carbon trends

49
Carbon Trends Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Global

Upload: apollo

Post on 13-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia. Outline. Recent Trends Perturbation Budget Sink Efficiency Attribution Processes Future. 1. Recent Trends. Carbon Emissions from Net Deforestation. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Carbon Trends

Carbon TrendsCarbon TrendsPep Canadell

Global Carbon ProjectCSIRO Marine and Atmospheric Research

Canberra, Australia

Global

Page 2: Carbon Trends

1. Recent Trends

2. Perturbation Budget

3. Sink Efficiency

4. Attribution

5. Processes

6. Future

Outline

Page 3: Carbon Trends

1.1. Recent TrendsRecent Trends1.1. Recent TrendsRecent Trends

Page 4: Carbon Trends

FAO-Global Resources Assessment 2005; Canadell et al. 2007, PNAS

Tropical Americas 0.6 Pg C y-1

Tropical Asia 0.6 Pg C y-1

Tropical Africa 0.3 Pg C y-1

2000-2005

Tropical deforestation

13 Million hectares each year

Carbon Emissions from Net Deforestation

1.5 Pg C y-1

Born

eo, C

ourte

sy: V

iktor

Boe

hm

Trees are worth more dead than alive

Page 5: Carbon Trends

Houghton, unpublished; Canadell et al. 2007, PNAS

Carbon Emissions from Tropical DeforestationP

g C

yr-1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.8018

50

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

Africa

Latin America

S. & SE Asia

Historical C Emissions from Net Deforestation

SUM

2000-2006

1.5 Pg C y-1

(18% total emissions)

Page 6: Carbon Trends

Carbon Emissions from Fossil Fuel

Raupach et al. 2007, PNAS; Canadell et al 2007, PNAS

1990 - 1999: 1.3% y-1

2000 - 2006: 3.3% y-1

0

1

2

3

4

5

6

7

8

9

1850 1870 1890 1910 1930 1950 1970 1990 2010

Fo

ssil

Fu

el E

mis

sio

n (

GtC

/y) Emissions

280

300

320

340

360

380

400

1850 1870 1890 1910 1930 1950 1970 1990 2010

1850 1870 1890 1910 1930 1950 1970 1990 2010

2006 Fossil Fuel: 8.4 Pg C[Total Anthrop.Emis.:8.4+1.5 = 9.9 Pg]

Page 7: Carbon Trends

Global Fossil Fuel Emissions

Raupach et al. 2007, PNAS

Recent emissions

1990 1995 2000 2005 2010

CO

2 E

mis

sion

s (G

tC y

-1)

5

6

7

8

9

10Actual emissions: CDIACActual emissions: EIA450ppm stabilisation650ppm stabilisationA1FI A1B A1T A2 B1 B2

1850 1900 1950 2000 2050 2100C

O2 E

mis

sion

s (G

tC y

-1)

0

5

10

15

20

25

30Actual emissions: CDIAC450ppm stabilisation650ppm stabilisationA1FI A1B A1T A2 B1 B2

SRES (2000) growth rates in % y -1 for 2000-2010:

A1B: 2.42 A1FI: 2.71A1T: 1.63A2: 2.13B1: 1.79B2: 1.61

Observed 2000-2006 3.3%

20062005

2007

Page 8: Carbon Trends

Carbon Intensity of the Global Economy

Canadell et al. 2007, PNAS

Carb

on in

tens

ity

(KgC

/US$

)Kg Carbon Emitted

to Produce 1 $ of Wealth

1960 1970 1980 1990 2000 2006

Phot

o: C

SIRO

Page 9: Carbon Trends

Raupach et al 2007, PNAS

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1980

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1980

World

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1980 1985 1990 1995 2000 2005

F (emissions)P (population)g = G/Ph = F/G

Fact

or (r

elat

ive to

199

0)

EmissionsPopulationWealth = per capita GDPCarbon intensity of GDP

Drivers of Anthropogenic CO2

Page 10: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 11: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 12: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 13: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 14: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 15: Carbon Trends

Regional Pathways

Raupach et al 2007, PNAS

C emissions

Population

C Intensity

Developed Countries (-)

Developing Countries Least Developed Countries

Wealth pc

Page 16: Carbon Trends

2000 - 2006: 1.9 ppm y-1

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

Year 2007Atmospheric CO2

concentration:

382.6 ppm35% above pre-industrial

NOAA 2007; Canadell et al. 2007, PNAS

Atmospheric CO2 Concentration 0

1

2

3

4

5

6

7

8

9

1850 1870 1890 1910 1930 1950 1970 1990 2010

280

300

320

340

360

380

400

1850 1870 1890 1910 1930 1950 1970 1990 2010

Atm

oap

her

ic [

CO

2]

(pp

mv)

[CO2]

2 ppm/year

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1850 1870 1890 1910 1930 1950 1970 1990 2010

1850 1870 1890 1910 1930 1950 1970 1990 2010

[CO2]

Page 17: Carbon Trends

2.2. Perturbation BudgetPerturbation Budget2.2. Perturbation BudgetPerturbation Budget

Page 18: Carbon Trends

deforestation

tropicsextra-tropics

1.5

2000-2006

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

Anthropogenic Perturbation of the Carbon Budget

Le Quere unpublished; Canadell et al. 2007, PNAS

Page 19: Carbon Trends

deforestation

fossil fuel emissions

7.6

1.5

2000-2006

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)Le Quere unpublished; Canadell et al. 2007, PNAS

Anthropogenic Perturbation of the Carbon Budget

Page 20: Carbon Trends

fossil fuel emissions

deforestation

7.6

1.5

2000-2006

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)Le Quere unpublished; Canadell et al. 2007, PNAS

Anthropogenic Perturbation of the Carbon Budget

Page 21: Carbon Trends

fossil fuel emissions

deforestation

7.6

1.5

4.1

2000-2006

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

atmospheric CO2

Le Quere unpublished; Canadell et al. 2007, PNAS

Anthropogenic Perturbation of the Carbon Budget

Page 22: Carbon Trends

atmospheric CO2

fossil fuel emissions

deforestation

ocean

7.6

1.5

4.1

2.2

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

2000-2006

Le Quere unpublished; Canadell et al. 2007, PNAS

Anthropogenic Perturbation of the Carbon Budget

Page 23: Carbon Trends

atmospheric CO2

ocean

land

fossil fuel emissions

deforestation

7.6

1.5

4.1

2.22.8

2000-2006

Le Quere unpublished; Canadell et al. 2007, PNAS

CO2 f

lux

(Pg

C y-1

)Si

nkSo

urce

Time (y)

Anthropogenic Perturbation of the Carbon Budget

Page 24: Carbon Trends

Fate of Anthropogenic CO2 Emissions (2000-2006)

Canadell et al. 2007, PNAS

+

Atmosphere45%

Land30%

Oceans25%

Page 25: Carbon Trends

Climate Change at 55% Discount

Natural CO2 sinks are a service provided by the planet which constitutes an effective 55% emissions reduction NOW worth US$300 Billions per year if we had to provide it through mitigation measurements (assuming $20/ton CO2-equivalents).

Page 26: Carbon Trends

3.3. Sink EfficiencySink Efficiency3.3. Sink EfficiencySink Efficiency

Page 27: Carbon Trends

% C

O2 E

miss

ions

in

Atm

osph

ere

1960 200019801970 1990

Canadell et al. 2007, PNAS

2005

5% Increase

Dynamics of the Airborne Fraction

Increase in the fraction of anthropogenic emissions that stays in the atmosphere

Emissions1 tCO2

400Kg stay

Emissions1 tCO2

450Kg stay

Page 28: Carbon Trends

Dynamics of the Airborne Fraction

Historical vs. C4MIP Modelled Airborne Fraction

Friedlingstein et al. 2007, unpublished

% C

hang

e AF

Page 29: Carbon Trends

Efficiency of Natural Sinks

Land Fraction

Ocean Fraction

Canadell et al. 2007, PNAS

Page 30: Carbon Trends

4.4. AttributionAttribution4.4. AttributionAttribution

Page 31: Carbon Trends

Canadell et al. 2007, PNAS

65% - Increased activity of the global economy

17% - Deterioration of the carbon intensity of the global economy

18% - Decreased efficiency of natural sinks

2000 - 2006: 1.9 ppm y-1

1970 – 1979: 1.3 ppm y-1

1980 – 1989: 1.6 ppm y1

1990 – 1999: 1.5 ppm y-1

Attribution of Recent Acceleration of Atmospheric CO2

Page 32: Carbon Trends

5.5. ProcessesProcesses5.5. ProcessesProcesses

Page 33: Carbon Trends

1. The rate of CO2 emissions.

2. The rate of CO2 uptake and ultimately the total amount of C that can be stored by land and oceans:

Land: (-) CO2 fertilization effect, forest regrowth (woody encroachment N deposition fertilization, …)(+) soil respiration, fire,…

Oceans: (-) CO2 solubility (temperature, salinity), …(+,-) ocean currents, stratification, winds, biological activity, acidification, …

Factors Affecting the Airborne Fraction

Canadell et al. 2007, Springer; Gruber et al. 2004, Island Press

Page 34: Carbon Trends

• Half of the decline is attributed to up to a 30% decrease in the efficiency of the Southern Ocean sink over the last 20 years.

• It is attributed to the strengthening of the winds around Antarctica which enhances ventilation of natural carbon-rich deep waters.

• The strengthening of the winds is attributed to global warming and the ozone hole.

Cause of the Declined in the Efficiency of the Ocean Sink

Le Quéré et al. 2007, Science

Cred

it: N

.Met

zl, A

ugus

t 200

0, o

cean

ogra

phic

crui

se O

ISO

-5

Page 35: Carbon Trends

Angert et al. 2005, PNAS; Buermann et al. 2007, PNAS; Ciais et al. 2005, Science

Effects of Drought and Warmer Ta on Carbon Sinks

Summer 1982-1991

Summer 1994-2002/04

NDVI Anomaly 1982-2004[Normalized Difference Vegetation Index]

Major droughts in mid-latitudes, particularly summerWarmer temperatures, particularly in autumn.

Page 36: Carbon Trends

6.6. FutureFuture6.6. FutureFuture

Page 37: Carbon Trends

Vulnerability of Carbon Pools in the 21st Century

Permafrost

HL PeatlandsT PeatlandsC Drought/Fire

CH4 HydratesBiological PumpSolubility Pump

Hot Spots of the Carbon-Climate System

Oceans

Land

Canadell et al. 2007, SpringerGruber et al. 2004, Island PressMany of these Pools and Processes are not included in Earth System models

Page 38: Carbon Trends

200-400 Pg C - frozen soilsvulnerable to warming

Permafrost

Page 39: Carbon Trends

Pool Size of Frozen Carbon (C Pg)

Tarnocai et al, in preparation

Soil or deposit type C stocks

Soils 0–300 cm 1024

Yedoma sediments 407

Deltaic deposits 241

Total 1672

Permafrost zones

0-30 cm 0-100 cm

Continuous 110.38 298.75

Discontinuous 25.5 67.44

Sporadic 26.36 63.13

Isolated Patches

29.05 67.10

Total 191.29 496.42

Page 40: Carbon Trends

400 Pg C – cold peatlandsvulnerable to climate change

100 Pg C – tropical peatlands vulnerable to land use and

climate change

Peatlands

Page 41: Carbon Trends

Rodenbeck et al. 2003; Rodenbeck et al. 2004

ENSO-Drought x Land Use x Fire

Flux Anomalies El Niño (gC m2 yr-1)June 1997 - May 1998Oct 1998 - Sept 1999 Flux Anomalies La Niña (g C m2 yr-1)

Atmospheric CO2 Growth Rate

Page 42: Carbon Trends

>200 Pg C vegetation and soils vulnerable to drought x land use x fire

Drought x Land Use x Disturbances

Page 43: Carbon Trends

Mouillot et al. 2006

Increased Fire Emissions of Carbon

2500

3000

3500

Tg C yr -1total

200

600

1000

1400

1800

1905 1925 1945 2005

tropical savanna

tropical foresttemperate forest

boreal forest

1965

Tg C yr -1

Page 44: Carbon Trends

Kurz et al. 2008, PNAS

Annual Net C balance of Canada’s Managed Forests

SinkSource

Page 45: Carbon Trends

Methane Hydrates

Page 46: Carbon Trends

7.7. ConclusionsConclusions7.7. ConclusionsConclusions

Page 47: Carbon Trends

• The growth of carbon emissions from fossil fuels has tripled compared to the 1990s and is exceeding the predictions of the highest IPCC emission scenarios.

Conclusions (i)

• Atmospheric CO2 is growing at 1.9 ppm per year (compared to about 1.5 ppm during the previous 30 years)

• The carbon intensity of the world’s economy has ceased to improve (after 100 years of doing so).

Since 2000:

Page 48: Carbon Trends

Conclusions (ii)

• The efficiency of natural sinks has decreased by 5% over the last 50 years (and will continue to do so in the future), implying that the longer it takes us to reduce emissions, the larger the cuts needed to stabilize atmospheric CO2.

• Uncertainties on the stability of large Earth carbon pools shows the real potential for significant carbon-climate feedbacks not currently account in climate models.

Page 49: Carbon Trends

www.globalcarbonproject.org