carboniferous arc setting in central hainan...

15
J ournal o f Printed in Chi DOI: 10.1007/ Li, S. B.,He,H on the andesiti AB ter the da sen sp hig ε Nd ge the de leo jia In KE zo 0 INTRODU Southeast geological reli (e.g., Wang et 2011; Sone an calfe, 2014, 2 Changning-Me linking the Lo the Inthanon-B (Wang et al., 2 al., 2010; Henn 2013, 2006, 20 also have been Ma, LuangPra Asia into sever Sibumasu and during Early P Late Paleozoic 2016; Qian e *Correspondin © China Univ Heidelberg 20 Manuscript rec Manuscript ac et al., 2008, 20 f Earth Sc ina /s12583-017-09 H. Y., Qian, X., ic and dacitic ro Carb Geoc School of Eart Shubo Li: BSTRACT:Vol r understandin e Eastern Pale ata on the ande ntative andesit ectively, being gh Al 2 O 3 conte d (t) values of st that the and e slab-derived evelopment of otethyan Ocea ang-Ailaoshan- dochina block EYWORDS: E ne,Central Ha UCTION t Asia is a comp cts related to th t al., 2017, 201 nd Metcalfe, 20 2006, 1996). T englian zone w ngmucuo-Shuan Bentong-Raub z 017; Metcalfe, 2 nig et al., 2009; 002,1998, 1996 n identified incl abang, Nan and ral blocks/fragm d East Malaya) Paleozoic but s c to Mesozoic pe et al., 2016, 2 ng author:hehui versity of Geosc 017 ceived Decemb ccepted June 13 004; Feng, 2002 ience , 2017 936-0 et al., 2017. Ca ocks. Journal o bonifero chronol on the Shubo th Sciences and : http://orcid.orlcanic rocks pr ng the Late Pa eotethyan Oce esitic and daci tic and dacitic of Early Carb ents and are en -1.4–-4.7 and desitic and da d component in a Carbonifero an can be prop -Song Ma sutu s. Early Carbon ainan, Paleoteth plex assemblag he evolution of 6; Qian et al., 008; Yin and H The line of ev was the Paleote nghu zone to th zone to the south 2013, 2011; Zi Sone and Metc 6). Several back luding Jinshajian Loei suture zo ments (e.g, Sout ), which derive subsequently as eriod (Fig. 1; e.g 2015; Metcalfe i[email protected]u ciences and Spr ber2, 2016. , 2017. 2). Abundant g online arboniferous ar of Earth Science ous arc logical a e andesi o Li , Huiy d Engineering, S g/0000-0002-9reserved in the leozoic tectoni ean. This pape itic rocks along c samples yield boniferous orig nriched in LIL high 87 Sr/ 86 Sr acitic samples n a continenta ous arc-back-a posed. The Ba ure zone, cons niferous, arc hyan evolution ge reserved abun Paleotethyan O 2016, 2015; Se Harrison, 2000; vidence shows ethyan Main O he north (Tibet) h (Malay Penin et al., 2012; Wa calfe, 2008; Met k-arc basins/bran ng, Ailaoshan, nes, and divide th China, Indoc ed from Gondw ssembled during g., Wang et al., e,2013, 2011;F u.edu.cn ringer-Verlag B geological signa rc setting in Cen e.doi: 10.1007/s setting and geo itic and yingHe *, X Sun Yat-sen Un 436-1151; Hu e Bangxi-Chen ic evolution in er presents a s g the Bangxi-C d similar zircon gin. These volc LEs and LREE (i) ratios of 0 might originat al-arc setting. rc system in r angxi-Chenxin stituting a sutu volcanic rock n. ndant Ocean earle, Met- that Ocean ), and nsula) ang et tcalfe, nches Song ed SE china, wana g the 2017, Feng Berlin atures are Sout Viet bloc al., 2 al., leoz doch jiang sial and BGM Indi espe evol have nan Hain supp the part 1990 rese tecto usuo jiang Li e ntral Hainan: G s12583-017-093 in Cent ochemic d dacitic Xin Qian, Y u iversity, Guang uiying He:http:nxing zone pro Hainan and it set of new geo Chenxing zone n U–Pb ages o canic rocks are Es but depletion .70719–0.7101 te from a met In combinatio esponse to the g zone might ure boundary ks, wedge ma preserved alon thwest China a tnam, which m cks (e.g., Qian 2016; Fan et al 2009; Metcalfe zoic tectonic re hina blocks g-Ailaoshan-So due to the cove shear dislocati MR, 1988). Hai a-Australia, Eu ecial that more lution in Haina e been done to Island, the Late nan Island. To i posed that Hain South China B of the Indochi 0; Guangdong archers believe onic parts of N o-Lingshui Fau g-Qionghai Fau et al., 2002), or Geochronologic 36-0. http://en.e tral Ha cal evide c rocks uejun Wang gzhou, 510275, //orcid.org/000 ovide importan ts temporal-spa chronological e in Central Ha of 353±3 Ma an e characterized n in HFSEs alo 3. Geochemica asomatized we on with the av e subduction o westerly link between the S antle source, B ng the Jinshajia and the Song may separate the et al., 2016a, b l., 2015, 2010; e, 2002; Sengö lationship betw and the e ong Ma suture ering of the sea ion of red river inan Island is t uro-Asian and attentions have an Island. In sp reveal the Pale e Paleozoic tect illustrate, Zhang nan Island had a lock, whereas i ina Block (e.g., BGMR, 1988 ed that Hainan North Hainan a ult (e.g., Xia et ult (e.g., He et a NW Hainan an ISSN al and geochem earth-science.ne ainan: ences China 0-0003-0033-7 nt carries for b atial linkage w and geochemi ainan. The rep nd 351±7 Ma, d by low TiO 2 a ong with negat al signatures s edge modified vailable data, f the Eastern P with the Jins South China a Bangxi-Chenx ang-Ailaoshan Ma suture zon e South China b; Yang et al., 2 Wang et al., 2 ör, 1976). How ween the South extension of zone still rema a water in the So r shear zone (e. ectonically loca Pacific plates e been paid to th ite of numerou eozoic tectonic tonic nature is s g et al. (1997) a an affinity to th it also has been , Chen et al., 1 8). An increasi n might be div and South Hai t al., 1991a, b) al., 2016a; Zha nd SE Hainan b 1674-487 X mical evidences et 095 bet- with ical pre- re- and tive ug- by the Pa- ha- and xing suture zone in ne in Northern and Indochina 2016; Zhang et 010; Hennig et wever, Late Pa- China and In- the Jinsha- ains controver- outh China Sea .g., Guangdong ated among the (Fig. 1a). It is he Paleotethyan us works which pattern in Hai- still disputed in and Shui (1987 he Cathaysia of n regarded as a 994; Hsű et al. ing number of vided into two inan by the Ji- or the Chang- ang et al., 2011; by NE trending X s n n a t t - - - - a g e s n h - n 7) f a . f o - - ; g

Upload: vankhanh

Post on 08-Apr-2019

216 views

Category:

Documents


0 download

TRANSCRIPT

J o u r n a l o fPrinted in ChiDOI: 10.1007/

Li, S. B.,He,Hon the andesiti

ABterthedasensphigεNd

gethedeleojiaInKEzo

0 INTRODU

Southeastgeological reli(e.g., Wang et2011; Sone ancalfe, 2014, 2Changning-Melinking the Lothe Inthanon-B(Wang et al., 2al., 2010; Henn2013, 2006, 20also have beenMa, LuangPraAsia into severSibumasu andduring Early PLate Paleozoic2016; Qian e *Correspondin© China UnivHeidelberg 20 Manuscript recManuscript acet al., 2008, 20

f E a r t h S cina /s12583-017-09

H. Y., Qian, X., ic and dacitic ro

CarbGeoc

School of EartShubo Li:

BSTRACT:Volr understandine Eastern Pale

ata on the andentative andesitectively, being gh Al2O3 conte

d (t) values of st that the ande slab-derived

evelopment of otethyan Oceaang-Ailaoshan-dochina blockEYWORDS: Ene,Central Ha

UCTION t Asia is a compcts related to tht al., 2017, 201nd Metcalfe, 202006, 1996). Tenglian zone wngmucuo-Shuan

Bentong-Raub z017; Metcalfe, 2nig et al., 2009; 002,1998, 1996n identified inclabang, Nan and ral blocks/fragm

d East Malaya)Paleozoic but sc to Mesozoic peet al., 2016, 2

ng author:hehuiversity of Geosc017

ceived Decembccepted June 13004; Feng, 2002

i e n c e , 2 0 1 7

936-0

et al., 2017. Caocks. Journal of

boniferochronol

on the

Shuboth Sciences and: http://orcid.org

lcanic rocks prng the Late Paeotethyan Oceesitic and dacitic and dacitic of Early Carbents and are en-1.4–-4.7 and desitic and da

d component ina Carbonifero

an can be prop-Song Ma sutus. Early Carbon

ainan, Paleoteth

plex assemblaghe evolution of 6; Qian et al.,

008; Yin and HThe line of evwas the Paleotenghu zone to th

zone to the south2013, 2011; Zi Sone and Metc

6). Several backluding JinshajianLoei suture zo

ments (e.g, Sout), which derivesubsequently aseriod (Fig. 1; e.g2015; Metcalfe

[email protected] and Spr

ber2, 2016. , 2017. 2). Abundant g

o n l i n e

arboniferous arof Earth Science

ous arc logical ae andesi

o Li , Huiyd Engineering, Sg/0000-0002-94

reserved in theleozoic tectoni

ean. This papeitic rocks alongc samples yieldboniferous orignriched in LILhigh 87Sr/86Sr

acitic samples n a continenta

ous arc-back-aposed. The Baure zone, cons

niferous, arc hyan evolution

ge reserved abunPaleotethyan O2016, 2015; Se

Harrison, 2000; vidence showsethyan Main Ohe north (Tibet)h (Malay Peninet al., 2012; Wa

calfe, 2008; Metk-arc basins/branng, Ailaoshan, nes, and divideth China, Indoced from Gondwssembled duringg., Wang et al., e,2013, 2011;F

u.edu.cn ringer-Verlag B

geological signa

rc setting in Cene.doi: 10.1007/s

setting and geoitic and

yingHe *, XSun Yat-sen Un436-1151; Hu

e Bangxi-Chenic evolution in er presents a sg the Bangxi-C

d similar zircongin. These volc

LEs and LREE(i) ratios of 0

might originatal-arc setting. rc system in r

angxi-Chenxinstituting a sutu

volcanic rockn.

ndant Ocean earle, Met- that

Ocean ), and nsula) ang et tcalfe, nches Song

ed SE china, wana g the 2017, Feng

Berlin

atures

are SoutVietblocal., 2al., leozdochjiangsial and BGMIndiespeevolhavenan Hainsuppthe part 1990resetectousuojiangLi e

ntral Hainan: Gs12583-017-093

in Centochemicd dacitic

Xin Qian, Yuiversity, Guanguiying He:http:/

nxing zone proHainan and it

set of new geoChenxing zonen U–Pb ages ocanic rocks areEs but depletion

.70719–0.7101te from a metIn combinatioesponse to theg zone might ure boundary

ks, wedge ma

preserved alonthwest China atnam, which mcks (e.g., Qian 2016; Fan et al2009; Metcalfe

zoic tectonic rehina blocks g-Ailaoshan-Sodue to the coveshear dislocati

MR, 1988). Haia-Australia, Eu

ecial that more lution in Hainae been done to Island, the Late

nan Island. To iposed that HainSouth China Bof the Indochi

0; Guangdong archers believeonic parts of No-Lingshui Faug-Qionghai Fau

et al., 2002), or

Geochronologic36-0. http://en.e

tral Hacal evidec rocks

uejun Wang gzhou, 510275, //orcid.org/000

ovide importants temporal-spachronological

e in Central Haof 353±3 Ma ane characterizedn in HFSEs alo3. Geochemicaasomatized weon with the ave subduction o

westerly link between the S

antle source, B

ng the Jinshajiaand the Song

may separate theet al., 2016a, bl., 2015, 2010;

fe, 2002; Sengölationship betw

and the eong Ma suture ering of the seaion of red riverinan Island is turo-Asian and attentions have

an Island. In spreveal the Pale

e Paleozoic tectillustrate, Zhangnan Island had alock, whereas iina Block (e.g.,

BGMR, 1988ed that HainanNorth Hainan ault (e.g., Xia etult (e.g., He et aNW Hainan an

I S S N

al and geochemearth-science.ne

ainan: ences

China 0-0003-0033-7

nt carries for batial linkage wand geochemi

ainan. The repnd 351±7 Ma,

d by low TiO2 aong with negatal signatures sedge modified vailable data, f the Eastern Pwith the Jins

South China a

Bangxi-Chenx

ang-Ailaoshan Ma suture zone South China b; Yang et al., 2

Wang et al., 2ör, 1976). Howween the South extension of zone still rema

a water in the Sor shear zone (e.ectonically locaPacific plates

e been paid to thite of numerou

eozoic tectonic tonic nature is sg et al. (1997) aan affinity to thit also has been, Chen et al., 18). An increasin might be divand South Hait al., 1991a, b) al., 2016a; Zhand SE Hainan b

1 6 7 4 - 4 8 7 X

mical evidenceset

095

bet-with ical

pre-re-

and tive ug-by

the Pa-ha-and

xing

suture zone inne in Northernand Indochina

2016; Zhang et010; Hennig et

wever, Late Pa-China and In-the Jinsha-

ains controver-outh China Sea.g., Guangdongated among the(Fig. 1a). It is

he Paleotethyanus works which

pattern in Hai-still disputed inand Shui (1987he Cathaysia ofn regarded as a994; Hsű et al.ing number ofvided into twoinan by the Ji-

or the Chang-ang et al., 2011;by NE trending

X

s

n n a t t ----a g e s n h -n 7) f a . f o --; g

Shubo Li, Huiying He, XinQianandYuejun Wang 2

Baisha Fault (Metcalfe, 1996), tectonically equivalent to the South China and Indochina blocks, respectively. In addition, the Permian I-type granitoids and the Early Triassic WNW-trending structural deformation occurred in Hainan as the important carries of the assemblage of the South China with Indochina blocks (Fig. 1b; e.g., Zhang et al., 2011; Chen et al., 2011; Li et al., 2006; Metcalfe, 2002, 1996). Thus, Hainan Island is inclined to be a probable area for revealing the Eastern Paleotethyan tectonic evolution (e.g., He et al., 2016a, b; Zhang et al., 2011; Xu et al., 2008; Li et al., 2002; Ma et al., 1998; Metcalfe, 1996). In Central Hainan, volcanic rocks have been identified in Bangxi-Chenxing zone, which may record signifi-cant meaning to the Late Paleozoic evolution (e.g., He et al., 2017; Chen et al., 2014; Li et al., 2002). To address these ques-tions above, we presented new zircon U–Pb geochronology and whole-rock geochemical, elemental and Sr–Nd isotopic results on representative volcanic rocks at the Chenxing and Bangxi areas in Central Hainan, with the aim to better constrain the age and petrogenesis of the volcanic rocks, and to understand the temporal-spatial relationship with the Jinsha-jiang-Ailaoshan-Song Ma zone along with the tectonic implica-tions of the Paleotethyan evolution in SE Asia. 1 GEOLOGICAL SETTINGS

Hainan Island, separated from China Mainland by the-Qiongzhou Strait, is an important element in tectonicrecon-structions between the Indochina and South China blocks (Guangdong BGMR, 1988). It is characterized by four

EW-trending Wangwu-Wenjian, Changijang-Qionghai, Jian-feng-Diaoluo and Jiusuo-Linshui faults and two NE-trending Gezhen-Lingao and Baisha faults, respectively (Fig. 1b; e.g., Xie et al., 2009; Xia et al., 1990, 1991a, b;Wang et al., 1991, 1992; Guangdong BGMR, 1988). Due to the structural over-printing, there occurred numerous tectonic fragments.

The mainly component consist of the stratigraphical se-quences are Precambrian Baoban and Shilu groups, along with Paleozoic marine and Mesozoic terrestrial packages (e.g., Long et al., 2002; Ma et al., 1998). Mesoproterozoic Baoban Group, mainly preserved in western Hainan, has traditionally consi-dered to be the crystallized basement in Hainan. However, the contact relationship is poorly observed between the Baoban Group and Shilu Group, which only exposed in NW Hainan (e.g., Li et al. 2002; Wang et al., 1991, 1992; Guangdong BGMR, 1988). Available data show that previously-defined Baoban and Shilu groups are the Mesoproterozoic (~1420 Ma) complexes constituted by granitic gneiss, migmatite, metamor-phic volcanics, paragneiss, quartz-mica schist, quartzite and a small amount of amphibolite fragments/pods (e.g., Li et al., 2002; Ma et al., 1998; Wang et al., 1991). Detrital zircons from the Baoban and Shilusupracrustal sedimentary rocks had tec-tonothermal records of the Columbia breakup and Grenvillian orogeny (Li et al., 2002). The Neoproterozoic rocks are poorly identified in Hainan Island. The Lower Paleozoic sequences mainly outcropped in Central Hainan andare dominated by-Cambrian and Ordovician siltstone, sandstone and slate as well

Figure 1. (a) Tectonic outline of Southeast Asia (revised after Wang et al., 2010), (b) geological map of Hainan Island showing sampling locations and (c–d)

simplified geological maps for the Bangxi and Chenxing areas, respectively (revised after Guangdong BGMR, 1988).

as Lower Silurian sandstone (Long et al., 2007; Hu et al., 2001; Tang and Feng et al., 1998; Wang et al., 1991, 1992; Xia et al.,

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 3

1990). The Upper Paleozoic sequences have commonly under-gone the greenschist-facies metamorphism and consist of De-vonian sandstone, Carboniferous slate and volcanics, Lower Permian limestone and Middle Permian sandstone to north of the Jiusuo-Lingshui Fault (Long et al., 2007; Hu et al., 2001; Tang and Feng et al., 1998; Wang et al., 1991, 1992; Xia et al., 1990). The Mesozoic strata in Hainan mainly involve the Upper Triassic siliciclastic rocks and Cretaceous sandstones (Wang et al., 1991). Middle Triassic sandstone is unconformably under-lain by pre-Triassic package and overlain by Jurassic or Lower Cretaceous terrestrial siliciclastics.

The Mesoproterozoic Baoban granitic gneiss (e.g., Gongai and Ledong) and the Permian Wuzhishan and Wanning gneissic granites are the important component of foliated and gneissic granites in Hainan (e.g., Chen et al., 2011; Li et al., 2002; Wang et al., 1991). The granitic rocks with the ~ 60% acreage of Hainan Island composed of monogranites, biotite granites and granodiorites are the remarkable geological signature in Hainan Island, dominated by the Indosinian (e.g., Qiongzhong and Jianfengling) and Yanshanian (e.g., Danxian, Tunchang, Qian-jia and Baochen) with the exception of the Permian gneissic granites (Chen et al., 2013; Wang et al. 1991). In addition, a small amount of mafic rocks has been observed in Hainan Isl-and, mainly including the Mesoproterozoic Baobanmetabasites, Late Paleozoic–Early Mesozoic basaltic, gabbroic and doleritic rocks and Cenozoic basalt. The recently-identified Carbonifer-ous volcanic rocks are characterized by MORB-like metaba-sites, which are interpreted to generate in a back-arc basin (He et al., 2017; Li et al., 2002). Subsequently, the Late Cretaceous to Cenozoic rifting led to the Cenozoic widespread volcanism in Hainan Island and its peripheral areas. In the Bangxi (Changjiang) and Chenxing (Tunchang) areas of Central Hainan, a small amount of andesitic and daciticrocks was identified, which exposed in the Early Paleozoic strata and Permian strata, respectively (Guangdong BGMR, 1988). All Chenxing and Bangxi samples have a similar mineral associa-tion of plagioclase, hornblende and biotite with a porphyrotopic texture. Their phenocrysts include hornblende and biotite, which usually occurs as a euhedral-subhedral columnar crystal in the range of 0.2–0.8 centimeters, whereas the matrix mainly consists of fine-grained plagioclase and volcanic tuffaceous material. Apatite, sphene and zircon are dominating accessory minerals. 2 ANALYTICAL METHODS 2.1 Zircon U–Pb dating

Zircon grains from representative samples were separated using conventional heavy liquid and magnetic techniques in the mineral separation laboratory of the Bureau of Geology and Mineral Resources of Hebei Province. The zircon grains were mounted in epoxy and were documented with cathodolumines-cence (CL) images to reveal their internal structures via a JXA-8100 scanning electron microprobe at the Sun Yat-sen University, Guangzhou. Representative CL images of zircon grains are inserted in Fig. 2. The Neptune Plus MC-ICP-MS coupled with an ArF-193nm laser-ablation system (Resonetic-sResolution M-50-HR) at the Institute of Geochemistry (GIG), the Chinese Academy of Sciences (CAS) was used as Laser

ablation ICP–MS (LA–ICP–MS) zircon U–Pb analyses. The zircon standards 91500 and Plešovice were used to calibrate the U–Th–Pb ratios. In the data table, individual analyses and plots are presented with 2σ errors, and uncertainties in ages are quoted at the 95% confidence level. The detailed analytical procedure follows Xia et al. (2011) and the age calculations and plots and data collection and dealing with questions were made using ICPMSDataCal and ISOPLOT (Liu et al., 1996) and the Isoplot and Squid programs of Ludwig (2003), respectively. The analytical results are shown in Table 1 with 1σ level of uncertainties and 95% confidence level of mean ages for pooled 206Pb/238U results. 2.2 Whole-rock geochemical analyses

The representative samples were collected from the Bang-xi and Chenxing areas in Central Hainan with removed the altered surfaces before crushed to millimeter-scale chips using an agate mill. Chips from all samples were crushed to 200-mesh in an agate mill for major oxide, trace element, and Sr–Nd isotopic analyses. The analytical results are given in Table 2.

Major and trace elements were performed by the X-ray fluorescence (XRF) techniques on the Rigaku RIX 2000 spec-trometer and Perkin-Elmer Sciex ELAN 6000 inductively coupled plasma mass spectrometry (ICP–MS), respectively at the GIG, CAS. The analysis precision generally ranges from 1% to 5%. Detailed sample preparation and analytical procedure followed Li et al. (2002). Analyses of Sr and Nd isotopic ratios were performed on a Neptune Plus multi-collection mass spec-trometry equipped with nine Faraday cup collectors and eight ion counters at the GIG, CAS. The analytical procedures are similar to that reported by Yang et al. (2006). Cation columns and HDEHP coated Kef columns were used to separated Sr, rare earth elements and Nd, respectively. The total procedural blank is in the range of 200–500 pg for Sr and less than 50pg for Nd. The mass normalization for 87Sr/86Sr ratio and 143Nd/144Nd ratios are based on 86Sr/88Sr=0.1194 and 146Nd/144Nd=0.7219, respectively. The reported 86Sr/88Sr were adjusted to (NIST) SRM987 standard 86Sr/88Sr=0.710265±12 (2σ) and 146Nd/144Nd were adjusted to the La Jolla standard 146Nd/144Nd=0.511862±10 (2σ) on this MAT-261 mass spec-trometer during the present study, respectively. The Rb, Sr, Sm and Nd abundances measured by ICP–MS are used to calculate the 87Rb/86Sr and 146Nd/144Nd ratios.

3 RESULTS 3.1 Geochronological results

Andesitic (11HN-01A) and dacitic (11HN-21A) samples were selected for zircon U–Pb dating. The majority of the ana-lyzed zircon grains is euhedral and light brown or colorless with oscillatory zoning (Fig. 2).

Andesitic sample (11HN-01A): This sample was taken from the site (N19°25′30″, E109°57′55″) at the Chenxinga-rea.Two clusters are defined by 21 analytical spots with one-constituted by seven spots yielding a weighted mean 206Pb/238Uage of 353±3 Ma (MSWD=0.5) and other by eight a n a l y s e s

J o u r n a l o f E a r t h S c i e n c e , 2 0 1 7 o n l i n e I S S N 1 6 7 4 - 4 8 7 X Printed in China DOI: 10.1007/s12583-017-0936-0

Li, S. B.,He,H. Y., Qian, X., et al., 2017. Carboniferous arc setting in Central Hainan: Geochronological and geochemical evidences on the andesitic and dacitic rocks. Journal of Earth Science.doi: 10.1007/s12583-017-0936-0. http://en.earth-science.net

Table 1LA–ICP–MS zircon U–Pb dating results for the Chenxing and Bangxi samples (11HN-01A and 11HN-21A) in the Bangxi-Chenxing zone

Spot

Concentration Isotope ratio Calculated apparent age (Ma)

Th U Th/U

207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U

Ratio 1σ Ratio 1σ Ratio 1σ Age 1σ Age 1σ Age 1σ

Andesitic sample (11HN-01A)

11HN-01A-01 242 487 0.50 0.0549 0.0003 0.5228 0.0081 0.0691 0.0009 406 11 427 5 431 6

11HN-01A-02 277 413 0.67 0.0534 0.0003 0.4196 0.0064 0.0570 0.0008 346 1 356 5 357 5

11HN-01A-03 153 498 0.31 0.0743 0.0032 1.6247 0.0610 0.1587 0.0034 1048 89 980 24 950 19

11HN-01A-04 303 463 0.65 0.0746 0.0034 1.6674 0.0647 0.1622 0.0038 1056 94 996 25 969 21

11HN-01A-05 269 427 0.63 0.0552 0.0003 0.5266 0.0075 0.0691 0.0008 420 9 430 5 430 5

11HN-01A-06 257 467 0.55 0.0537 0.0003 0.4196 0.0059 0.0566 0.0007 367 11 356 4 355 4

11HN-01A-07 300 361 0.83 0.0563 0.0004 0.5425 0.0075 0.0699 0.0008 465 15 440 5 436 5

11HN-01A-08 291 451 0.65 0.0549 0.0003 0.5241 0.0078 0.0691 0.0009 409 11 428 5 431 5

11HN-01A-09 192 485 0.40 0.0555 0.0003 0.5304 0.0083 0.0692 0.0010 435 5 432 5 431 6

11HN-01A-10 289 410 0.71 0.1124 0.0041 4.7518 0.1425 0.3067 0.0064 1838 68 1776 25 1725 32

11HN-01A-11 245 534 0.46 0.0536 0.0003 0.4164 0.0065 0.0562 0.0007 354 11 354 5 353 5

11HN-01A-12 288 475 0.61 0.0540 0.0003 0.4155 0.0075 0.0556 0.0008 372 10 353 5 349 5

11HN-01A-13 296 441 0.67 0.0551 0.0003 0.5276 0.0084 0.0693 0.0010 417 11 430 6 432 6

11HN-01A-14 314 392 0.80 0.1112 0.0040 4.3848 0.1286 0.2861 0.0060 1819 67 1709 24 1622 30

11HN-01A-15 491 279 1.76 0.0531 0.0004 0.4079 0.0056 0.0558 0.0005 332 14 347 4 350 3

11HN-01A-16 905 877 1.03 0.1595 0.0064 8.5376 0.2847 0.3883 0.0086 2450 69 2290 30 2115 40

11HN-01A-17 234 423 0.55 0.0698 0.0025 1.4420 0.0426 0.1498 0.0031 923 76 907 18 900 17

11HN-01A-18 430 317 1.36 0.0529 0.0003 0.4118 0.0060 0.0566 0.0007 324 18 350 4 355 4

11HN-01A-19 272 491 0.55 0.0540 0.0003 0.4155 0.0066 0.0558 0.0007 372 10 353 5 350 4

11HN-01A-20 324 396 0.82 0.0552 0.0003 0.5303 0.0064 0.0697 0.0006 420 11 432 4 434 4

11HN-01A-21 412 321 1.28 0.0552 0.0003 0.5247 0.0081 0.0692 0.0009 420 13 428 5 431 6

Dacitic sample (11HN-21A)

11HN-21 A -01 936 1643 0.57 0.0665 0.0031 1.4980 0.0716 0.1580 0.0029 833 97 930 29 946 16

11HN-21 A -02 2424 3687 0.66 0.0485 0.0029 0.4024 0.0241 0.0585 0.0012 124 133 343 17 367 8

11HN-21 A -03 498 909 0.55 0.0554 0.0033 0.5296 0.0327 0.0685 0.0013 428 140 432 22 427 8

11HN-21 A -04 789 1305 0.60 0.0700 0.0029 1.5428 0.0621 0.1576 0.0020 928 85 948 25 944 11

11HN-21 A -05 1040 1743 0.60 0.0540 0.0030 0.4145 0.0235 0.0546 0.0009 369 131 352 17 343 5

11HN-21 A -06 265 1350 0.20 0.0710 0.0025 1.6230 0.0541 0.1637 0.0020 958 73 979 21 977 11

11HN-21 A -07 2753 1875 1.47 0.0556 0.0035 0.5296 0.0302 0.0688 0.0013 435 134 432 20 429 8

11HN-21 A -08 728 956 0.76 0.0598 0.0034 0.5595 0.0337 0.0665 0.0011 594 126 451 22 415 7

11HN-21 A -09 517 1976 0.26 0.0959 0.0015 3.7682 0.0646 0.2793 0.0024 1547 30 1586 14 1588 12

11HN-21 A -10 1324 3098 0.43 0.0495 0.0014 0.4889 0.0125 0.0709 0.0007 169 63 404 9 442 4

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 5

11HN-21 A -11 543 981 0.55 0.0521 0.0031 0.4130 0.0250 0.0559 0.0009 287 135 351 18 350 6

11HN-21 A -12 768 1512 0.51 0.0898 0.0028 3.0298 0.1091 0.2394 0.0035 1421 61 1415 28 1384 18

11HN-21 A -13 3972 3924 1.01 0.0533 0.0020 0.5213 0.0200 0.0696 0.0008 343 88 426 13 433 5

11HN-21 A -14 614 1558 0.39 0.1674 0.0056 10.7593 0.3562 0.4592 0.0050 2532 57 2503 31 2436 22

11HN-21 A -15 683 752 0.91 0.0916 0.0036 3.3764 0.1336 0.2633 0.0036 1459 74 1499 31 1507 19

giving a weighted mean206Pb/238U age of 432±4 Ma (MSWD=0.2; Fig. 2a). The remaining eight analyses show older apparent ages ranging from 900 Ma to 2450 Ma, which are interpreted as xenocrysts. Considering the weak oscillatory zoning with low to variable luminescence in the CL image for these grains (inset in Fig. 2a), it is believed that these grains are of the magmatic origin and ~350 Ma can represent its forma-tion age.

Dacitic sample (11HN-21A): This sample was collected

from the site (N19°24′47″, E 109°07′56″) nearby the Bangxi Town. Five spots from 15 grains give the apparent 206Pb/238U ages of 415–442 Ma with a weighted mean age of 433±5 Ma (MSWD=3.2) and seven analyses show the apparentages from 944Ma to 2532 Ma, representing the xenocryst grains. The remaining three analyses yield a coherent group with weighted mean age of 351±7 Ma MSWD=3.3) (Fig. 2b), reflective of the crystallization age of the dacitic sample. Such an age is also consistent with the age of Chenxing andesitic sample.

Figure 2. Concordia diagrams of zircon U–Pb data for the Chenxing sample (11HN-01A) (a) and Bangxi sample (11HN-21A) (b), Central Hainan. Insets show

the representative cathodoluminescence (CL) images for the zircon grains.

3.2 Geochemical characteristics

Whole-rock major oxides, trace elements and Sr–Nd iso-topic data for the representative samples are listed in Table 2. The Chenxing samples have SiO2=51.70–65.41 wt.%, MgO=2.93–4.26 wt.%, TiO2=0.62–0.95 wt.% and K2O/Na2O=1.10–2.78. In comparison with those of typical andesites, the Chenxing samples have similar Al2O3 (14.51–21.07 wt.%), higher K2O (2.46–4.31 wt.%) and lower CaO (2.65–4.47 wt.%) contents. The Bangxi samples show relatively slight variation with SiO2 ranging from 60.69 wt.% to 65.50 wt.%, Al2O3 from 14.85 wt.% to 16.53 wt.%, MgO from 1.84 wt.% to 2.45 wt.% and TiO2 from 0.60 wt.% to 1.11 wt.%. Their K2O/Na2O ratios are in the range of 0.82–2.44. These samples fall in the fields of andesite and dacite in the TAS dia-gram (Fig. 3a), and can be classified as calc-alkalic series rocks in the Zr/TiO2–Nb/Y diagram (Fig. 3b, Winchesterand and Floyd, 1977). In the Harker diagram (Fig. 4), MgO, Al2O3, Fe2O3t, TiO2 and P2O5 show a sharply decreasing but weakly variable for CaO with increasing SiO2. Our samples show sim-ilar chondrite-normalized right-sloping REE patterns (Fig. 5a)with Eu/Eu*=0.61–0.77. Their (La/Yb)N and (Gd/Yb)N ra-tios

range from 6.11 to 8.07 and 1.18 to 1.56, respectively. On the primitive mantle-normalized element spidergram (Fig. 5b), these samples are characterized by enrichment in LILEs (e.g., Rb and Ba) and depletion in HFSEs (e.g., Nb, Ta and Ti) and Sr negative anomalies (Sr/Sr*=0.25–0.75). These samples display high Nb/La (0.29–0.37), Zr/Nb (13.79–17.09), Ce/Pb (1.93–4.99), Th/La (0.29–0.36) ratios, resembling to those of arc volcanic rocks in the Lancangjiang igneous rocks (e.g., Peng et al., 2008). 

The Sr–Nd isotopic analysis for seven representative sam-ples were shown in Table 2 and Fig. 6. The Chenxing samples have initial 87Sr/86Sr (i) ratios ranging from 0.70847 to 0.71013 and εNd (t) values from -1.4 to -2.0. The initial 87Sr/86Sr (i) ra-tios for the Bangxi samples range from 0.70719 to 0.70818. Both initial 87Sr/86Sr (i) ratios are most likely reflective of the sea-water alteration. The Bangxi samples have higher εNd (t) values ranging from -3.4 to -4.7 than those of the Bangxi sam-ples (-1.4 to -2.0).

Shubo Li, Huiying He, XinQianandYuejun Wang 6

Table 2Majoroxides (wt.%), trace element (ppm) and Sr–Nd isotopic results for the andesitic and dacitic samplesin the CentralHainan

11HN--01A 11HN—01B 11HN--01D 11HN--01E 11HN--01H 11HN--01J 11HN--01L 11HN--01K 10HN13C* 10HN14A* 10HN14B*

SiO2 55.48 65.41 59.78 63.24 60.10 64.16 55.34 59.24 65.12 51.70 55.86

TiO2 0.90 0.72 0.77 0.70 0.77 0.74 0.88 0.82 0.62 0.95 0.88

Al2O3 19.25 14.66 17.20 15.59 17.13 15.33 19.41 17.64 14.51 21.07 18.92

Fe2O3t 8.21 6.05 7.64 6.92 7.55 6.52 8.40 7.40 6.86 9.01 8.70

MgO 3.70 2.93 3.51 3.20 3.50 3.00 3.85 3.38 3.33 4.26 4.12

MnO 0.14 0.16 0.09 0.08 0.09 0.12 0.10 0.11 0.14 0.12 0.12

CaO 3.34 4.01 2.92 2.94 2.65 2.93 3.35 3.09 3.72 3.89 3.09

K2O 3.58 2.46 3.39 2.87 3.61 2.75 3.79 3.21 2.74 4.31 4.18

Na2O 2.83 1.60 2.43 2.27 2.36 2.47 2.71 2.91 0.99 2.22 1.80

P2O5 0.22 0.19 0.20 0.19 0.20 0.20 0.22 0.21 0.19 0.24 0.22

LOI 1.93 1.24 1.58 1.54 1.59 1.31 1.52 1.58 1.35 1.79 1.67

Total 99.59 99.44 99.52 99.54 99.54 99.54 99.56 99.58 99.57 99.57 99.57

mg-number 51 53 52 52 52 52 52 52 53 52 52

Sc 22.8 16.9 19.0 17.0 20.0 18.4 21.5 21.0 15.7 26.7

V 160 110 125 114 124 115 144 145 125 157

Cr 44.8 38.6 37.1 36.1 41.0 65.7 44.5 44.8 39.4 66.6

Co 18.8 12.6 16.3 14.1 15.6 13.5 17.1 16.1 17.7 21.8

Ni 25.7 20.9 24.0 20.9 22.6 34.5 26.3 26.5 22.4 33.3

Rb 121 99.7 113 93.0 117 103 128 108 116 136

Sr 217 203 181 177 176 218 215 197 191 205

Y 33.0 28.1 29.0 24.6 29.3 30.0 35.3 30.7 18.5 29.3

Zr 187 176 150 135 154 185 183 170 113 175

Nb 9.65 8.48 8.24 7.67 8.64 9.06 10.1 9.40 7.67 11.2

Cs 7.70 8.79 7.56 6.36 7.45 9.21 8.61 7.73 10.0 12.2

Ba 502 235 481 374 518 335 536 463 266 535

La 32.2 27.9 27.9 23.7 26.1 29.1 32.9 31.1 22.2 32.0

Ce 62.6 52.7 53.7 47.4 51.3 57.3 64.7 61.4 48.1 63.4

Pr 7.58 6.36 6.71 5.73 6.28 7.04 7.92 7.94 5.45 7.48

Nd 31.2 26.2 27.3 23.9 26.3 28.1 31.6 31.5 20.6 29.3

Sm 6.69 5.64 6.17 5.21 5.53 6.06 6.57 6.88 4.36 6.56

Eu 1.57 1.36 1.34 1.12 1.21 1.34 1.49 1.51 1.12 1.42

Gd 6.45 5.34 5.63 4.76 5.47 5.57 6.13 6.13 3.98 5.55

Tb 1.06 0.89 0.93 0.83 0.91 0.93 1.07 1.04 0.55 0.90

Dy 6.68 5.36 5.94 5.14 5.56 5.83 6.73 6.37 3.20 5.14

Ho 1.24 1.04 1.12 0.98 1.11 1.08 1.26 1.21 0.71 1.18

Er 3.55 3.08 3.26 2.79 3.12 3.22 3.55 3.45 1.95 3.22

Tm 0.54 0.47 0.48 0.41 0.47 0.48 0.52 0.51 0.30 0.49

Yb 3.62 3.02 3.10 2.72 2.99 3.13 3.33 3.41 2.07 3.13

Lu 0.56 0.47 0.50 0.45 0.47 0.50 0.52 0.53 0.32 0.49

Hf 5.26 4.69 4.62 4.21 4.45 4.82 4.92 4.92 2.97 4.83

Ta 0.73 0.59 0.61 0.57 0.64 0.69 0.68 0.59 0.48 0.65

Th 10.3 8.66 8.52 7.72 8.72 8.97 10.0 9.57 6.57 9.52

U 2.82 2.51 2.25 2.14 2.34 2.48 2.68 2.72 1.63 2.52

87Rb/86Sr 1.615 1.921 1.588

147Sm/144Nd 0.130 0.135 0.132

87Sr/86Sr 0.716449 0.717158 0.716375

2σ 15 10 17

143Nd/144Nd 0.512406 0.512387 0.512420

2σ 10 8 6

(87Sr/86Sr)i 0.70847 0.71013 0.70853

εNd -1.6 -2.0 -1.4

J o u r n a l o f E a r t h S c i e n c e , 2 0 1 7 o n l i n e I S S N 1 6 7 4 - 4 8 7 X Printed in China DOI: 10.1007/s12583-017-0936-0

Li, S. B.,He,H. Y., Qian, X., et al., 2017. Carboniferous arc setting in Central Hainan: Geochronological and geochemical evidences on the andesitic and dacitic rocks. Journal of Earth Science.doi: 10.1007/s12583-017-0936-0. http://en.earth-science.net

(to be continued)

10HN-14C* 10HN15A* 10HN15C* 11HN-21A 11HN-21D 11HN-21E 11HN-21F 11HN-21G 11HN-21H 11HN-21J 11HN-21K 11HN-21L

SiO2 64.14 56.78 63.09 63.71 64.99 64.94 64.24 63.83 65.50 64.75 60.69 64.82

TiO2 0.72 0.83 0.69 0.70 0.67 0.60 0.64 0.65 0.64 0.71 1.11 0.69

Al2O3 15.32 18.54 15.55 16.53 15.46 14.85 15.80 16.33 15.07 15.79 16.26 16.12

Fe2O3t 6.58 8.01 7.27 6.10 6.01 5.67 5.80 5.30 6.06 5.55 6.03 5.76

MgO 3.25 3.76 3.51 2.23 2.14 2.08 2.14 2.03 2.16 1.84 2.45 2.03

MnO 0.14 0.14 0.11 0.08 0.09 0.11 0.13 0.09 0.10 0.08 0.15 0.09

CaO 4.47 4.16 3.36 2.98 3.57 3.80 4.44 3.55 3.77 3.66 3.60 3.12

K2O 2.54 3.22 3.02 3.34 2.62 2.76 2.41 3.60 2.52 2.08 3.43 3.12

Na2O 0.91 2.31 1.38 1.37 1.52 1.16 1.41 2.15 1.40 2.54 2.38 1.45

P2O5 0.20 0.21 0.19 0.11 0.10 0.11 0.11 0.11 0.10 0.12 0.13 0.10

LOI 1.28 1.59 1.40 2.39 2.35 3.57 2.43 1.95 2.23 2.54 3.45 2.23

Total 99.56 99.56 99.57 99.54 99.52 99.63 99.55 99.59 99.53 99.65 99.69 99.53

mg-number 54 52 53 46 45 46 46 47 45 43 49 45

Sc 21.1 22.6 27.1 14.3 14.8 14.2 15.0 14.7 13.5 16.8 13.9 16.9

V 123 120 148 118 102 108 116 120 110 125 105 126

Cr 50.0 48.9 59.2 46.0 48.1 42.8 46.1 50.9 47.7 46.3 44.9 58.5

Co 16.1 16.6 20.4 10.9 10.1 11.0 10.9 10.7 10.8 9.83 10.4 13.8

Ni 22.7 24.2 30.4 30.8 28.9 27.5 29.6 29.6 29.3 25.9 27.3 74.9

Rb 99.4 112 117 135 122 141 131 142 125 157 125 127

Sr 170 189 278 239 269 223 290 289 250 313 292 268

Y 26.0 26.2 31.3 24.6 26.4 27.7 30.1 27.2 27.2 26.0 27.6 27.6

Zr 133 131 164 141 139 130 141 145 145 161 146 146

Nb 8.33 8.52 10.5 9.50 9.19 9.43 8.92 9.39 9.27 9.42 8.80 8.94

Cs 9.54 10.3 11.8 9.19 7.97 9.54 7.51 11.1 8.24 17.9 11.2 11.6

Ba 258 310 348 417 325 331 281 575 281 364 477 526

La 25.1 23.2 29.2 28.9 30.3 28.6 29.4 29.0 30.8 28.0 30.1 28.8

Ce 49.3 44.5 56.1 54.5 59.5 55.0 53.4 57.6 58.0 56.2 56.6 52.8

Pr 5.78 5.35 6.41 6.62 7.13 6.83 6.47 6.89 7.20 6.68 6.90 6.21

Nd 22.4 20.6 25.3 26.8 28.0 27.2 25.4 27.4 28.2 27.5 27.7 24.7

Sm 5.36 5.08 5.14 5.42 5.46 5.65 5.50 5.52 5.52 5.21 5.45 5.09

Eu 1.32 1.24 1.53 1.07 1.11 1.05 1.05 1.11 1.10 1.10 1.24 1.13

Gd 4.81 4.73 5.24 5.07 4.98 4.97 4.92 4.91 5.02 4.71 5.18 4.83

Tb 0.83 0.76 0.97 0.84 0.85 0.85 0.82 0.83 0.83 0.82 0.87 0.81

Dy 4.67 4.44 5.60 5.39 5.37 5.47 5.45 5.40 5.21 5.06 5.34 4.90

Ho 1.07 1.19 1.24 1.01 1.02 1.05 1.04 1.05 1.01 0.97 1.01 0.89

Er 2.86 3.03 3.44 2.87 3.02 3.16 3.19 2.99 3.02 2.93 2.92 2.66

Tm 0.44 0.52 0.50 0.43 0.44 0.49 0.52 0.43 0.48 0.46 0.43 0.38

Yb 2.57 2.86 3.41 2.75 2.83 3.33 3.45 2.82 3.17 3.04 2.80 2.56

Lu 0.42 0.50 0.54 0.43 0.42 0.54 0.52 0.42 0.48 0.48 0.43 0.42

Hf 4.17 4.02 4.20 4.33 4.05 4.34 4.00 4.10 4.26 4.58 4.23 4.24

Ta 0.57 0.54 0.72 0.70 0.68 0.72 0.66 0.73 0.73 0.73 0.68 0.66

Th 7.28 6.66 8.75 10.5 10.5 10.3 9.71 10.4 10.20 9.58 9.83 9.63

U 1.91 1.94 2.32 2.83 2.77 2.73 2.58 2.90 2.57 2.45 2.85 2.69

87Rb/86Sr 1.635 1.313 1.448 1.452

147Sm/144Nd 0.122 0.118 0.118 0.115

87Sr/86Sr 0.715693 0.714667 0.714825 0.715108

2σ 14 17 12 12

143Nd/144Nd 0.512227 0.512278 0.512244 0.512279

2σ 9 11 10 5

(87Sr/86Sr)i 0.70761 0.70818 0.70767 0.70719

εNd -4.7 -3.5 -4.2 -3.4

* The data ofthe Chenxing andesitic rocks are from Chen et al. (2013).Fe2O3t represents total Fe-oxides; mg-number=molar Mg×100/(Mg+Fe); LOI. losson

ignition.

Shubo Li, Huiying He, XinQianandYuejun Wang 8

Figure 3. (a) TAS (after Le Bas et al., 1986) and Zr/TiO2vsNb/Y (after Winchester and Floyd, 1977) classification diagrams for the andesitic and daciticsam-

ples from the Bangxi-Chenxing zone.

Figure 4. Plots of SiO2vsMgO (a), Fe2O3t (b), Al2O3 (c), CaO (d), TiO2 (e) and P2O5 (f) for the andesitic and dacitic samples from the Bangxi-Chenxing zone.

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 9

Figure 5. (a) Chondrite-normalized REE pattern and (b) primitive mantle-normalized trace element spidergram for the andesitic and daciticsamples from the

Bangxi-Chenxing zone. Data of Lancangjiang Early Triassic arc volcanic rocks are from Peng et al. (2008). Also shown the patterns of E-MORB, OIB and

normalized values for chondrite and primitive mantle are from Sun and McDonough (1989).

Figure 6. Plot of initial 87Sr/86Sr (i) vsεNd (t) for the andesitic and dacitic

samples from the Bangxi-Chenxing zone. 4 DISCUSSION 4.1Petrogenesis

The Chenxing and Bangxi samples display slightly high loss of ignition (LOI) contents (1.24–3.57 wt.%). Together with the Sr isotopic deviation from the mantle–evolved array in Fig. 7, these characteristics suggest that these samples may have been undergone some degree of alteration (e.g., Rolland et al., 2002). However, our samples display insignificant correlations between the LOI values and HFSEs or LILEs (e.g., Rb, Sr, Zr and Nb not shown), indicating that they were immobile during the alteration and can be used to discuss the petrogenesis.

The Chenxing and Bangxi samples have relatively high si-lica contents (maximum value is 65.50 wt.%) and low Ni (20.9–74.9 ppm) and Cr (36.2–60.7 ppm) contents, along with the xenocrysts, suggest that the crustal contamination might be significant. However, the crustal contamination could be ex-cluded during the magma ascending as follow: (1) constant Nb/La ratios (0.29–0.37) with increasing SiO2 contents, lower than those of continental crust (~0.7) (Fig. 7a) and (2) the con-stant εNd (t) values of our samples with increasing SiO2 con-tents (Fig. 7b; e.g., Sun & McDonough, 1989; Hoffman and

Ranalli, 1988). Such signatures, along with lower Ce/Pb (1.93–4.99) and Nb/U (3.08–4.70) ratios in comparison with those of average continental crust, indicate that the crustal con-tamination might be insignificant during magma evolution (Taylor and McLennan, 1985). The correlations of Yb with Tb/Yb and La/Yb ratios in Fig. 7c–d indicate that the fractional crystallization and source heterogeneity could be involved dur-ing magma evolution. Hence, the incompatible elements ratios and isotopic compositions are more likely inherited from the magma source.

The mg-numbers for the Chenxing samples range from 51 to 53, Cr contents from 36.2 ppm to 66.6ppm and Ni contents from 20.9 ppm to 34.5 ppm, respectively, suggesting that their magma has been experienced certain degrees of fractional crystallization of clinopyroxene. The Bangxi samples have relatively lower MgO contents (1.84–2.45 wt. %) and higher Ni contents (25.94–74.88 ppm) than those of Chenxing samples, indicate the certain degrees of fractional crystallization. The weak Eu negative anomalies and Sr positive anomalies of all samples argue against strong plagioclase fractionation during the magma process (Fig. 5a–b). The negative correlations be-tween SiO2 and TiO2 and Fe2O3t (Fig. 4b and e) are related to the fractionation crystallization of Ti–Fe oxides. Both of ande-sitic and dacitic samples from the Bangxi and Chenxing areas might be explained as the generation of contiguous fractional crystallization and shared a common magma source according to the similar trends in Harker, SiO2–Nb/La, La–La/Yb and Yb–La/Yb diagrams (Figs. 4 and 7).

Three models have been proposed for the formation of the andesitic samples: (1) hypomigmatization of lower crust; (2) the mixing of basic magma and acid magma; and (3) the partial melting of the mantle wedge, metasomatized by subduc-tion-related melts/fluids (Tatumi et al., 2008; Martin et al., 2007; Dungan and Davidson., 2004; Parman and Grove., 2004). The slightly high mg-number of the Chenxing and Bangxi samples range from 44 to 53, distinct to the product from partial melting of the granulite or eclogitecrust, which commonly has low mg-number (<40; Rapp et al., 1999, 1991). Together with theenrichment in LILEs and LREEs and relatively low Nb/La

Shubo Li, Huiying He, XinQianandYuejun Wang 10

Figure 7. Plots of (a) SiO2vsNb/La, (b) SiO2vsεNd (t), (c) Ybvs Tb/Yb and (d) Ybvs La/Yb for the andesitic and dacitic samples from the Bangxi-Chenxing

zone. ratios (0.29–0.34), the origin of these samples is less likely to be the lower crust of the SCB (data from the amphibolite of the ArcheanKongling Group; Gao et al., 1999; Rudnick and Foun-tain, 1995; Taylor and McLennan, 1985). Besides, in compari-son with variably isotopic and geochemical signatures of mix-ing magma, the homologous εNd (t) values for our samples suggest that the mixing model of basic magma and acid magma is also not likely in the petrogenesis. As mentioned above, our samples from the Bangxi-Chenxing zone have high SiO2 (55.34–65.50 wt.%), Al2O3 (14.26–19.41 wt.%) and low TiO2 (0.82–1.22 wt.%) contents, as well as enrichment in LILEs and LREEs and depletion in Nb, Ta and Ti. These signatures to-gether with the high Sc (13.5–22.8 ppm) and V (102–160 ppm) contents and Nb/La, Nb/U, Nd/Pb, Ce/Pb ratios and negative εNd (t) values, suggest that our samples were probably inherited an enriched mantle source modified by the fluids/melts from subducted slab or sediments (e.g., Turner et al., 1997; Stolz et al., 1990).

The Th/Yb ratios for all samples range from 2.23 to 3.82 and Ba contents from 235 ppm to 257 ppm. In Fig. 8a, they plot in the Kitakami andesite range, which has been interpreted to form in the subductedmetasomatism source. These samples have high Th/Zr and Ba/Y ratios along with the low Nb/Zr and Nb/Y ratios in Fig. 8b–c, suggesting a fluid-related enrichment in the source and negligible melt-related enrichment. In addi-tion, the involvement of subducted sedimentary component into the mantle source can be recognized by the relatively low εNd (t) values of –1.39 to –4.71, high Al2O3 contents (14.26–19.41

wt.%) and relatively high Th/Yb ratios (43.62–52.97) and low-er Ba/La (2.75–3.82) ratios relative to N-MORB (e.g., Plank and Langmuir, 1998; Stolz et al., 1990; Sun and McDonough, 1989). The synthesis of these data indicates that the volcanic rocks in the Bangxi-Chenxing zone might have originated from an enriched lithospheric mantle modified by slab-derived fluids mixed with the recycled sediments. 4.2 Tectonic setting

The Early Paleozoic tectonic setting in Hainan has been poorly constrained in last decades with the controversies main-ly around the igneous rocks along the Bangxi-Chenxing zone in Central Hainan. Various tectonic assumptions have been pro-posed for these igneous rocks. Xia et al. (1991) proposed that the Late Paleozoic tectonic setting of Hainan was intraconti-nental rift setting on the basis of the Carboniferous bimodal volcanic rocks, whereas Zhang et al. (1997) considered that the volcanic rocks along the Bangxi-Chenxing zone formed in a Mesoproterozoic continental rift based on the Sm–Ndisochron age of 1165 Ma from the mafic sequence. As mentioned above, our samples display low TiO2 (0.82–1.22 wt.%), Cr (36.2–66.6 ppm), Ni (21.0–74.9 ppm) and high Al2O3 (14.26–19.41 wt.%) contents and enrichment in LILEs and depletion in HFSEs, indicating an arc affinity (Pearce et al. 1994). The high Ba/Y, Th/Zr and Nb/U ratios also indicate the potential input of the subducted component in the source. In Fig. 9a–c, these samples plot in the field of continental arcs (Tian et al., 2008; Shinjo et al., 1999; Pearce, 1983). In addition, Early Carboniferous

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 11

Figure 8. Plots of (a) Ba vsNb/Y, (b) Th/ZrvsNb/Zr and (b) Nb/Y vs Ba/Y

(after Hofmann and Jochum, 1996; Wang et al., 2004) for the andesitic and

dacitic samples from the Bangxi-Chenxing zone. (~330 Ma) MORB-like metabasites have also been identified along the Bangxi-Chenxing zone, which formed in a back-arc basin setting (He et al., 2017). These geochemical features synthetically suggest a continental arc setting for the generation of these volcanic rocks. Therefore, the arc volcanic rocks along with the MORB-like metabasites exhibit an arc-back-arc sys-tem in the Bangxi-Chenxing zone (Fig. 10), resembling those in

Figure 9. (a) Plots of (a) Sc/Ni vs La/Yb, (b) Nb/YbvsTh/Yb and (c)

YbvsTh/Ta for the andesitic and daciticsamples from the Bangxi-Chenxing

zone. the Mariana, East Scotia and Lau back-arc basins (Taylor and Martinez, 2003).

A key issue remains to whether or not the Carboniferous back-arc basin in Central Hainan geodynamically links the Paleopacific or Paleotethyan domain. Li and Li (2007) and Li et al. (2006) suggested that the westward flat-slab subduction of the Pacific Plate beneath the South China Block since the

Shubo Li, Huiying He, XinQianandYuejun Wang 12

Permian on the basis of Wuzhishan I-type granites (267–262 Ma). However, the westward subduction of the Pacific plate may not initiate until the Middle Jurassic (e.g., Zhou and Li, 2000) due to the Carboniferous–Permian sedimentary se-quences around the coastal provinces, which are characterized by carbonate platform and shallow-marine/lacustrine coal-bearing sandstone, shale and synchronous foreland basin (e.g., Shu et al., 2008; Wang et al., 2007, 2005 and references therein). By contrast, recent studies have shown that abundant Late Paleozoic to Mesozoic igneous rocks developed along the Jinshajiang-Ailaoshan-Song Ma zone. Jian et al. (2009a, b; 1998) and Wang et al. (2000) obtained zircon U–Pb ages of 383-334 Ma from the Jinshajiang-Ailaoshan suture zone. Simi-lar ages (387–313 Ma) also have been reported in the Song Ma suture zone (e.g., Zhang et al., 2014; Vượng et al., 2013). These data indicate that the Bangxi-Chenxing zone has similar mag-matic activity with the Jinshajiang-Ailaoshan-Song Ma zone (e.g., He et al., 2017a, 2016a, 2016b; Chen at al., 2013; Xu et

al., 2007; Li et al., 2006, 2002). In addition, the Devonian fish fossils and Late Permian PangeanDicynodon in the Indochina Block are same with those in the South China Block (e.g., Thanh et al., 2007; Janvier et al., 1994), additionally arguing for continental linkage rather than ocean. To the south of Bang-xi-Chenxing zone, abundant Permian–Triassic granitoids have been reported and suggested to form in the magmatic activities of Bangxi-Chenxing BAB with ages of 272–233 Ma (e.g., Chen et al., 2011, 2006; Zhang et al., 2011; Li et al., 2006). These data are similar to the Permian–Triassic igneous rocks in the Truong Son zone in the Central Vietnam (e.g., Maluskiaa et al., 2005; Lai et al., 2014) and Jinshajiang-Ailaoshan zone in SW China (e.g., Liu et al., 2015; Zi et al., 2012), indicating the closely relationship of tectonic magmatism in response to the Paleotethyan Ocean. As a result, our data along the Bang-xi-Chenaxing zone support a continental BAB linkage with the Jinshajiang-Ailaoshan-Song Ma zone between the Indochina and South China blocks.

Figure 10.Schematic cartoon showing the Early Carboniferous subduction pattern of the Bangxi-Chenxing zone. 5 CONCLUSIONS

Based on our new zircon U–Pb geochronological and whole-rock elemental and Sr–Nd isotopic data, the following scenario can be outlined.

(1) These volcanic rocks exposed within the Bang-xi-Chenxing zone in Central Hainan were generated at ~350 Ma, indicative of the Early Carboniferous origin.

(2) These volcanic rocks originated from an enriched mantle source modified by slab-related fluids and sediments in a conti-nental-arc setting.

(3) The Bangxi-Chenxing zone can westerly link with the Jinshajiang-Ailaoshan-Song Ma zone.

ACKNOWLEDGMENTS

We would like to thank Dr. Y-Z Zhang, F-F Zhang, X-Y Chen, A-M Zhang and H-C Liu for their help during fieldwork, geochronological and geochemical analyses. Financial supports are gratefully acknowledged from National Science Foundation of China (No. 41190073), National Basic Research Program of Chi-na (Nos. 2016YFC0600303 and 2014CB440901), andthe Project

funded by China Postdoctoral Science Foundation (No. 2017M612794). The final publication is available at Springer via http://dx.doi.org/10.1007/s12583-017-0936-0. REFERENCES CITED

Chen, H.H., Sun, X., Li, J.L., et al., 1994. Paleomagnetic constraints on early Trias-

sic tectonics of South China. ScientiaGeologicaSinica, 29: 1–9

Chen, X.Y, Wang, Y.J, Wei, M.F, et al., 2006. Microstructural characteristics of the

nw- trending shear zones of gong'ai region in hainan island and its (40)Ar–(39)

Ar geochronological constraints. Geotectonica Et Metallogenia, 30(3):

312–319 (in Chinese with English abstract)

Chen, X. Y., Wang, Y. J., Fan, W. M., et al., 2011. Zircon La-ICP-Ms U-Pb dating

of granitic gneisses from Wuzhishan area, Hainan, and geological signific-

ances. Geochimica, 40(5): 454–463(in Chinese with English abstract)

Chen, X. Y., Wang, Y. J., Zhang, Y. Z., et al., 2013. Geochemical and Geochrono-

logical Characteristics and its Tectonic Significance of Andesitic Volcanic

Rocks in Chenxing Area, Hainan. GeotectonicaetMetallogenia, 37(2): 99–108

(in Chinese with English abstract)

Chen, X. Y., Wang, Y. J., Han, H. P., et al., 2014. Geochemical and Geochronolog-

ical Characteristics of Trassic Basic Dikes in SW Hainan Island and Its Tec-

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 13

tonic Implications. Journal of Jilin University (Earth Science Edition), 44(3):

835–847(in Chinese with English abstract)

Dungan, M. A., Davidson, J., 2004. Partial assimilative recycling of the mafic plu-

tonic roots of arc volcanoes: an example from the chileanandes. Geology, 32(9):

773–776

Fan, W. M., Wang, Y. J., Zhang, A. M., et al., 2010. Permian arc–back-arc basin

development along the Ailaoshan tectonic zone: Geochemical, isotopic and

geochronological evidence from the Mojiang volcanic rocks, Southwest China.

Lithos 119: 553–568. doi:10.1016/j.lithos.2010.08.010

Fan, W. M., Wang, Y. J., Zhang, Y. H., et al., 2015. Paleotethyansubduction process

revealed from Triassic blueschists in the Lancang tectonic belt of Southwest

China. Tectonophysics, 662: 95–108. doi:10.1016/j.tecto.2014.12.021

Feng,Q.L.,2002.StratigraphyofvolcanicrocksintheChangning-Menglianbeltinsouthw

esternYunnan,China.Jounal of Asian Earth Sciences, 20 (6): 657–664.

doi:10.1016/S1367-9120(02)00006-8

Feng, Q. L., Chongpan, C., Dietrich, H., et al., 2004. Long-lived Paleotethyan pe-

lagic remnant inside Shan-Thai Block: evidence from radiolarian biostratigra-

phy. Science in China Series D: Earth Sciences, 47(12): 1113–1119.

doi:10.1360/03yd0085

Feng, Q. L., Yang, W. Q., Shen, S. Y., et al., 2008. The Permian seamount strati-

graphic sequence in Chiang Mai, North Thailand and its tectogeographic signi-

ficance. Science in China Series D: Earth Sciences, 51(2): 1768–1775.

doi:10.1007/s11430-008-0121-5

Gao, S., Ling, W. L., Qiu, Y., et al., 1999. Contrasting geochemical and Sm–Nd

isotopic compositions of Archeanmetasediments from the Kongling high-grade

terrain of the Yangtze craton: evidence for cratonic evolution and redistribution

of REE during crustal anatexis.GeochimicaetCosmochimicaActa, 63:

2071–2088. doi:10.1016/S0016-7037(99)00153-2

Guangdong BGMR (Bureau of Geology and Mineral Resources of Guangdong

Province), 1988. Regional Geology of Guangdong Province. Geol. Pub. House,

Beijing: 1–602(in Chinese)

He, H. Y., Wang, Y. J., Liu, H. C., et al., 2016a. Geochemical and geochronological

characteristics of the Fengmu mafic rocks in Hainan and its tectonic implica-

tions. ActaScientiarumNaturaliumUniversitatisSunyatseni, 55(4): 146–157.

doi:10.13471/j.cnki.acta.snus.2016.04.023 (in Chinese with English abstract)

He, H. Y., Wang, Y. J., Zhang, Y. Z., et al., 2016b. Extremely depleted Carbonifer-

ous N-MORB Metabasite at the Chenxing Area (Hainan) and its Geological.

Earth Science, 41(8): 1361–1375. doi:10.3799/dqkx.2016.108

He, H. Y., Wang, Y. J., Zhang, Y. H., et al., 2017. Fingerprints of the Paleotethyan

back-arc basin in Central Hainan, South China: Geochronological and geo-

chemical constraints on the Carboniferous metabasites. International Journal of

Earth Sciences. Inpress

Hennig, D., Lehmann, B., Frei, D., et al., 2009. Early Permian seafloor to continental

arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data

from the Southern Lancangjiang zone, Yunnan, China. Lithos, 113: 408–422.

doi:10.1016/j.lithos.2009.04.031

Hsű, K. J., Li, J. L., Chen, H. H., et al., 1990. Tectonics of South China: key to

tectonics of South China: key to understanding west Pacific geology. Tectono-

physics, 193: 9–39

Hoffman, P. F., Ranalli, G., 1988. Archean oceanic flack tectonics. Geophysical

Research Letters, 15 (10): 1077–1080. doi:10.1029/GL015i010p01077

Hu, N., Zhang, R. J., Fang, S. N., 2001. The Devonian sequence in Hainan Island

and the D–C boundary. Hubei Geology and Mineral Resources, 15 (4): 1–6.(in

Chinese with English abstract)

Janvier, P., Tong-Dzuy, T., Nhat, T. D., 1994. Devonian fishes from Vietnam: new

data from central Vietnam and their paleobiogeographical significance. In:

Angsuwathana, P., Wongwanich, T., Tansathian, W., Wongsomsak, S., Tulya-

tid, J. (Eds.), Proceedings of the International Symposium on Stratigraphic

Correlation of Southeast Asia. Department Mineral Resource Bangkok, Thail-

and: 62–68

Jian, P., Liu, D., Kröner, A., et al., 2009a. Devonian to Permian plate tectonic cycle

of the Paleo-Tethys Orogen in southwest China (I): Geochemistry of ophiolites,

arc/back-arc assemblages and within-plate igneous rocks. Lithos, 113: 748–766.

doi:10.1016/j.lithos.2009.04.004

Jian, P., Liu, D., Kröner, A., et al., 2009b. Devonian to Permian plate tectonic cycle

of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages

of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and

generation of the Emeishan CFB province. Lithos, 113:767–784.

doi:10.1016/j.lithos.2009.04.006

Jian, P., Wang, X., He, L., et al., 1998. U–Pb zircon dating of the Shuanggouophi-

olite from Xingping County, Yunnan Province. ActaPetrologicaSinica, 14:

207–212(in Chinese with English abstract)

Lai, C. K., Meffre, S., Crawford, A. J., et al., 2014. The Central Ailaoshanophiolite

and modern analogs. Gondwana Research, 26: 75–88.

doi:10.1016/j.gr.2013.03.004

Le Bas, M. J. L., Maitre, R. W. L., Streckeisen, A., et al., 1986. A chemical classifi-

cation of volcanic rocks based on the total alkali-silica diagram. Journal of Pe-

trology, 27(3): 745–750

Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in

South China: evidence for a Permian magmatic arc in the Hainan Island. Jour-

nal of Geology, 114: 341–353. doi:10.1086/501222

Li, X. H., Zhou, H. W., Chung, S. L., et al., 2002. Geochemical and Sm–Nd isotopic

characteristics of metabasaltic from Central Hainan Island, South China and

their tectonic significance. The Island Arc, 11: 193–205.

doi:10.1046/j.1440-1738.2002.00365.x

Li, Z. X., Li, X. H., 2007. Formation of the 1300-km-wide intracontinentalorogen

and postorogenic magmatic province in mesozoic south china: a flat-slab sub-

duction model. Geology, 35(2).179-182 doi:10.1130/G23193A.1

Liu, H. C., Wang, Y. J., Cawood, P. A., et al., 2015. Record of tethyan ocean closure

and indosinian collision along the ailaoshan suture zone (SW Chi-

na). Gondwana Research, 27(3): 1292–1306. doi:10.1016/j.gr.2013.12.013

Liu, Y., Liu, H. C., Li, X. H., 1996. Simultaneous and precise determination of 40

trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552–558

Long, W. G., Fu, C. R., Zhu, Y. H., 2002. Disintegration of the Baoban Group in

Huangzhuling area of eastern Hainan Island. Journal of Stratigraphy, 26:

212–215

Long, W. G., Tong, J. N., Zhu, Y. H., et al., 2007. Discovery of the Permian in the

Danzhou-Tunchang Area of Hainan Island and its geological significance. Ge-

ology and Mineral Resources of South China, 1: 38–45.

doi:10.3969/j.issn.1007-3701.2007.01.007

Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft

Excel.Berkeley Geochronology Center, California, Berkeley

Ma, D. Q., Huang, X. D., Xiao, Z. F., et al., 1998. Crystallized Basement in Hainan

Island: Sequence and Epoch of the Baoban Group. China University of Geos-

ciences Press, 1–52(in Chinese with English abstract)

Maluskiaa, H., Lepvrierb, C., Leyreloupa, A., et al., 2005. 40Ar-39Ar geochronolo-

gy of the charnockites and granulites of the KanNack complex, Kon Tum Mas-

sif, Vietnam. Journal Asian Earth Science, 25(4): 653–677.

doi:10.1016/j.jseaes.2004.07.004

Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: tectonic and palaeo-

geographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66:

1–33. doi:10.1016/j.jseaes.2012.12.020

Metcalfe, I., 2011. Tectonic framework and Phanerozoic evolution of Sundaland.

Gondwana Research, 19: 3–21. doi:10.1016/j.gr.2010.02.016

Metcalfe, I., 2002. Permian tectonic framework and palaeogeography of SE Asia.

Journal of Asian Earth Sciences, 20: 551–566. doi:S1367-9120(02)00022-6

Shubo Li, Huiying He, XinQianandYuejun Wang 14

Metcalfe, I., 1998. Palaeozoic and Mesozoic geological evolution of the SE Asian

region: multidisciplinary constraints and implications for biogeography. Bio-

geography and Geological Evolution of SE Asia: 25–41

Metcalfe, I., 1996. Gondwanaland dispersion, Asian accretion and evolution of

eastern Tethys. Australian Journal of Earth Sciences, 43: 605–623.

doi:10.1016/S0899-5362(97)83547-6

Metcalfe, I., Aung, K. P., 2014. Late Tournaisianconodonts from the Taungnyo

group near Loi Kaw, Myanmar (Burma): implications for Shan Plateau strati-

graphy and evolutionof the Gondwana-derived Sibumasuterrane. Gondwana

Research, 26(26): 1159–1172. doi:10.1016/j.gr.2013.09.004

Pearce, J. A., 1983. Trace Element Characteristics of Lavas from Destructive Plate

Boundaries. Andesite, 525–548

Pearce, J. M., Peate, D. W., 1994. Tectonic implications of the composition of

volcanic arc magmatism. Annual Review of Earth and Planetary Sciences, 23:

251–285

Qian, X., Feng, Q. L., Wang, Y. J., et al., 2016. Geochronological and geochemical

constraints on the mafic rocks along the LuangPrabang zone: carboniferous

back-arc setting in northwest Laos. Lithos, 245: 60–75.

doi:10.1016/j.lithos.2015.07.019

Qian, X., Feng, Q. L., Yang, W. Q., et al., 2015. Arc-like volcanic rocks in NW Laos:

Geochronological and geochemical constraints and their tectonic implications.

Journal of Asian Earth Sciences, 98: 342–357.

doi:10.1016/j.jseaes.2014.11.035

Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between

slab-derived melts and peridotite in the mantle wedge: experimental constraints

at 3.8 Gpa. Chemical Geology, 160(4): 335–356. doi:S0009-2541(99)00106-0

Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial melting of amphibole, eclo-

gite and the origin of Archaeantrondhjemites and tonalites. Precambrian Re-

search, 51: 1–25. doi:10.1016/0301-9268(91)90092-0

Searle, M. P., 2011. Alkaline peridotie, Pyrodotite, Pyroxenite, and gabbroic intru-

sions in the Oman Mountains, Arabia. Canadian Journal of Earth Sciences,

21(21): 396–406.

Sengör, C., A., M., 1976. Collision of irregular continental margins: implications for

foreland deformation of alpine-type orogens. Geology, 4(12):

779–782.doi:10.1130/0091-7613(1976)4<779:COICMI>2.0.CO;2

Shinjo, R., Chung, S. L., Kato, Y., et al., 1999. Geochemical and Sr–Nd isotopic

characteristics of volcanic rocks from the Okinwa Trough and Ryukyu Arc:

implications for the evolution of a young, intracontinental back arc basin.

Journal Geophysical Research, 104: 10591–10608

Shu, L. S., Ping, D., Yu, J. H., et al., 2008. The age and tectonic environment of the

rhyolitic rocks on the western side of Wuyimountain,south China. Science in

China, 51(8): 1053–1063

Shui, T., 1987. Tectonic framework of the southeastern China continental basement.

ScientiaSinica B30: 14–421(in Chinese with English abstract)

Sone, M., Metcalfe, I., 2008. Parallel Tethyan sutures in mainland Southeast Asia:

new insights for Palaeo-Tethys closure and implications for the Indosinian

orogeny. ComptesRendus Geosciences, 340: 166–179.

doi:10.1016/j.crte.2007.09.008

Stolz, A. J., Varne, R., Davies, G. R., 1990. Magma source components in an

arc-continent collision zone: the flores-lembata sector, sunda arc, indonesia.

Contributions to Mineralogy and Petrology, 105(5): 585–601.

doi:10.1007/BF00302497

Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic

basalts: implication for mantle composition and processes. In: Sauders, A.D.,

Norry, M.J. (eds). Magmatism in the Ocean Basins. Geol. Soc. (London), 42:

313–345

Tang, Z. Y., Feng, S. N., 1998. Discovery of the Permian system in the Daling area

of Hainan Island and its significance. Journal of Stratigraphy, 3: 232–240

Tayor, S. R., McLennan, S., 1995. The Geochemical evolution of the continental

crust. Reviews of Geophysics, 33: 241–265

Taylor, B., Martinez, F., 2003. Back-arc basin basalt systematics. Earth & Planetary

Science Letters, 210(3–4): 481–497. doi:10.1016/S0012-821X(03)00167-5

Tegner, C., 1997. Iron in plagioclase as a monitor of the differentiation of the skaer-

gaard intrusion. Contributions to Mineralogy and Petrology, 128(1): 45-51.

doi:10.1007/s004100050292

Thanh, T. D. Than, D. D., Nguyen H. H., et al., 2007. Discovery of the fossilife-

rousCuBrei Formation (Lower Devonian) in the Kon Tum Block (South Viet

Nam). Journal of Asian Earth Sciences, 29 (1): 127–135.

doi:10.1016/j.jseaes.2006.02.006

Tian, L., Castillo, P. R., Hawkins, J. W., et al., 2008. Major and trace element and

Sr–Nd isotope signatures of lavas from the Central Lau Basin: Implications for

the nature and influence of subduction components in the back-arc mantle.

Journal of Volcanology and Geothermal Research, 178: 657–670.

doi:10.1016/j.jvolgeores.2008.06.039

Vượng, N., Hansen, B. T., Wemmer, K., et al., 2013. U/Pb and Sm/Nd dating on

ophiolitic rocks of the Song Ma suture zone (northern Vietnam): Evidence for

upper paleozoicpaleotethyan lithospheric remnants. Journal of Geodynamics,

69: 140–147. doi:10.1016/j.jog.2012.04.003

Wang, X. F., Ma, D. Q., Jiang, D. H., 1991. Geology of Hainan Island: Structural

Geology. Geological Publish House, Beijing(in Chinese)

Wang, X. F., Ma, D. Q., Jiang, D. H., 1992. Geology of Hainan Island: Stratum and

Paleontology. Geological Publish House, Beijing(in Chinese)

Wang, X.F, Metcalfe, I., Jian, P., et al., 2000. The jinshajiang suture zone:tectono-str

atigraphic subdivision and revision of age. Science China Earth Sciences,

43(1): 10–22. doi:10.1007/BF02877827

Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007. Zircon U–Pb geochronology of

gneisses in Yunkai Mountains and its implications on the Caledonian event in

South China. Gondwana Research, 12(4): 404–416.

doi:10.1016/j.gr.2006.10.003

Wang, Y. J, Fan, W., Zhang, Y., et al., 2004. Geochemical, 40Ar/39Ar geochrono-

logical and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic

dikes from the southern Taihang Mountains and implications for the ca.

1800Ma event of the North China Craton. Precambrian Research, 135: 55–77.

doi:10.1016/j.precamres.2004.07.005

Wang, Y. J., He, H. Y., Cawood, P. A., et al., 2016. Geochronological, elemental

and Sr-Nd-Hf-O isotopic constraints on the petrogenesis of the Triassic

post-collisional granitic rocks in NW Thailand and its Paleotethyan implica-

tions. Lithos, 266: 264-286. doi:10.1016/j.lithos.2016.09.012

Wang, Y. J., He H. Y., Zhang, Y. Z., et al., 2017. Origin of Permian OIB-like basalts

in NW Thailand and implication on the Paleotethyan Ocean. Lithos, 274-275:

93-105. doi:10.1016/j.lithos.2016.12.021

Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013. Geochronological, geo-

chemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic

arc-back-arc system in South China and its accretionary assembly along the

margin of Rodinia. Precambrian Research, 231: 343–371.

doi:10.1016/j.precamres.2013.03.020

Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2010. Petrogenesis of late Triassic

post-collisional basaltic rocks of the Lancangjiang tectonic zone, southwest

China, and tectonic implications for the evolution of the eastern Paleotethys:

geochronological and geochemical constraints. Lithos, 120: 529–546.

doi:10.1016/j.lithos.2010.09.012

Winchester, J. A., Floyd, P. A., 1977. Geochemical discrimination of different

magma series and their differentiation products using immobile elements.

Chemical Geology, 20: 325–343. doi:10.1016/0009-2541(77)90057-2

Xia, B. D., Yu, J. H., Fang, Z., et al., 1990. Geochemical characteristics and origin of

the Hercynian–Indosinian granites of Hainan island, China. Geochimica, 4:

Carboniferous arc setting in Central Hainan: Geochronologi-cal and geochemical evidences on the andesitic and dacitic rocks 15

365–373(in Chinese with English abstract)

Xia, B. D., Shi, G. Y., Fang, Z., et al., 1991a. The late Palaeozoic rifting in Hainan

island, China. Acta Geological Sinica, 65: 103–115(in Chinese with English

abstract)

Xia, B. D., Yu, J. H., Fang, Z., et al., 1991b. Carboniferous bimodal volcanics in the

Hainan Island and the plate tectonic environments. Petrol. Mag., 7(1): 4–62.

Xia, X. P., Sun, M., Geng, H. Y., et al., 2011. Quasi-simultaneous determination of

U-Pb and Hf isotope compositions of zircon by excimer laser-ablation mul-

tiple-collector ICPMS. Journal of Analytical Atomic Spectrometry, 26:

1868–1871. doi:10.1039/C1JA10116A

Xie, W. Y., Wang, T. Z., Zhang, Y. W., et al., 2009. Characteristics and Dynamic

Analysis of Cenozoic Rifting and Magmatism in Southwest Qiongdongnan

Basin. GeotectonicaetMetallogenia, 33(2): 199–205.

doi:10.3969/j.issn.1001-1552.2009.02.002

Xu, D., Xia, B., Bachlinski, R., et al., 2008. Geochemistry and Sr-Nd isotope syste-

matics of metabasites in the Tunchang area, Hainan Island, South China: im-

plications for petrogenesis and tectonic setting. Mineralogy & Petrology,

92(3–4): 361–391.doi:10/1007/s00710-007-0198-0

Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A hybrid origin for the Qianan

A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence.

Lithos, 89: 89–106

Yang, W. Q., Qian, X., Feng, Q. L., et al., 2016. U-Pbgeochronologic evidence for

the evolution of Nan-Uttaradit suture zone in northern Thailand. Journal of

Earth Science, 27 (3): 378–390. doi:10.1007/s12583-016-0670-z

Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan orogen.

Annual Review of Earth and Planetary Sciences, 28: 211–280.

doi:10.1146/annurev.earth.28.1.211

Zhang, Y. M., Zhang, R. J., Yao, H. Z., et al., 1997. The Precambrian Crustal Tec-

tonic Evolution in Hainan Island. Earth Science-Journal of China University of

Geosciences, 22(4): 395–400(in Chinese with English abstract)

Zhang, F. F., Wang, Y. J., Chen, X. Y., et al., 2011. Triassic high-strain shear zones

in Hainan Island (South China) and their implications on the amalgamation of

the Indochina and South China Blocks: Kinematic and 40Ar/ 39Ar geochrono-

logical constraints. Gondwana Research, 9(4): 910–925.

doi:10.1016/j.gr.2010.11.002

Zhang, Y. Z., Wang, Y. J., Srithai, B., et al., 2016. Petrogenesis for the Chiang Dao

Permian high-iron basalt and its implication on the Paleotethyan Ocean in

NWThailand. Journal of Earth Science, doi:10.1007/s12583-015-0646-4

Zhang, R. Y., Lo, C. H., Li, X. H., et al., 2014. U–Pb dating and tectonic implication

of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam.

American Journal of Science, 314: 649–678. doi:10.2475/02.2014.07

Zhou, X. M., Li, X. H., 2000. Origin of Late Mesozoic igneous rocks in Southeas-

tern China: implications for lithosphere subduction and underplating of mafic

magmas. Tectonophysics, 326: 269-287. doi:10.1007/s12583-017-0755-3

Zi J.W., Cawood P.A., Fan W.M., et al., 2012. Contrasting rifting and subduction

related plagiogranites in the JinshajiangOphiolite, SW China and implications

for the Paleo-Tethys. Tectonics, 31(2): TC2012. doi:10.1029/2011TC002937