cardiac pharmacology

100
Cardiac Pharmacology Ted Williams Pharm D Candidate OSU/OHSU College of Pharmacy

Upload: syshe

Post on 23-Feb-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Cardiac Pharmacology. Ted Williams Pharm D Candidate OSU/OHSU College of Pharmacy. The big, scary picture. CNS. Baroreflex. I-1. α 2. Vagus Nerve. Preload. Afterload. α 1. GI Vasculature. B1. ANP. Aldosterone. B2. Renin. NO. M2 -. B1 +. Conductivity. Na↑ HCO3↓. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Cardiac Pharmacology

Cardiac Pharmacology

Ted WilliamsPharm D Candidate

OSU/OHSU College of Pharmacy

Page 2: Cardiac Pharmacology

The big, scary picture

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 3: Cardiac Pharmacology

Breaking it Down

• Direct Cardiac Agents• Peripheral Vascular Agents• Renal Agents

Page 4: Cardiac Pharmacology

Reality Check

• The pharmacology really isn’t that simple, but it is a helpful framework

Page 5: Cardiac Pharmacology

Direct Cardiac Agents

1. Beta Blockers (BB)2. Non-Dihydropyridine Calcium Channel

Blockers (Non-DHP CCB)3. Digitalis Glycoside (De-GOX-in)4. Aldosterone antagonists– Well explain why this is here later

Page 6: Cardiac Pharmacology

Peripheral Vascular Agents

1. Dihydropyridine CCB2. Nitrates3. Hydralazine4. Phosphodiesterase Inhibitors5. Alpha 1 Antagonists6. Phentolamine

Page 7: Cardiac Pharmacology

Renal Agents

1. ACE Inhibitors2. Angiotensin 2 Inhibitors3. Diuretics

i. Carbonic Anhydrase Inhibitorsii. Loopiii. Thiazide Diureticsiv. Aldosterone Antagonistsv. Potassium Sparing Diuretics

Page 8: Cardiac Pharmacology

Mixed Bag

• Selective I-1 Imidazoline Receptor Agonists

Page 9: Cardiac Pharmacology

Hypertension in 30 seconds

• Excessive vascular volume• Low Compliance of vasculature• Increased activity of the Renin Anginotensin

System

Page 10: Cardiac Pharmacology

Ischemic Heart Disease in 30 Seconds

• Cardiac Muscle has insufficient oxygen • Two Solutions– Reduce cardiac Oxygen demand• Increase Preload• Reduce Contractility• Reduce Afterload

– Increase cardiac oxygen supply• Increase Coronary Flow• Increase Oxygen extraction

Page 11: Cardiac Pharmacology

Heart Failure in 30 Seconds

• Chronic overwork of the heart muscle causes hypertrophic remodeling

• Reduced cardiac output• Fluid retention

Page 12: Cardiac Pharmacology

Cardiac Fluid Dynamics in 30 Seconds

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 13: Cardiac Pharmacology

Renin Angiotensin Pathway

Page 14: Cardiac Pharmacology

Direct Cardiac Agents – BB

• Selectivity– Beta 1 Selective– Beta 1/2 Non-Selective– Alpha 1, Beta 1/2 Non-Selective– Alpha 2, Beta 1/2 Non-Selective

• Intrinsic Sympathomimetic Activity (ISA)– ISA • No long term mortality benefit Post MI • Non-ISA do have benefit post MI

– Non-ISA

Page 15: Cardiac Pharmacology

Beta Blocker Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 16: Cardiac Pharmacology

Beta Blocker Targets

• Beta 1 blockade– “Cardioselective”– Inhibits sympathetic contractility, inotropy, and

conductivity of the heart– Inhibits sympathetic renin secretion in the kidneys

• Best Tolerated Beta 1 Blockers– Atenolol – Acebutolol – Bisoprolol – Metoprolol

Page 17: Cardiac Pharmacology

Beta Blocker Targets

• Beta 2 blockade– Beta 2 receptors inhibit smooth muscle

contractions in the lungs and GI tract– Beta 2 blockade is useful for restricting hepatic

blood flow for patient with Liver Cirrhosis, but generally not a therapeutic effect for CVD

• Commonly Used Beta 2 Blockers– Propranolol – Nadolol

Page 18: Cardiac Pharmacology

Beta Blockers and Hypertension• Primarily a function of Beta 1 Blockade

– Inhibition of sympathetic cardiac stimulation of the SA node– Inhibition of Renin secretion

• Secondary effects of Beta 2 Blockade– Vasodilation of GI Vasculature

• Place in Therapy– Second line monotherapy for uncomplicated hypertension– Important agent for Hypertension with other cardiovascular co-

morbidities• Stroke• MI• CHF

Page 19: Cardiac Pharmacology

Beta Blockers and Ischemic Heart Disease

• Reduces Cardiac Oxygen Demand by limiting maximum stimulation (Heart Rate)

• Place in Therapy– First Line for Stable Angina– Decreases Morbidity (Reduced Symptoms)– Decreases Mortality (Prolongs life)– Only Non-ISA

Page 20: Cardiac Pharmacology

Beta Blockers and Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 21: Cardiac Pharmacology

Beta Blockers and Heart Failure• Particular Effects

– Decreased Heart Rate– Decreased Contractility– Decreased Afterload– Increased Preload– Increased Stroke Volume via Preload

• Net Effect– Increased Cardiac Output

• Place in Therapy– Stage B, C (myocardial damage present)– Improves Morbidity

Page 22: Cardiac Pharmacology

Targets for Mixed Alpha/Beta Blockers

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 23: Cardiac Pharmacology

Targets for Mixed Alpha/Beta Blockers

• Alpha 1 Blockade– Peripheral Vasodilation by inhibition of Gq Signaling pathway

• Additional Reduced Afterload– Place In therapy

• Heart Failure in particular– Examples

• Carvedilol (alpha-1, beta 1/2)• Labetalol (alpha-1, beta 1/2)

• Alpha 2 Blockade– CNS Inhibition the inhibition of the baroreflex

• Inhibits sympathetic increases in blood pressure– PNS inhibition of the negative feedback on vagal cardiac stimulation

• Alpha 2 Agonists– Stimulates Negative feedback on Beta 1 neurons controlling Heart Rate

• Enhances Beta Blockade– Celiprolol (alpha-2 agonist, beta-1 blockade)

Page 24: Cardiac Pharmacology

Non-DHP CCB Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 25: Cardiac Pharmacology

Non-DHP CCB Targets

• Use dependent tissue selectivity– Binds to the open state of the channel– The more often the channel opens, the more drug

exposure and therefore the more tissue “selective”

– Peripheral vasodilation present, but not as strong as with DHP CCB

• Cardioselective• Verapamil• Diltiazem

Page 26: Cardiac Pharmacology

Non-DHP CCB and Hypertension

• First line monotherapy, with a few restrictions• BP Reductions primarily due to decreased

heart rate and contractility reducing cardiac output

Page 27: Cardiac Pharmacology

Non-DHP CCB and Ischemic Heart Disease

• Reduces Contractility• Reduces Heart Rate• Second line behind Beta Blockers for symptom

relief• Not strongly supported to improve prognosis• First line for vasospastic Angina• Use with extreme caution in combination with

beta blockers due to risk of AV Block

Page 28: Cardiac Pharmacology

Non-DHP CCB and Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 29: Cardiac Pharmacology

Non-DHP CCB and Heart Failure• Specific Effects

– Decreased Contractility– Decreased Conductivity– Decreased Automaticity

• Net Effects– Decreased cardiac output

• Increases Edema via peripheral vasodilation, a major no-no for HF patients

• Place in Therapy• Contraindicated in Systolic Heart Failure (most common kind of Heart

Failure)• Should be discontinued by Stage C Heart failure, even with compelling

indications

Page 30: Cardiac Pharmacology

Digitalis Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 31: Cardiac Pharmacology

Digitalis Targets

• Increases cardiac contractility by increasing calcium levels– Cellular target is Sodium Potassium ATPase which

is loosely coupled with Sodium Calcium Exchanger• Sympatholytic suppression of Renin

Angiotensin System• Increases Parasympathetic Vagal Tone– Reduces Preload– Reduces Heart Rate

Page 32: Cardiac Pharmacology

Digitalis And Hypertension

• Neutral Effects on Blood Pressure• …Move along, nothing to see here

Page 33: Cardiac Pharmacology

Digitalis And Ischemic Heart Disease

• The improved cardiac function of Digitalis glycoside is only present in the hypertrophied heart.

• Mason, D. Digitalis and Angina Pectoris. Chest 1973;64;415-416

Page 34: Cardiac Pharmacology

Digitalis And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 35: Cardiac Pharmacology

Digitalis And Heart Failure• Heart Failure is the only real use…• Specific Effects– Increased Contractility dominates– Decreased Preload– Decreased Heart Rate

• Net Effect– Increased Cardiac Output

• Symptom management only– No improvement in mortality– Although RADIANCE and PROVED demonstrated worsening

outcomes when Digitalis was discontinued

Page 36: Cardiac Pharmacology

Aldosterone Antagonists Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 37: Cardiac Pharmacology

Aldosterone Antagonists Targets

• Blocks Collagen deposition (fibrosis) in the myocardium

• Minor Potassium sparing diuresis by blocking sodium reabsorption in the distal convoluted tubules and collecting ducts (potassium sparing)

• Examples– Spironolactone– Eplerenone

Page 38: Cardiac Pharmacology

Aldosterone Antagonists And Hypertension

• Minor blood pressure effects due to diuresis• Side effects limit efficacy– Gynecomastia in men due to testosterone

production antagonism

Page 39: Cardiac Pharmacology

Aldosterone Antagonists And Ischemic Heart Disease

• Where’s the MOA?

Page 40: Cardiac Pharmacology

Aldosterone Antagonists And Heart Failure

• Decrease in Preload due to decreased blood pressure

• Real benefit is the inhibition of myocardial fibrosis

• 25mg QD with no titration

Page 41: Cardiac Pharmacology

Peripheral Vascular Agents

1. Dihydropyridine CCB (DHP-CCB)2. Nitrates3. Hydralazine4. Phosphodiesterase Inhibitors (PDE)5. Alpha 1 Antagonists6. Phentolamine

Page 42: Cardiac Pharmacology

DHP-CCB Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 43: Cardiac Pharmacology

DHP-CCB Targets

• State Dependent Binding– Bind to the inactive state of the channel– The less active the tissue, the greater selectivity

for the tissue• Arterial vascular smooth muscle relaxation– Reducing Afterload– Some Baroreflex triggering

Page 44: Cardiac Pharmacology

DHP-CCB and Hypertension

• First line monotherapy• Preferred over Non-DHP for patients with HF• Preferred over Non-DHP for patients taking BB

Page 45: Cardiac Pharmacology

DHP-CCB and Ischemic Heart Disease

• Reduces Afterload• Second line after Beta Blockers• Improves morbidity only–Mortality benefit not adequately demonstrated

• Preferred in patients with HF over Non-DHP

Page 46: Cardiac Pharmacology

DHP-CCB and Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 47: Cardiac Pharmacology

DHP-CCB and Heart Failure

• Reduces Afterload• Minor effects on Contractility, Heart Rate, and

Conductivity• Net effect is a reduction of cardiac output• Increases Edema via peripheral vasodilation, a

major no-no for HF patients

Page 48: Cardiac Pharmacology

Nitrate Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 49: Cardiac Pharmacology

Nitrate Targets

• Peripheral Vasodiation by promoting Nitric Oxide Release1. Veins2. Arteries3. Arterioles

• Decrease Preload

Page 50: Cardiac Pharmacology

Nitrate And Hypertension

• Not particularly helpful

Page 51: Cardiac Pharmacology

Nitrate And Ischemic Heart Disease

• Short acting first line for Angina Attacks• Long acing second line after Beta Blockers for

Symptom Relief

Page 52: Cardiac Pharmacology

Nitrate And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 53: Cardiac Pharmacology

Nitrates And Heart Failure

• Decreases Preload• Not for monotherapy• Combine with Hydralazine (as BiDil), indicated

in State C Heart Failure–More on that next…

Page 54: Cardiac Pharmacology

Hydralazine Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 55: Cardiac Pharmacology

Hydralazine Targets

• MOA not well understood• May affect calcium mobilization• May increase Nitric oxide production• Arterial vasodilation– Generally triggers baroreflex– Reduces Afterload

Page 56: Cardiac Pharmacology

Hydralazine And Hypertension

• May be used for refractory hypertension• Baroreflex limits use

Page 57: Cardiac Pharmacology

Hydralazine And Ischemic Heart Disease

• No data for use…

Page 58: Cardiac Pharmacology

Hydralazine And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 59: Cardiac Pharmacology

Hydralazine And Heart Failure

• Combination of Hydralazine and Isosorbide Dinitrate (BiDil)– Hydralazine decreases Afterload– Nitrate decreases Preload– Combination Decreases mortality and

hospitalizations–Mechanism not well understood

Page 60: Cardiac Pharmacology

PDE Inhibitor Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 61: Cardiac Pharmacology

PDE Inhibitor Targets

• Increases cGMP levels• Increases Contractility (Inotropy)– Increases Calcium Influx – Increases Calcium release from the SR via RyR channels

• Peripheral vasodiation by inhibition of smooth muscle contractions– That means decreased Afterload– Some decrease in Preload secondary to afterload

reductions, but that’s standard stuff• Rapid Resistance develops with continuous use

Page 62: Cardiac Pharmacology

PDE Inhibitors And Hypertension

• No data for use…

Page 63: Cardiac Pharmacology

PDE Inhibitors And Ischemic Heart Disease

• Mechanistic support not there

Page 64: Cardiac Pharmacology

PDE Inhibitors And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 65: Cardiac Pharmacology

PDE Inhibitors And Heart Failure• Specific Effects

– Increased Contractility– Decreased Afterload

• Net effect– Increased Cardiac Output

• Clinical data– No demonstrated benefits over Digitalis– Increased mortality– Increased Arrhythmia– Rapid Tolerance

• Place in therapy– Some suggest there use for acute decompensated heart failure, but no clear

support

Page 66: Cardiac Pharmacology

Alpha 1 Antagonist Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 67: Cardiac Pharmacology

Alpha 1 Antagonist Targets & Place in Therapy

• Inhibition of sympathetic simulation of vascular smooth muscle– That means reduced Afterload!

• Really use for BPH, not CVD– But has some synergistic effects for people with BPH and CVD– Reduced BP– Reduced Afterload & increased Cardiac Output

• Examples– Prazosin– Doxazosin– Terazosin– Tamsulosin

Page 68: Cardiac Pharmacology

Renal Agents

1. ACE Inhibitors2. Angiotensin 2 Inhibitors (ARBs)3. Diuretics

i. Carbonic Anhydrase Inhibitorsii. Loopiii. Thiazide Diureticsiv. Aldosterone Antagonistsv. Potassium Sparing Diuretics

Page 69: Cardiac Pharmacology

ACE Inhibitor Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 70: Cardiac Pharmacology

ACE Inhibitor Targets• Inhibition of Angiotensin Converting Enzyme

– Inhibition of the conversion of Angiotensin I to Angiotensin II– Inhibition of the Degredation of Bradykinins– Cough

• Peripheral Vasodilation– ATII causes peripheral vasoconstriction

• Reduced GFR– ATII preferential activity on Efferent arterioles

• Reduced Antidiuretic Hormone (ADH) Production– Reduced fluid volume

• Reduced Aldosterone Production– Reduced fluid volume

Page 71: Cardiac Pharmacology

ACE Inhibitor And Hypertension

• First line Monotherapy• May synergistic effects with nephropathy,

diabetes, kidney diease, MI, and HF

Page 72: Cardiac Pharmacology

ACE Inhibitor And Ischemic Heart Disease

• Short Answer– Get them on and ACEI

• Long Answer– Strong evidence for improved prognosis in patient

with Diabetes or any CVD (HTN, MI, HF)–Moderate evidence for all patients for improved

prognosis

Page 73: Cardiac Pharmacology

ACE Inhibitor And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 74: Cardiac Pharmacology

ACE Inhibitor And Heart Failure

• Reduced Afterload• Possible benefit of reduced aldosterone

production & fibrosis• Clinical data supporting reduction in

Morbidity/Mortality• Indicated for Stage A with any compelling

indication (HTN, MI, Diabetes, etc)• Indicated in all other stages

Page 75: Cardiac Pharmacology

ARB Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 76: Cardiac Pharmacology

ARB Targets

• All ATII receptors– Theoretical benefit over ACEI, but not

demonstrated– No effect on bradykinins

• Physiological effects– Peripheral vasodilation– Reduced GFR and arteriole vasodilation– Reduced ADH production– Reduced Aldosterone Production– Reduced fluid volume

Page 77: Cardiac Pharmacology

ARB Place in therapy

• Second line – ACEI have more data and are cheaper, so start

with them

Page 78: Cardiac Pharmacology

Carbonic Anhydrase Inhibitor Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 79: Cardiac Pharmacology

Carbonic Anhydrase Inhibitors

• Work in the proximal convoluted tubule• Too much opportunity for later water

reabsorption, not really used in CVD• Not used much for diuresis, but used in

Acid/Base Imbalances and Renal Failure

Page 80: Cardiac Pharmacology

Loop Diuretic Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 81: Cardiac Pharmacology

Loop Diuretic Targets

• Inhibit Na, K, Ca, Mg Reabsorption in the Loop of Henle

• Powerful diuresis and volume reduction• Decreased Afterload

Page 82: Cardiac Pharmacology

Loop Diuretic And Hypertension

• Not used much for BP reduction• May be useful in patients with Edema

Page 83: Cardiac Pharmacology

Loop Diuretic And Ischemic Heart Disease

• No mechanism, no indication

Page 84: Cardiac Pharmacology

Loop Diuretic And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 85: Cardiac Pharmacology

Loop Diuretic And Heart Failure

• Stage C,D Heart failure for management of fluid volume and Edema

• Symptom relief only

Page 86: Cardiac Pharmacology

Thiazide Diuretic Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 87: Cardiac Pharmacology

Thiazide Diuretic Targets

• Inhibition of Sodium/Cl reuptake– loosely coupled with Potassium excretion– Potassium Sparing–Moderate diuresis & afterload reduction

• Therapeutic value appears to be beyond diuresis

Page 88: Cardiac Pharmacology

Thiazide Diuretic And Hypertension

• Gold standard monotherapy

Page 89: Cardiac Pharmacology

Thiazide Diuretic And Ischemic Heart Disease

• Not particularly useful

Page 90: Cardiac Pharmacology

Thiazide Diuretic And Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 91: Cardiac Pharmacology

Thiazide Diuretic And Heart Failure

• Provides some benefits due to decreased afterload

• Stage C generally requires loops for edema control

Page 92: Cardiac Pharmacology

Potassium Sparing DiureticsTargets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

I-1

Baroreflex

Renin

H2O

Page 93: Cardiac Pharmacology

Potassium Sparing DiureticsTargets & place in therapy

• Inhibition of Sodium channels in the distal convoluted tubule and collecting duct–Modest Diuresis– Potassium Sparing

• Really just used as Add On therapy for Hypokalemia

Page 94: Cardiac Pharmacology

I-1 Agonist Targets

B1

ATII

ADH/Vasopressin

Aldosterone

α 1

Na↑ K↓

Na↑ Ca↑Mg↑ K↑

Na↑HCO3↓

NO

PG

B2

Na↑

Na Cl↑+ K↓

ANPGI Vasculature

AfterloadPreload

Conductivity

M2 - B1+

CNS α 2

Vagus Nerve

Baroreflex

Renin

H2O

I-1

Page 95: Cardiac Pharmacology

I-1 Agonist Targets

• Imidazoline-1 Receptor Agonists– Inhibits Renin Production• Reduced ADH• Reduced Aldosterone• Peripheral Vasodilation

– Inhibits Sympathetic Vagal cardiac stimulation (sympathlytic)• Reduced heart Rate

Page 96: Cardiac Pharmacology

I-1 Agonists and Hypertension

• Reduction in blood pressure• No strong evidence, not part of guidelines yet

Page 97: Cardiac Pharmacology

I-1 Agonists and Ischemic Heart Disease

• Sympatholytic mechanism may have an indication

• No strong evidence yet• Moxonidine

Page 98: Cardiac Pharmacology

I-1 Agonists and Heart Failure

Contractility Preload Afterload

StrokeVolume

HeartRate

CardiacOutput

-+ +

+ +

Page 99: Cardiac Pharmacology

I-1 Agonists and Heart Failure

• Specific Effects– Reduced Heart Rate (decreasing Cardiac output)– Decreased Afterload (Increasing cardiac output)

• Net Effect…– Increased Mortality–MOXCON Trial stopped due to increased mortality

of 54 deaths with Moxonidine vs 32 with placebo in over 950 patients in each arm.

Page 100: Cardiac Pharmacology

Conclusions

• Mechanisms suggest potential indications– Cardiac output– Renin-Angiotensin System– Target Tissues

• Clinical data usually required to determine actual efficacy and safety– Balance of Cardiac Output parameters–MOXCON– BiDil