carboxylic acid derivatives

44
CARBOXYLIC ACID DERIVATIVES STRUCTURE Carboxylic acid derivatives are compounds that yield carboxylic acids upon hydrolysis. Different derivatives exist.

Upload: sugar

Post on 24-Feb-2016

75 views

Category:

Documents


0 download

DESCRIPTION

Carboxylic Acid Derivatives. Structure Carboxylic acid derivatives are compounds that yield carboxylic acids upon hydrolysis. Different derivatives exist. Nomenclature Their names are derived from the carboxylic acid names. A.Acid Halides Change the suffix - ic acid to - yl halide. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Carboxylic Acid Derivatives

CARBOXYLIC ACID DERIVATIVES

STRUCTURE Carboxylic acid derivatives are compounds that yield carboxylic acids upon hydrolysis. Different derivatives exist.

Page 2: Carboxylic Acid Derivatives
Page 3: Carboxylic Acid Derivatives

NOMENCLATURE Their names are derived from the carboxylic acid names. A. Acid HalidesChange the suffix -ic acid to -yl halide.Change the suffix -carboxylic acid to -carbonyl halide.

Page 4: Carboxylic Acid Derivatives

B. EstersName the alkyl group attached to oxygen first and then (after a space) name the acyl group by changing the -ic acid to -ate.Those attached to rings are named using the suffix -carboxylate.

Page 5: Carboxylic Acid Derivatives

C. Acid AnhydridesIf symmetrical, change the acid ending of the carboxylic acid to the word anhydride.When the groups are different, list the names of the two acids alphabetically and add the word anhydride.

Page 6: Carboxylic Acid Derivatives

D. AmidesWith unsubstituted -NH2 group, drop –ic acid or -oic acid from the name of the parent acid and add -amide, or by replacing the -carboxylic acid ending with -carboxamide If  the N  is  further substituted,  identify the substituent groups  (preceded by “N”) and then the parent amide.

Page 7: Carboxylic Acid Derivatives

E. NitrilesAdd the suffix -nitrile to the name of the parent hydrocarbon chain (including the triply bonded carbon of CN).Replace the -ic acid or -oic acid name of the corresponding carboxylic acid by -onitrile.Carboxylic acid substituents attached to rings are named using the suffix -carbonitrile.Name as an alkyl cyanide (functional class name).

Page 8: Carboxylic Acid Derivatives
Page 9: Carboxylic Acid Derivatives
Page 10: Carboxylic Acid Derivatives
Page 11: Carboxylic Acid Derivatives
Page 12: Carboxylic Acid Derivatives

PHYSICAL PROPERTIES Boiling points

Acid halides, acid anhydrides and esters of same MM have roughly same BP, affected by  polarity of carbonyl group, no H-bonding.

Amides have strong H-bonding; they have higher BP.

Page 13: Carboxylic Acid Derivatives

Solubility in waterThey form H-bonds with water.Acid halides, acid anhydrides and esters up to 4-5 carbons are quite soluble.Amides are more soluble up to 6-7 carbons; have extensive H-bonds with H2O.Most low MM acid halides and anhydrides decompose quite rapidly when mixed with 

H2O. Odours

Many  esters  have  pleasant  odours,  and  they  are  widely  used  as  flavours  and fragrances.  

Page 14: Carboxylic Acid Derivatives

REACTIVITY

Carboxylic  acid  derivatives  react  with  nucleophiles  because  they  contain  an  electrophilic unhindered  carbonyl  carbon.  Substitution  occurs,  not  addition,  because  they  have  a  leaving group on the carbonyl carbon.

Page 15: Carboxylic Acid Derivatives

The order of reactivity depends on the basicity of the substituent attached to the acyl group. 

Weak  base  is  better  at withdrawing  electrons  inductively  from  the  carbonyl  carbon; rendering  the  carbonyl  carbon  extremely  electrophilic  (more  susceptible  to nucleophilic attack). 

The weaker  the  basicity  of  the  substituent  attached  to  the  acyl  group,  the  less  the carboxylic  acid  derivative  is  stabilized by electron delocalization,  the more  reactive  it will be.

Weak bases are easier to eliminate (good leaving groups).

Page 16: Carboxylic Acid Derivatives

A result of inductive and resonance effects.

Acid halides are the most reactive and amides are the least reactive.

inductive effects are not significant

Page 17: Carboxylic Acid Derivatives

A carboxylic acid derivative can be converted into a less reactive carboxylic acid derivative, but not into one that is more reactive.

When a nucleophile attacks a carboxylic acid derivative, a reaction can occur in which the nucleophile replaces the leaving group: a nucleophilic acyl substitution.

Page 18: Carboxylic Acid Derivatives

If  the  nucleophile  is  negatively  charged,  it  attacks  the  carbonyl  carbon,  forming  a  tetrahedral intermediate. When the tetrahedral intermediate collapses, the weaker base is eliminated.

Page 19: Carboxylic Acid Derivatives

If  the  nucleophile  is  neutral,  the mechanism  has  an  additional  step,  the  removal  of  a  proton from the tetrahedral intermediate.

Page 20: Carboxylic Acid Derivatives

ACID HALIDES

A. PreparationAcid chlorides can be prepared from carboxylic acids and thionyl chloride. Less frequently, PCl3 or PCl5 are used.

Acid bromides can be synthesized by using phosphorus tribromide.

Page 21: Carboxylic Acid Derivatives

B. ReactionsAcid chlorides are precursors for most of the other acid derivatives.

HCl is usually formed as a by-product. A weak base like pyridine (C5H5N) is added to the reaction mixture to remove the strong acid (HCl), forming an ammonium salt.

Page 22: Carboxylic Acid Derivatives

ACID ANHYDRIDES

A. PreparationUsually made from acid chlorides and carboxylic acids.The base pyridine (C5H5N) is added to neutralize the HCl formed during the reaction which may react with the anhydride product

Sodium salts of carboxylic acids may be used instead of the carboxylic acids.No pyridine is necessary since HCl is not formed.

Page 23: Carboxylic Acid Derivatives

Heat cyclic dicarboxylic acids to form five- or six-membered rings (cyclic anhydrides).Water is eliminated and the ring is formed.

Page 24: Carboxylic Acid Derivatives

B. ReactionsGenerally analogous to the reactions of acid chlorides. Reactions are usually slower.A carboxylate ion is the leaving group, producing a carboxylic acid (instead of chloride ion).

Page 25: Carboxylic Acid Derivatives

ESTERS

A. PreparationAcid  chlorides  react with  alcohols  in  the presence of  pyridine or NaOH  to  give esters  in  good yield.Mechanism  is nucleophilic addition of  the alcohol  to  the carbonyl as chloride  ion  leaves,  then deprotonation.

Page 26: Carboxylic Acid Derivatives

Fischer esterification: treatment of a carboxylic acid with an alcohol  in the presence of an acid catalyst.The reaction is an equilibrium, so it is driven to the right by using excess alcohol or by removing water as it is formed.

Page 27: Carboxylic Acid Derivatives

Mechanism of the Fischer esterification:

Page 28: Carboxylic Acid Derivatives
Page 29: Carboxylic Acid Derivatives

B. ReactionsEsters are hydrolyzed with water in the presence of either acid or base to form carboxylic acids or carboxylate anions, respectively.

Page 30: Carboxylic Acid Derivatives

An ester reacts with an alcohol to form a new ester and a new alcohol. 

This particular alcoholysis reaction is also called a transesterification reaction because one ester is converted to another ester (useful in converting liquid ester to solid ester; for identification by MP methods).

Page 31: Carboxylic Acid Derivatives

Esters also react with amines to form amides, using ammonia, 1° or 2° amines: aminolysis.

Page 32: Carboxylic Acid Derivatives

Reduction to primary alcohols.

Page 33: Carboxylic Acid Derivatives

Esters react with 2 equivalents of a Grignard reagent to yield a 3° alcohols; 2 step reaction.

Page 34: Carboxylic Acid Derivatives

AMIDES

A. PreparationUsually  from  the  reaction  of  acid  chlorides  with  NH3,  primary  (RNH2)  and  secondary  amines (R2NH).Reaction with tertiary amines (R3N) gives unstable species that cannot be isolated.A base (NaOH) is added to remove HCl by-product.

Page 35: Carboxylic Acid Derivatives

B. ReactionsNucleophilic acyl substitution reactions proceed slowly. Need a good nucleophile and a catalyst.

Hydrolysis is the most common type.

Page 36: Carboxylic Acid Derivatives

Mechanism: acid-catalyzed hydrolysis of an amide to a carboxylic acid 

Page 37: Carboxylic Acid Derivatives

Mechanism: base-promoted hydrolysis of an amide to a carboxylic acid 

Page 38: Carboxylic Acid Derivatives

Dehydration: primary amides may be "dehydrated" to nitriles (cyano cpds) using phosphorus pentoxide (P2O5 or P4O10)

Page 39: Carboxylic Acid Derivatives

SPECTROSCOPY

A. Infrared spectroscopy

Page 40: Carboxylic Acid Derivatives
Page 41: Carboxylic Acid Derivatives
Page 42: Carboxylic Acid Derivatives

B. 1H NMRProtons on the  carbon to the carbonyl absorb at 2-2.5 ppm.All acid derivatives absorb in the same range so PMR does not distinguish them from each other.The chemical shift of an amide N-H proton  is typically between 5-8 ppm.  It  is broad and often not observed.

d= 4.1 q, J=7.2 Hz, 2H

d= 2.0s, 3H

d= 1.2t, J=7.2 Hz, 3H

C C

O

O C C

H

H HH

H

H

HH

Page 43: Carboxylic Acid Derivatives

d 3.42H, q, J= 7.0

d 1.13H, t, J= 7.0

d 2.03H, s

NH

O

CH3C N CH2CH3H

Page 44: Carboxylic Acid Derivatives

C. 13C NMRUseful for determining the presence or absence of a carbonyl group.Carbonyl carbon of the various acid derivatives absorb from 160 to 180 ppm.Nitriles give a peak at 115-120 ppm in their 13C NMR spectrum due to the sp hybridized carbon.