capacitive discharges driven by combined dc/rf sourceslieber/liebermandcrfgec07crop.… · •...

15
University of California, Berkeley PLASMA CAPACITIVE DISCHARGES DRIVEN BY COMBINED DC/RF SOURCES Emi Kawamura, M.A. Lieberman, and A.J. Lichtenberg Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 E.A. Hudson Lam Research Corporation Fremont, CA 94538 Download this talk: http://www.eecs.berkeley.edu/lieber LiebermanDublin07 1

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • University of California, Berkeley PLASMA

    CAPACITIVE DISCHARGES DRIVEN BYCOMBINED DC/RF SOURCES

    Emi Kawamura, M.A. Lieberman, and A.J. Lichtenberg

    Department of Electrical Engineering and Computer SciencesUniversity of California

    Berkeley, CA 94720

    E.A. Hudson

    Lam Research CorporationFremont, CA 94538

    Download this talk:

    http://www.eecs.berkeley.edu/∼lieber

    LiebermanDublin07 1

  • University of California, Berkeley PLASMA

    MOTIVATIONS FOR ADDING DC SOURCE

    • “Tune” discharge particle and energy balance(⇒ Te ↓, ne ↑, radial uniformity)

    • “Tune” secondary electron bombardment of substrate(etch selectivities, charging damage)

    OUTLINE

    • Structure of DC/RF sheaths — theory

    • Equal area diode discharges — theory and 1D PIC simulations

    • Asymmetric diode discharges — theory and 1D PIC simulations

    • Secondary electrons — timescales and energy deposition

    • Triode discharges — theory and 2D PIC simulations

    LiebermanDublin07 2

  • University of California, Berkeley PLASMA

    STRUCTURE OF A DC/RF SHEATH

    Vdc

    Vrf

    +

    ~ ss0 s1

    V1V0

    V0~

    V1~

    Bulkplasma

    +–+–

    ADCpart

    RFpart

    ni

    ne(t)z

    n

    Ji– DC voltage V = V 0 + V 1

    RF voltage Ṽ = Ṽ0 + Ṽ1

    • New result for Child law for collisionless ions:

    J̄i =4

    9ǫ0

    (2e

    M

    )1/2 (V 1/2 − 13V

    1/2

    1 )(V1/2

    + 23V

    1/2

    1 )2

    s2

    • New result for Child law for collisional ion sheath also obtained

    LiebermanDublin07 3

  • University of California, Berkeley PLASMA

    EQUAL AREA DIODE DISCHARGE

    • Comparison of theory with 1D particle-in-cell (PIC) simulations

    Vdc

    Vrf

    +

    ~ ss0 s1

    V1V0

    V0~

    V1~

    Bulkplasma

    ++ ––+–

    DC/RF sheath RFsheath

    A

    V1~

    V1 A

    s1

    0 0.5 1 1.5 2

    V /V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    V /V

    45

    100

    60 45

    10060

    45

    15

    45

    60

    100

    4MHz, γ = 0.24MHz, no sec.

    13MHz, no sec.

    Collisionless

    Collisional, β 0

    Collisional, β = 0.1

    a1

    rf

    dc rf

    i

    (Symbols: PIC with argon pressure in mTorr;

    lines: theory; β ∝ λD/λi = collisionality;

    γi = secondary emission coefficient)

    • Excellent agreement of PIC with collisional Child law

    LiebermanDublin07 4

  • University of California, Berkeley PLASMA

    DENSITY AND VOLTAGE AT CONSTANT Prf(60 mTorr, 6 cm gap, 4 MHz, 0.017 W/cm2, Vdc = 350 V)

    0 0.01 0.02 0.03 0.04 0.05 0.06

    x (m)

    0

    2e+15

    4e+15

    6e+15

    n (m

    )

    ..

    rf (γ =0)dc + rf (γ = 0)rf (γ =0.2)dc + rf (γ =0.2)

    (a)

    i

    i

    rf sheath "b" dc/rf sheath "a"

    sb

    nb

    i

    i

    e-3

    0 0.01 0.02 0.03 0.04 0.05 0.06

    x (m)

    -200

    0

    200

    400

    600

    V (V

    )

    rf (γ = 0)dc + rf (γ = 0)rf (γ =0.2)dc + rf (γ =0.2)

    i

    i

    rf sheath "b" dc/rf sheath "a"

    i

    i

    (b)

    _p

    AddDC

    γi Vrf (V) V b (V) Eceff (V)

    Rf only 0 1064 436 64Dc+rf 0 1277 398 60Rf only 0.2 805 330 53Dc+rf 0.2 980 283 46

    (V b = plasma potential; Eceff =collisional energy loss/electron-ion pair)

    • Plasma potential V b and sheath width sb independent of Vdc• Secondary electrons increase discharge efficiency• Vdc reduces bulk plasma thickness

    LiebermanDublin07 5

  • University of California, Berkeley PLASMA

    ASYMMETRIC DIODE RESULTS

    • Excellent agreement between1D (cylindrical) PIC andcollisional CL theory

    Vdc

    Vrf

    +

    ~ sasa0 sa1

    sb

    Va1Va0

    Va0~

    Va1~

    Vb~

    Bulkplasma

    ++ ––+– Vb

    DC/RF sheath RFsheath

    Aa Ab

    • Introduce rf voltage asymmetry ratio αab = Ṽa1/Ṽb

    -0.5 0 0.5 1 1.5 2

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    1

    V /

    V

    15(0.093)

    45(2.2)

    45(0.46) 45(0.48)

    45(0.48)

    45(0.15)

    45(0.15)

    45(0.1)

    45(0.13)

    50(0.34)

    45(0.14)

    50(0.38)

    ab

    4MHz, γ = 0.232MHz, no sec.

    6.78MHz, no sec.

    0.1

    α =10

    0.15

    0.3

    0.5

    1.02.0

    brf

    dc rf

    i

    (a)

    -0.5 0 0.5 1 1.5 2

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    1

    s /

    s 0.1

    α =10

    0.15

    0.3

    0.51.0

    2.0

    15(0.093)

    45(2.2)

    45(0.46)

    45(0.48)

    45(0.48)45(0.15)

    45(0.15)

    45(0.1)45(0.13)

    50(0.34)

    45(0.14)

    50(0.38)

    ab 4MHz, γ = 0.232MHz, no sec.

    6.78MHz, no sec.

    a1

    a

    dc rf

    i

    (b)

    Numbers near each symbol: mTorr (αab)

    LiebermanDublin07 6

  • University of California, Berkeley PLASMA

    SECONDARY ELECTRON LOSS PROCESSES

    • Surface losses to substrate and walls:

    — Transit time across gap τfr = d/vh at low pressures

    — Diffusion time τdiff = d2/2Dh at higher pressures (Dh = λhv̄h/3)

    — Trapping time τtrap = δ/f (favorable configuration of rf voltagescan trap secondaries for a fraction δ of the rf period 1/f)

    τlh = (τ2fr + τ

    2diff + τ

    2trap)

    1/2 = ν−1lh

    • Volume losses: secondary electrons lose energy and join the thermalpopulation

    τ∗izh =Eh

    νizhEch(Eh, νizh are secondary energy and ionization frequency;

    Ech ≈ 20 V is secondary collisional energy loss/e-i pair created)

    • Total loss frequency is νh = νlh + ν∗

    izh

    If ν∗izh ≫ νlh, secondary electrons efficiently produce e-i pairsIf νlh ≫ ν

    izh, secondary electrons efficiently bombard the substrateLiebermanDublin07 7

  • University of California, Berkeley PLASMA

    ENERGY DEPOSITION REGIONS

    10-2

    10-1

    100

    101

    102

    d/λ

    10-3

    10-2

    10-1

    100

    101

    fd/v

    = 70 V, δ = 0.5

    h

    h

    τ = τ

    τ =

    τ

    τ =

    τ

    τ =

    τ

    τ =

    τ

    fr

    τ = τ

    trap

    trap

    izh*

    trap

    diff

    dif

    ffr

    dif

    f

    fr

    *

    *

    izh

    εh

    izh

    No energydeposition

    Trapped anduntrapped

    energydeposition

    Trappeddepositionuntrapped

    diffusion

    Trap

    ped

    depo

    sitio

    n

    untra

    pped

    flow

    (τ , τ , τ < τ )fr trapdiff izh* (τ > τ )diff

    *izh

    (τ > τ )trap izh*

    τ > τ τ > τ diff frfr diff

    τ , τ < τ izhfr diff *

    Example

    pressure

    freq

    uenc

    y

    • Most interesting regions are where trapped and untrapped electronsbehave differently

    LiebermanDublin07 8

  • University of California, Berkeley PLASMA

    TRIODE DC/RF DISCHARGE

    • Substrate can have a dielectric layer which cannot draw dc current

    A triode configuration is necessary

    Vdc Vrf

    +

    ~sasa0 sa1

    sb

    Va1Va0

    Va0~

    Va1~

    Vb~

    Bulkplasma

    ++ ––+– Vb

    DC/RF sheathRF

    sheath

    Aa Ab

    sg Vg~

    +

    –Vg

    Ag

    Substrate

    DCcurrent

    • A global model incorporating the collisional dc/rf sheath is used todetermine the voltages, currents, and sheath widths

    LiebermanDublin07 9

  • University of California, Berkeley PLASMA

    TRIODE RF PLASMA POTENTIAL Ṽb VERSUS Vdc

    • Collisional theory results for triode

    0.01 0.1 1 10

    V /V

    0

    0.2

    0.4

    0.6

    0.8

    V /

    V

    A /A =0.5, A /A =0.5A /A =1.0, A /A =0.5A /A =0.5, A /A =1.0

    dc rf

    brf

    a c b c

    ca b c

    a c b c

    • Example (red solid line):

    DC electrode area = ground electrode area = 12× RF electrode area

    For Vdc → 0, equal area diode and Ṽb/Vrf = 0.5

    For Vdc → ∞, asymmetric diode and Ṽb/Vrf = 0.86.LiebermanDublin07 10

  • University of California, Berkeley PLASMA

    2D PIC SIMULATION BASE CASE

    • p = 30 mTorr, Prf = 2.2 W, γi = 0.2 at all surfaces

    • Secondaries in “trapped deposition, untrapped diffusion” regime

    1.6

    cm

    CB

    ArPlasma

    30 mT

    3 cm

    9 cm

    Vrf13.56 MHz

    345 V

    14

    cm

    1.6

    cm

    CB

    +

    _

    ArPlasma

    30 mT

    3 cm9

    cm

    VrfVdc

    200 V

    13.56 MHz

    285 V

    14

    cm

    1.6

    cm

    1.6

    cm

    RF only DC/RF triode

    x

    y

    LiebermanDublin07 11

  • University of California, Berkeley PLASMA

    UNIFORMITY IS MODIFIED BY Vdc

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+11

    4e+11

    6e+11

    8e+11

    1e+12

    1.2e+12

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+11

    4e+11

    6e+11

    8e+11

    1e+12

    1.2e+12

    1.4e+12

    Dc/rfRf only

    Plasma

    density

    (m-3)

    Secondary

    density

    (m-3)

    • Thinner bulk plasma near midplane (y = 0.06 m) for DC/RF case

    ⇒ center-low plasma density profile

    LiebermanDublin07 12

  • University of California, Berkeley PLASMA

    BALLISTIC SECONDARY ELECTRONS CREATED BY Vdc

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 100

    200 300

    400

    ε (V)

    0

    1e+11

    2e+11

    3e+11

    4e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 100

    200 300

    400

    ε (V)

    0

    2e+11

    4e+11

    6e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 0.4

    0.8 1.2

    1.6

    θ (rad.)

    0

    1e+11

    2e+11

    3e+11

    4e+11

    5e+11

    6e+11

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12y (m) 0.4

    0.8 1.2

    1.6

    θ (rad.)

    0

    1e+12

    2e+12

    3e+12

    4e+12

    Dc/rf

    ballistic

    highenergy

    Rf only

    Secondary

    energy

    distribution

    (arb units)

    Secondary

    angular

    distribution

    (arb units)

    • Secondary electrons are ballistic and have high energies for DC/RFcase

    LiebermanDublin07 13

  • University of California, Berkeley PLASMA

    PLASMA DENSITY PROFILES VERSUS PRESSURE

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    Dc/rfRf only

    30 mTorr

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    1e+16

    0 0.02

    0.04 0.06

    0.08 0.1

    0.12

    y (m) 0

    0.01

    0.02

    0.03

    x (m)

    0

    2e+15

    4e+15

    6e+15

    8e+15

    1e+16

    1.2e+16

    1.4e+16

    1.6e+16

    45 mTorr

    • Effects of Vdc on profile:Thinner bulk plasma ⇒ center-low profileIncreased secondary ionization ⇒ center-high profile

    LiebermanDublin07 14

  • University of California, Berkeley PLASMA

    CONCLUSIONS

    • Collisionless and collisional DC/RF Child laws determined

    • DC voltage can control the discharge asymmetry

    • DC voltage increases secondary electron ionization

    • DC voltage reduces bulk plasma thickness

    • DC voltage promotes the formation of ballistic electrons

    • DC voltage modifies the plasma density profile

    Download this talk:

    http://www.eecs.berkeley.edu/∼lieber

    Ref: E. Kawamura, M.A. Lieberman, and A.J. Lichtenberg, “Capacitive DischargesDriven by Combined DC/RF Sources”, J. Vac. Sci. Technol. A, 25, 1456–74,Sept. 2007

    LiebermanDublin07 15