0 -2.3558 0.0337 -0.0673 2.3642 0.0337 -0.0059 0.0034 0.0505 -0.6731 0 -0.0841 0 0.0050 -0.0017 -0.1010 0 -0.6731 0.1683 0 0 0 0 0 0.0673 -0.0067 0 0 -0.0034 0 0 0 0 0 -0.0050 0 0.1010 0 0 -0.1010

Columns 8 through 12 0.0337 0 0 0 0 -0.0059 0.0050 0 0 -0.0050 0.0034 -0.0017 0 -0.0034 0 0.0505 -0.1010 0 0 0.1010 -0.6731 0 0 0 0 0 -0.6731 0.0673 0 0 -0.0841 0.1683 -0.0067 0 -0.1010 0.6857 -0.0084 0 -0.0067 0.0050 -0.0084 0.6983 -0.0673 0.0034 -0.0236 0 -0.0673 0.0067 0 0 -0.0067 0.0034 0 0.0067 0 0.0050 -0.0236 0 0 0.0236

>> k3=TetrahedronElementStiffness(E,NU,0.025,0,0.25,0,0,0.25,0,0.5,0.25,0,0,0)

k3 =

1.0e+08 *

Columns 1 through 7 2.3558 0 0 -2.3558 - 0.0505 0.1010 0 0 0.6731 0 -0.0337 - 0.6731 0 0.0337 0 0 0.6731 0.0673 0 -0.6731 0 -2.3558 -0.0337 0.0673 2.3642 0.0841 -0.1683 -0.0017 -0.0505 -0.6731 0 0.0841 0.6857 -0.0084 -0.0337 0.1010 0 -0.6731 -0.1683 -0.0084 0.6983 0 0 0.0337 0 -0.0017 -0.0337 0 0.0017 0.0505 0 0 -0.0505 -0.0059 0.0050 0 0 0 0 0 0.0034 -0.0017 0 0 0 -0.0673 -0.0067 0 0.0673 0 0 0 0 0 -0.0067 0.0034 0 -0.1010 0 0 0.1010 0.0050 -0.0236 0

Columns 8 through 12 0.0505 0 0 0 -0.1010 0 0 0 0 0 0 0 -0.0673 0 0 -0.0505 0 -0.0067 0 0.1010 -0.0059 0.0034 0 -0.0067 0.0050 0.0050 -0.0017 0.0673 0.0034 -0.0236 0 0 0 0 0 0.0059 0 0 0 -0.0050 0 0.0017 0 -0.0034 0 0 0 0.0067 0 0 0 -0.0034 0 0.0067 0 -0.0050 0 0 0 0.0236

>> k4=TetrahedronElementStiffness(E,NU,0.025,0,0.25,0,0.5,0.25,0.025,0.5,0.25,0.025,0.5,0)

k4 =

1.0e+08 *

Columns 1 through 7 0.0017 0 0 0 0.0337 0 -0.0017 0 0.0059 0 0.0505 0 0 -0.0505 0 0 0.0017 0 0 0 0 0 0.0505 0 2.3558 0 0 -2.3558 0.0337 0 0 0 0.6731 0 -0.0337 0 0 0 0 0 0.6731 -0.0673 -0.0017 -0.0505 0 -2.3558 -0.0337 -0.0673 2.3642 -0.0337 -0.0059 -0.0034 -0.0505 -0.6731 0 0.0841 0 -0.0050 -0.0017 -0.1010 0 -0.6731 0.1683 0 0 0 0 0 0.0673 -0.0067 0 0 0.0034 0 0 0 0 0 0.0050 0 0.1010 0 0 -0.1010

Columns 8 through 12 -0.0337 0 0 0 0 -0.0059 -0.0050 0 0 0.0050 -0.0034 -0.0017 0 0.0034 0 -0.0505 -0.1010 0 0 0.1010 -0.6731 0 0 0 0 0 -0.6731 0.0673 0 0 0.0841 0.1683 -0.0067 0 -0.1010 0.6857 0.0084 0 -0.0067 -0.0050 0.0084 0.6983 -0.0673 -0.0034 -0.0236 0 -0.0673 0.0067 0 0 -0.0067 -0.0034 0 0.0067 0 -0.0050 -0.0236 0 0 0.0236

>> k5=TetrahedronElementStiffness(E,NU,0,0,0,0.025,0,0.25,0.025,0.5,0,0,0.5,0.25)

k5 =

1.0e+08 *

Columns 1 through 7

1.1821 0.0421 0.0841 -1.1804 0.0084 -0.0841 -1.1754 0.0421 0.3428 0.0042 -0.0084 -0.3370 -0.0008 -0.0421 0.0841 0.0042 0.3492 -0.0841 0.0008 -0.3475 -0.0168 -1.1804 -0.0084 -0.0841 1.1821 -0.0421 0.0841 1.1737 0.0084 -0.3370 0.0008 -0.0421 0.3428 -0.0042 -0.0084 -0.0841 -0.0008 -0.3475 0.0841 -0.0042 0.3492 0.0168 -1.1754 -0.0421 -0.0168 1.1737 -0.0084 0.0168 1.1821 -0.0421 -0.3361 -0.0008 0.0084 0.3302 0.0042 0.0421 0.0168 0.0008 -0.3256 -0.0168 0.0042 0.3239 -0.0841 1.1737 0.0084 0.0168 -1.1754 0.0421 -0.0168 -1.1804 -0.0084 0.3302 -0.0042 0.0421 -0.3361 0.0008 0.0084 -0.0168 -0.0042 0.3239 0.0168 -0.0008 -0.3256 0.0841

Columns 1 through 7 1.1821 0.0421 0.0841 -1.1804 0.0084 -0.0841 -1.1754 0.0421 0.3428 0.0042 -0.0084 -0.3370 -0.0008 -0.0421 0.0841 0.0042 0.3492 -0.0841 0.0008 -0.3475 -0.0168 -1.1804 -0.0084 -0.0841 1.1821 -0.0421 0.0841 1.1737 0.0084 -0.3370 0.0008 -0.0421 0.3428 -0.0042 -0.0084 -0.0841 -0.0008 -0.3475 0.0841 -0.0042 0.3492 0.0168 -1.1754 -0.0421 -0.0168 1.1737 -0.0084 0.0168 1.1821 -0.0421 -0.3361 -0.0008 0.0084 0.3302 0.0042 0.0421 0.0168 0.0008 -0.3256 -0.0168 0.0042 0.3239 -0.0841 1.1737 0.0084 0.0168 -1.1754 0.0421 -0.0168 -1.1804 -0.0084 0.3302 -0.0042 0.0421 -0.3361 0.0008 0.0084 -0.0168 -0.0042 0.3239 0.0168 -0.0008 -0.3256 0.0841

>> K=zeros(24,24)

K =

Columns 1 through 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 1 through 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>> K=TetrahedronAssemble(K,k1,1,2,4,6)

K =

1.0e+08 *

Columns 1 through 7 2.3558 0 0 -2.3558 0.0505 0.1010 0 0 0.6731 0 0.0337 -0.6731 0 0 0 0 0.6731 0.0673 0 -0.6731 0 -2.3558 0.0337 0.0673 2.3642 -0.0841 -0.1683 0 0.0505 -0.6731 0 -0.0841 0.6857 0.0084 0 0.1010 0 -0.6731 -0.1683 0.0084 0.6983 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0337 0 -0.0017 0.0337 0 0 -0.0505 0 0 0.0505 -0.0059 -0.0050 0 0 0 0 0 -0.0034 -0.0017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0673 -0.0067 0 0.0673 0 0 0 0 0 -0.0067 -0.0034 0 -0.1010 0 0 0.1010 -0.0050 -0.0236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 8 through 14

0 0 0 -0.0505 0 0 0 0 0 -0.0337 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.0017 0.0505 0 0 0 0 0 0.0337 -0.0059 -0.0034 0 0 0 0 0 -0.0050 -0.0017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0017 0 0 0 0 0 0 0 0.0059 0 0 0 0 0 0 0 0.0017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0034 0 0 0 0 0 0.0050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 15 through 21

0 0 0 -0.1010 0 0 0 0 0 0 0 0 0 0 0 -0.0673 0 0 0 0 0 0 -0.0067 0 0.1010 0 0 0 0 0 -0.0067 -0.0050 0 0 0 0 0.0673 -0.0034 -0.0236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0050 0 0 0 0 0 0.0034 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0067 0 0 0 0 0 0 0 0.0067 0 0 0 0 0 0 0 0.0236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Columns 22 through 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>> K=TetrahedronAssemble(K,k2,1,4,3,7)

K =

1.0e+08 *