cancer genome analysissssykim/teaching/s13/slides/lecture_cancer.pdf · tumors •...

21
Cancer Genome Analysis 02715 Advanced Topics in Computa8onal Genomics

Upload: vuongthien

Post on 04-Nov-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Cancer Genome Analysis

02-­‐715  Advanced  Topics  in  Computa8onal  Genomics  

Cancer Progression

Tumors

•  Cancer  cells  –  Reproduce  in  defiance  of  the  normal  restraints  on  cell  growth  and  

division  

–  Invade  and  colonize  territories  normally  reserved  for  other  cells  

•  Types  of  cancers  –  Carcinomas:  cancers  arising  from  epithelial  cells  

–  Sarcomas:  cancers  arising  from  connec8ve  8ssue  or  muscle  cells  –  Leukemias  and  lymphomas:  cancers  derived  from  white  blood  cells  

and  their  precursors  

Development of Cancer Cells

•  Agents  that  trigger  carcinogenesis  –  Chemical  carcinogens  (causes  local  DNA  altera8ons)  

–  Radia8on  such  as  x-­‐rays  (causes  chromosome  breaks  and  transloca8ons),  UV  light  (causes  DNA  base  altera8ons)  

–  Viruses:  Hepa88s-­‐B,  Hepa88s-­‐C  virus  for  liver  cancer  

Carcinogenesis

•  Stages  of  progression  in  the  development  of  cancer  of  the  epithelium  of  the  uterine  cervix.  

Metastasis

Pathways of Tumorigenesis

Cancer-Causing Genes

•  Oncogenes  –  Muta8ons  that  confer  gain  of  func8ons  to  oncogenes  can  promote  

cancer  –  Muta8ons  with  growth-­‐promo8ng  effects  on  the  cell  –  OXen  heterozygous  

•  Tumor  suppressor  genes  –  Muta8ons  that  confer  loss  of  func8on  can  contribute  to  cancer  –  Typically  homozygous  

•  DNA  maintenance  genes  –  Indirect  effects  on  cancer  development  by  not  repairing  DNA  or  

correc8ng  muta8ons  

Mutations in Tumor Suppressor Genes

Mutations in Oncogenes

Replication of DNA Damages

Driver and Passenger Mutations

•  Driver  muta8ons  –  Causally  implicated  in  oncogenesis  

–  Gives  growth  advantage  to  cancer  cells    –  posi8vely  selected  in  the  microenvironment  of  the  8ssue  

–  E.g.,  muta8ons  that  de-­‐ac8vate  tumor  suppressor  genes  

•  Passenger  muta8ons  –  Soma8c  muta8ons  with  no  func8onal  consequences  

–  Does  not  give  growth  advantage  to  cancer  cells  

Identifying Driver Mutations

•  Typically  involves  sequencing  tumor  DNA  and  the  matched  normal  DNA  

•  Comparison  with  reference  genome  and  other  known  DNA  polymorphisms  to  filter  out  benign  muta8ons  

•  Signatures  of  driver  muta8ons  –  Frequently  observed  muta8ons  across  tumors  are  likely  to  be  driver  

muta8ons.  But,  what  about  tumor  heterogeneity?  –  Muta8ons  that  cluster  in  subset  of  genes  (e.g.,  oncogenes).  Passenger  

muta8ons  are  more  randomly  distributed  across  genomes  

Challenges

•  Soma8c  muta8ons  in  both  genomes  (SNP,  CNVs,  indels,  chromosomal  rearrangement  etc.)  and  epigenomes  can  be  posi8vely  selected  (drivers)  

•  Different  cancer  types  have  different  rates  of  muta8ons.  Mutator  phenotype  may  or  may  not  be  present.  

•  Infrequently  occurring    driver  muta8ons  are  hard  to  iden8fy.  

Challenges

•  Computa8onal  challenges  unique  to  cancer  genome  analysis  –  Sequence  alignment  and  assembly  can  be  significantly  more  

challenging  because  of  highly  rearranged  chromosomes  and  high  varia8on  across  cancer  genomes  

–  Soma8c  muta8on  calling  is  more  challenging    

•  the  impurity  of  the  sample    –  Normal  genomes  have  allele  copies  of  0,  1,  or  2  

–  Cancer  genomes  can  have  allele  copies  of  frac8ons  of  0,  1,  or  2  

•  Most  soma8c  muta8ons  are  rare  

Breast Cancer Genomes and Subtypes

Comprehensive  molecular  portraits  of  human  breast  tumours.  Nature  490,  61–70.  2012.  

Sorting Intolerant to From Tolerant (SIFT)

•  A  tool  that  uses  sequence  homology  to  predict  whether  an  amino  acid  subs8tu8on  affects  protein  func8on  

•  Assuming  that  important  amino  acids  are  conserved  in  the  protein  family,  changes  at  well-­‐conserved  posi8ons  tend  to  be  predicted  as  deleterious.    

•  Given  a  protein  sequence,    –  choose  related  proteins    –  obtains  an  alignment  of  these  proteins  with  the  query  –  Based  on  the  amino  acids  appearing  at  each  posi8on  in  the  alignment,  

calculate  the  probability  that  an  amino  acid  at  a  posi8on  is  tolerated  condi8onal  on  the  most  frequent  amino  acid  being  tolerated.    

•  Classifies  a  subs8tu8on  into  tolerated  or  deleterious  ones  

SIFT:  predic8ng  amino  acid  changes  that  affect  protein  func8on.    Nucl.  Acids  Res.  (2003)  31  (13):  3812-­‐3814.  

PolyPhen

•  SoXware  for  predic8ng  damaging  effects  of  missense  muta8ons.  –  Predic8on  based  on    

•  Eight  sequence  based  features  •  Three  structure-­‐based  features  

–  Naïve-­‐Bayes  classifier  –  Train  dataset  1  

•  Posi8ve  examples:  3,155  damaging  alleles  annotated  in  the  UniProt  database  as  causing  human  Mendelian  diseases  and  affec8ng  protein  stability  or  func8on  

•  Nega8ve  examples:  6,321  differences  between  human  proteins  and  their  closely  related  mammalian  homologs  

–  Train  dataset  2  •  Posi8ve  examples:  13,032  human  disease-­‐causing  muta8ons  from  UniProt    

•  Nega8ve  examples:  8,946  human  nonsynonymous  SNPs  without  annotated  involvement  in  disease.  

A  method  and  server  for  predic8ng  damaging  missense  muta8ons.  Nature  Methods  7,  248  -­‐  249  (2010)  

PolyPhen Features •  Black:  candidates,  blue:  selected  

PolyPhen

•  predic8ng  cancer  driver/passenger  muta8ons  with  PolyPhen  

Summary

•  Understanding  the  gene8cs  of  cancer  –  Both  germline  polymorphisms  and  soma8c  muta8ons  can  contribute  

to  trigger  tumorigenesis  

–  Determine  driver  and  passenger  muta8ons  •  OXen  frequently  occurring  muta8ons  are  declared  as  driver  muta8ons  

•  SIFT  and  PolyPhen  for  evalua8ng  the  func8onal  effects  of  muta8ons