cartan meets chaplygin kurt m. ehlers and jair koiller

32
THEORETICAL AND APPLIED MECHANICS Volume 46 (2019) Issue 1, 15โ€“46 DOI: https://doi.org/10.2298/TAM190116006E CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller Abstract. In a note at the 1928 International Congress of Mathematicians Cartan outlined how his โ€œmethod of equivalenceโ€ can provide the invariants of nonholonomic systems on a manifold with kinetic lagrangians [29]. Car- tan indicated which changes of the metric outside the constraint distribution โŠ‚ preserve the nonholonomic connection = Proj โˆ‡ , , โˆˆ , where โˆ‡ is the Levi-Civita connection on and Proj is the orthogonal projection over . Here we discuss this equivalence problem of nonholonomic connections for Chaplygin systems [30, 31, 62]. We also discuss an example-a mathematical gem!-found by Oliva and Terra [76]. It implies that there is more freedom (thus more opportunities) using a weaker equivalence, just to preserve the straightest paths: = 0. However, ๏ฌnding examples that are weakly but not strongly equivalent leads to an over-determined system of equations indicating that such systems should be rare. We show that the two notions coincide in the following cases: i) Rank two distributions. This implies for instance that in Cartanโ€™s example of a sphere rolling on a plane without slipping or twisting, a (2,3,5) distribution, the two notions of equivalence coin- cide; ii) For a rank 3 or higher distribution, the corank of D in D+[D,D] must be at least 3 in order to ๏ฌnd examples where the two notions of equivalence do not coincide. This rules out the possibility of ๏ฌnding examples on (3,5) distributions such as Chaplyginโ€™s marble sphere. Therefore the beautiful (3,6) example by Oliva and Terra is minimal. 1. Introduction: dโ€™Alembert, Hertz, Cartan, Chaplygin A constrained mechanical system consists of a Lagrangian โˆถ โ†’ R and a distribution โŠ‚ of rank < = dim . Dโ€™Alembertโ€™s principle gives (1.1) ห™ - = , with = ฮ›(), such that โˆถ ()โ‹… ห™ = 0. Equations (1.1) are given in column form, one entry for each ห™ , with an ร— matrix, and ฮ› =( 1 ,..., ) a row -vector, = - is the number of contraints. When cast in Hamiltonian form, with = โ‡‘ ห™ , = ห™ - (see eg. [11]) then โ„Ž =( ห™ , ห™ )=(โ‡‘ - โ‡‘ + )= +(0,), โ‹… โ‡‘ = 0. 2010 Mathematics Subject Classi๏ฌcation: 37J60; 53D15; 70F25; 70G45; 70H45. Key words and phrases: nonholonomic systems, reduction, hamiltonization, Cartan equivalence. 15

Upload: others

Post on 06-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

THEORETICAL AND APPLIED MECHANICSVolume 46 (2019) Issue 1, 15โ€“46 DOI: https://doi.org/10.2298/TAM190116006E

CARTAN MEETS CHAPLYGIN

Kurt M. Ehlers and Jair Koiller

Abstract. In a note at the 1928 International Congress of MathematiciansCartan outlined how his โ€œmethod of equivalenceโ€ can provide the invariants

of nonholonomic systems on a manifold ๐‘„ with kinetic lagrangians [29]. Car-tan indicated which changes of the metric outside the constraint distribution

๐ธ โŠ‚ ๐‘‡๐‘„ preserve the nonholonomic connection ๐ท๐‘‹๐‘Œ = Proj๐ธ โˆ‡๐‘‹๐‘Œ , ๐‘‹,๐‘Œ โˆˆ ๐ธ,

where โˆ‡๐‘‹๐‘Œ is the Levi-Civita connection on ๐‘„ and Proj๐ธ is the orthogonalprojection over ๐ธ. Here we discuss this equivalence problem of nonholonomic

connections for Chaplygin systems [30,31,62]. We also discuss an example-a

mathematical gem!-found by Oliva and Terra [76]. It implies that there ismore freedom (thus more opportunities) using a weaker equivalence, just to

preserve the straightest paths: ๐ท๐‘‹๐‘‹ = 0. However, finding examples that

are weakly but not strongly equivalent leads to an over-determined system ofequations indicating that such systems should be rare. We show that the two

notions coincide in the following cases: i) Rank two distributions. This implies

for instance that in Cartanโ€™s example of a sphere rolling on a plane withoutslipping or twisting, a (2,3,5) distribution, the two notions of equivalence coin-

cide; ii) For a rank 3 or higher distribution, the corank of D in D+[D,D] mustbe at least 3 in order to find examples where the two notions of equivalence

do not coincide. This rules out the possibility of finding examples on (3,5)

distributions such as Chaplyginโ€™s marble sphere. Therefore the beautiful (3,6)example by Oliva and Terra is minimal.

1. Introduction: dโ€™Alembert, Hertz, Cartan, Chaplygin

A constrained mechanical system consists of a Lagrangian ๐ฟโˆถ๐‘‡๐‘„ โ†’ R and adistribution ๐ธ โŠ‚ ๐‘‡๐‘„ of rank ๐‘  < ๐‘› = dim๐‘„. Dโ€™Alembertโ€™s principle gives

(1.1)๐‘‘

๐‘‘๐‘ก

๐œ•๐ฟ

๐œ•๐‘žโˆ’ ๐œ•๐ฟ

๐œ•๐‘ž= ๐œ†, with ๐œ† = ฮ›๐ถ(๐‘ž), such that ๐ธ โˆถ ๐ถ(๐‘ž) โ‹… ๐‘ž = 0.

Equations (1.1) are given in column form, one entry for each ๐‘ž๐‘— , with ๐ถ an ๐‘Ÿร—๐‘›matrix, and ฮ› = (๐œ†1, . . . , ๐œ†๐‘Ÿ) a row ๐‘Ÿ-vector, ๐‘Ÿ = ๐‘› โˆ’ ๐‘  is the number of contraints.When cast in Hamiltonian form, with ๐‘ = ๐œ•๐ฟโ‡‘๐œ•๐‘ž, ๐ป = ๐‘๐‘ž โˆ’๐ฟ (see eg. [11]) then

๐‘‹๐‘›โ„Ž = (๐‘ž, ๏ฟฝ๏ฟฝ) = (๐œ•๐ปโ‡‘๐œ•๐‘ โˆ’ ๐œ•๐ปโ‡‘๐œ•๐‘ž + ๐œ†) =๐‘‹๐ป + (0, ๐œ†), ๐œ† โ‹… ๐œ•๐ปโ‡‘๐œ•๐‘ = 0.

2010 Mathematics Subject Classification: 37J60; 53D15; 70F25; 70G45; 70H45.Key words and phrases: nonholonomic systems, reduction, hamiltonization, Cartan

equivalence.

15

Page 2: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

16 EHLERS AND KOILLER

The multipliers ๐œ†1,โ‹ฏ, ๐œ†๐‘Ÿ can be eliminated by brute force, more or less as follows.Matrix ๐ถ has an invertible ๐‘Ÿ ร— ๐‘Ÿ block. One uses the corresponding ๐‘Ÿ equations tosolve for all the ๐œ†โ€™s. Splitting ๐ถ(๐‘ž) โ‹… ๐‘ž = 0 in two blocks, one could solve for ๐‘Ÿ of the๐‘žโ€™s in terms of ๐‘  = ๐‘› โˆ’ ๐‘Ÿ others, the coefficients being functions of all the ๐‘žโ€™s. Also,by differentiating, one eliminates ๐‘Ÿ of the ๐‘žโ€™s.

Eventually one gets a system of first order ODEs for the ๐‘›-coordinates ๐‘ž andfor ๐‘  of the velocities, totalizing a system of ๐‘› + ๐‘  ordinary differential equations.This procedure is very awkward. This is why geometric approaches are so helpful.

This paper is also intended as a review for a non-expert, familiar with basicdifferential geometry, at the level of the first chapters of [52]. For a crash course onGeometric Mechanics, with emphasis on control, of interest to mechanical engineersworking in Robotics, see [70]. A geometric mechanics approach to nonholonomicsystems was anticipated by A. Baksa [8], see also [66]. For a short survey onnonholonomic systems, see [10]. For a comprehensive introduction, see [3]. Ourgoal is to discuss the equivalence problem of Cartanโ€™s nonholonomic connection๐ท๐‘‹๐‘Œ under changes of metric. We pursue a recent observation by Terra andOliva [76] that there is more freedom if one is happy by keeping the same straightestpaths ๐ท๐‘‹๐‘‹ = 0. We show nonetheless that in many cases the notions coincide.

1.1. From dโ€™Alembert to Hertz. Jean le Rond dโ€™Alembert asserted in hisTraite de Dynamique that, due to the constraints imposed on the system, a forceappears in the right hand side of Eulerโ€“Lagrange equations. This force producesno resultant work in the system1. It was noticed by H. Hertz in his Prinzipiender mechanik ( [51], 1894) that dโ€™Alembertโ€™s principle yields different equationsthan those obtained by the calculus of variations with constraints (the so-calledโ€œvakonomicโ€ paths), except when the distribution is integrable (holonomic); in thiscase both lead to geodesics of the induced metric on every leaf ๐ฟ of the foliation.Inspired by Gaussโ€™ least constraint principle, Hertz proposed the principle of leastcurvature: the path followed by an inertial mechanical system is as straight aspossible, given that the velocity vector must satisfy the constraints. This gives thecorrect equations for nonholonomic systems (hereafter shortened as nh)2.

1.2. Appell, Whittaker, Maggi, Hamel. We will skip, for brevity, theaccomplishments of their generation at the beginning of the 20th century. In dangerof being superficial, we take the nerve to say that their contribution was mainlyon the practical side: โ€˜quasivelocitiesโ€™. Let ๐‘ž โˆˆR๐‘› be local coordinates on ๐‘„๐‘›, andconsider a local moving frame, defined by an ๐‘› ร— ๐‘› invertible matrix ๐‘…(๐‘ž),

๐‘’๐ฝ = ๐œ•

๐œ•๐œ‹๐ฝ=

๐‘›

โˆ‘๐‘–=1

๐‘Ÿ๐ผ๐ฝ๐œ•

๐œ•๐‘ž๐ผ, โˆ‘ ๏ฟฝ๏ฟฝ๐ฝ๐‘’๐ฝ =โˆ‘ ๐‘ž๐ผ

๐œ•

๐œ•๐‘ž๐‘–, ๏ฟฝ๏ฟฝ = (๐‘…(๐‘ž))โˆ’1๐‘ž.

1Part II, Chapter 1 (1743, 1758). For an appraisal of dโ€™Alembertโ€™s work, see [33]. Thevalidation of dโ€™Alembertโ€™s principle has been experimentally established (see eg. [54,55,68], as

the limit of appropriate damping forces.2An inertial system is governed exclusively by its kinetic energy. Poincare appreciated Hertzโ€™s

view that Mechanics could be founded on the concept of constraints rather than forces: โ€œil nous

force a reflechir, a nous affranchir de vieilles associations dโ€™ideesโ€ [78]. We prefer to call thesolutions of (1.1) straightest paths. The terminology nonholonomic geodesic would be more ap-

propriate for the vakonomic setting.

Page 3: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 17

In books on mechanical engineering the keyword quasicoordinates refers to nonex-isting entities ๐œ‹ such that

๐œ•๐‘“

๐œ•๐œ‹๐ฝ=โˆ‘

๐ผ

๐œ•๐‘“

๐œ•๐‘ž๐ผ

๐œ•๐‘ž๐ผ๐œ•๐œ‹๐ฝ

=โˆ‘๐ผ

๐œ•๐‘“

๐œ•๐‘ž๐ผ๐‘Ÿ๐ผ๐ฝ = ๐‘’๐ฝ(๐‘“).

Using such quasicoordinates, the multipliers can be eliminated automatically, andthe number of ODEs would be just ๐‘› + ๐‘ . Moreover, they realized that whensymmetries were present, a proper choice of quasicoordinates would yield reducedequations, which in some cases could be explicitly integrated in closed form.

1.3. Nh connections: Cartan and contemporaries. In the late 1920โ€™sCartan, Synge, Schouten, Vranceanu and Wagner provided a differential geometricdescription of nh systems. For historical information on that period we refer to [35].They considered only purely inertial Lagrangians (no potential energy) and we willfollow suit here.

Let ๐‘” denote the Riemannian metric on ๐‘„ and ๐ธ โŠ‚ ๐‘‡๐‘„ a distribution.

Definition 1.1. The (partial) connection on ๐ธ โŠ‚ ๐‘‡๐‘„, encoding dโ€™Alembertโ€™sprinciple, is the combination of two operations,

i) computing the Levi-Civita connection โˆ‡๐‘‹๐‘Œ , of ๐‘” for ๐‘‹,๐‘Œ โˆˆ ๐ธii) projecting โˆ‡๐‘‹๐‘Œ orthogonally back to ๐ธ.

This is analogous to the induced Levi-Civita connection on a submanifold of aRiemannian manifold. The nh connection is therefore

(1.2) ๐ท๐‘‹๐‘Œ = Proj๐ธ โˆ‡๐‘‹๐‘Œ

and the straightest path equation is given by

๐ท๐‘‹๐‘‹ = 0, ๐‘‹ โˆˆ ๐ธ.

Affine connections on ๐‘‡๐‘„ are classical objects. According to [35], the study ofaffine connections on subbundles of ๐‘‡๐‘„ (partial connections) started with Schouten,and was further developed by Vranceanu, Synge and Wagner. Without this knowl-edge, nonholonomic connections were discussed in [63] in which one of the authorswas a participant. See [45] for a recent work in which the notion is used.

1.4. Chaplygin and Hamiltonization. The idea of Hamiltonization of nhsystems goes back to Chaplygin himself. In the first decade of the 20th century hedeveloped the method of reducing multipliers [31], applied to systems with abeliansymmetries. In some cases, under a time reparametrization depending on the basevariables ๐‘  โˆˆ ๐‘†, the reduced system can be cast in Hamiltonian form, and in severalexamples the reduced system is integrable (more information in section 6).

The jurisprudence was established by Chaplyginโ€™s sphere. It is a dynamicallyunbalanced sphere, but with the center of mass at the geometric center. Theconfiguration space is ๐‘„ = ๐‘†๐‘‚(3) ร— R2. The sphere rolls without slipping on ahorizontal plane, twisting about the vertical axis allowed. The problem can beviewed as an abelian (๐บ = R2) Chaplygin nh system [30,31]. See also [36]. Theno slip contraints define a distribution ๐ธ of rank 3 that is strongly nonholonomic(i.e. 1-step, 3-5). It was shown to be Hamiltonizable when reduced to ๐‘‡ โˆ—๐‘†2 [13].

Page 4: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

18 EHLERS AND KOILLER

1.5. Organization of the paper. In sections 2 and 3 we discuss E. Cartanโ€™snote at the 1928 ICM. Cartanโ€™s method to obtain the dynamics, in the case of Liegroups, is equivalent to Arnoldโ€“Eulerโ€™s [2]. Section 3 gives the initial ๐บ-structurefor the equivalence method. Section 4 builds on recent work by Terra and Oliva [76].They consider a weaker notion of equivalence, the preservation of the acceleration๐ท๐‘‹๐‘‹ instead of the nonholonomic connection ๐ท๐‘‹๐‘Œ . We present cases where theweak and strong notions coincide. The special case of Chaplygin systems is outlinedin section 5, and section 6 presents final remarks and directions for further research.

We finish the introduction with a historical note3.

1.6. Chaplygin and Cartan. They were born 3 days apart, Cartan on April9, and Chaplygin April 5, 1869. What more in common? Both came from poorfamilies and were discovered and protected by their elementary school teachers.They endured hardships and tragedies in WW2.

Chaplygin was very much involved in the revolutionary movement in the 1910โ€™s.He protested persecutions in the 1930โ€™s, defending Luzin fiercely. Still, he wasawarded in most prestigious medals due to his achievements, specially during theWar: Hero of Socialist Labour, Order of Lenin (twice), and Order of the RedBanner.

Cartanโ€™s son Louis, a member of the Resistance, was murdered by the Nazis.Henri Cartan, the oldest, was a leader in the creation of the European Math Unionafter the war and was influential in bringing Germany back.

Cartan can be described as a pure, pure mathematician, and Chaplygin avery applied one4, but this may be misleading; they shared a common interestin gravitation and cosmology. Chaplygin gas is still a basic ingredient for darkmatter theory. As Chern and Chevalley [32] wrote about Cartan, and Lyusternikon Chaplygin, both were excellent teachers and were all for Women in Mathematics.

Lyusternik tells the following anecdote in [71]: โ€˜I was examined by SergeiAlekseevich on particle mechanics [entering the Moscow State University]. Myanswer was in no way remarkable. I was surprised several months later when takingthe [course on] Mechanics of a System that he remembered my name. โ€˜Thereโ€™snothing surprising about thatโ€™, I was told, โ€˜Chaplygin has a phenomenal memoryโ€™.When he was Rector of the Higher Courses for Women, he knew all the studentsby nameโ€™.

3 Information from โ€œThe Early Years of the Moscow Mathematical Schoolโ€ (Lyusternik,[71]) and the websites http://www-history.mcs.st-andrews.ac.uk/Biographies/Chaplygin.html,

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cartan.html4Chaplyginโ€™s career was mostly in aeronautical engineering. We quote from the MacTutor

site: The Central Aerohydrodynamic Institute, or TsAGI, was founded in 1918 and Chaplyginhelped organize the Institute from that time. In fact from the time that TsAGI was founded, hedevoted almost all his energies to the project. On the death of Zhukovsky in 1921, Chaplyginbecame Chairman of the Board, a position he held until 1930. He was Executive Director of the

Institute from 1928 to 1931, then he became head of the scientific work of the Institute (...) In theautumn of 1941, the Central Aerohydrodynamic Institute was evacuated from Moscow to Kazan

and Novosibirsk. Chaplygin took charge of the Novosibirsk branch of the Institute and rapidlyorganised the building of a wind tunnel and research laboratories. However, the hard work anddifficult circumstances told on his health and he died from a brain haemorrhage in October 1942.โ€™

Page 5: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 19

1.7. Hilbert: โ€œMathematics Knows No Racesโ€ [82]. There was a strongpolitical aspect at the ICM in Bologna, held from September 3 to September 101938. Hilbert intended to deliver a speech (but it did not happen, not clear why)with that timely title. But Hilbertโ€™s dream is becoming true (and hopefully willremain so). At ICM 2014 and 2018 Fields medals were awarded to mathematiciansborn in Third World countries, one of them Maryam Mirzakhani. She died so early.

2. Cartanโ€™s equivalence for nh connections

It is not a surprise that Cartan used adapted moving frames5 in his approachfor nh mechanics in [29]. He considered only kinematical Lagrangians ๐ฟ = ๐‘‡ on aconfiguration space ๐‘„, where ๐‘‡ is the kinetic energy of a Riemannian metric andthe constraints defined by a distribution ๐ธ โŠ‚ ๐‘‡๐‘„ with rank ๐‘  < ๐‘›.

Cartan advocated his equivalence method to obtain invariants characterizingthe nonholonomic connection (1.2). See [50,75,77] for modern description of theequivalence method with applications.

Cartanโ€™s note was revisited in [63]. As pointed out by Terra and Oliva [76],there is an inaccuracy. It was asserted that Cartanโ€™s equivalence criterion (seesection 3.2) provided necessary and sufficient conditions for a change of metric in๐‘„ to keep the straightest paths. Cartanโ€™s criterion gives sufficient conditions, butthey are not always necessary, and this brings more opportunities. We will shownonetheless in section 4 that the exceptions are rare.

The difference ๐ด(๐‘‹,๐‘Œ ) = โˆ‡๐‘‹๐‘Œ โˆ’โˆ‡๐‘‹๐‘Œ between two affine connections in ๐‘„ is a2-tensor (very easily seen to be bilinear). Clearly โˆ‡ and โˆ‡ have the same geodesics ifand only if ๐ด is skew-symmetric. This implies (obviously) that โˆ‡๐‘‹๐‘‹ = โˆ‡๐‘‹๐‘‹. Onecan make the same observation about partial connections, the difference between๐ท๐‘‹๐‘Œ and ๏ฟฝ๏ฟฝ๐‘‹๐‘Œ being a โ€œpartialโ€ 2-tensor. Terra and Oliva propose a broadernotion of equivalence: the preservation of the straightest path equation ๐ท๐‘‹๐‘‹ = 0.

We start with the stronger notion of equivalence, preservation of ๐ท๐‘‹๐‘Œ . Wewill consider the weaker notion ๐ท๐‘‹๐‘‹ in section 4. We will show that for rank 2distributions, preservation of ๐ท๐‘‹๐‘Œ is equivalent to preservation of ๐ท๐‘‹๐‘‹. We alsoshow that the notions coincide when dim(๐ธ + (๐ธ,๐ธโŒ‹) โˆ’ dim๐ธ < 3.

Definition 2.1. ๐ธ โŠ‚ ๐‘‡๐‘€ is bracket generating if any local frame ๐‘’๐‘– for ๐ธtogether with its iterated Lie brackets (๐‘’๐‘–, ๐‘’๐‘—โŒ‹, (๐‘’๐‘–, (๐‘’๐‘— , ๐‘’๐‘˜โŒ‹โŒ‹, . . . spans ๐‘‡๐‘„.

The only case Cartan discussed in some detail were the 1-step distributions,those satisfying ๐ธ+(๐ธ,๐ธโŒ‹ = ๐‘‡๐‘„. We call those distributions strongly nonholonomic(Snh). In this case, Cartan proved that, preserving the connection ๐ท๐‘‹๐‘Œ , one can

5For a thorough account of moving frames in mechanics, see [73], where there is an interestinghistorical observation: at the same time as Cartan (in France), Schouten (in Holland) was also

interested in moving frames for nh mechanics [80]. In fact, nonholonomic mechanics was trendy

at that time! Vranceanu, then a student of Levi-Civita in Rome, also made a contribution tonh geometry at the 1928 ICM [87]. In Ireland, Synge was also studying nh systems [84]. A

few years later, Wagner studied the geometry of nonholonomic systems in his doctoral thesisunder V. F. Kagan at Lomonosov Moscow State University (see [35] for an account of Wagnercurvature tensor).

Page 6: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

20 EHLERS AND KOILLER

modify the metric in the orthogonal complement ๐น of ๐ธ in ๐‘‡๐‘„, as long as ๐นremains orthogonal to ๐ธ. This seems uneventful in view of dโ€™Alembertโ€™s principle.

The simplest example of a strongly nonholonomic distribution is a contactdistribution (2-3) in R3. Their invariants are given in [37]. Chaplyginโ€™s ball (3-5)is also Snh. For a ๐‘˜ โฉพ 2-step distribution, Cartan observed something unexpected.Denote by ๐ธ(1) = ๐ธ + (๐ธ,๐ธโŒ‹. As in the Snh case, one can change the metric

in the orthogonal complement ๐น of ๐ธ inside ๐ธ(1). ๐น remains orthogonal to ๐ธ.Surprisingly, there is total flexibility in changing the metric outside ๐ธ(1), as if thenh geometry becomes โ€˜saturatedโ€™ at the level of ๐ธ(1). The proof is in section 3.

About the invariants, Cartan indicated that for distributions with ๐‘˜ โฉพ 2-steps,implementing the equivalence method would become cumbersome. We have theimpression that at this point Cartan lost interest.

โ€œlโ€™interet geometrique sevanouirait rapidement a mesure queles cas envisages deviendraient plus compliques.โ€

In fact, as far as we know, he did not pursue this study later. We took thenerve to do the equivalence problem for nh connections on 2-3 [37], the 2-step 2-3-5distribution [38,65], and the Engel 2-3-4 in [64].

Cartan was right in his warning: it can be difficult to interpret geometrically theinvariants. At any rate, in spite of Cartanโ€™s somewhat pessimistic statements, withthe help of computer algebra further cases may be done nowadays. Cartanโ€™s methodof equivalence is algorithmic and (almost) unsupervised. We wish to advertise thisstudy for the special case of Chaplygin systems, both in the strong and weak senses.Some thoughts are presented in section 5.

2.1. Derived ideal. The bracket generating condition can be refined in termsof a filtration of ideals of differential forms. To do this let โ„ be the ideal of alldifferential forms annihilating ๐ธ. It is locally generated by ๐‘› โˆ’ ๐‘  one-forms.

Definition 2.2. The set of forms โ„ โ€ฒ = {๐œ‚ โˆˆ ๐ผ โ‹ƒ ๐‘‘๐œ‚ โ‰ก 0 mod (๐ผ)} is called thederived ideal of โ„.

Set โ„ = โ„0 and define โ„๐‘— inductively by โ„๐‘— = (โ„๐‘—โˆ’1)โ€ฒ. The condition that๐ธ is bracket generating can be redefined in terms of the sequence of inclusions๐ผ0 โŠƒ ๐ผ1 โŠƒ ๐ผ2 โŠƒ โ‹ฏ terminating with the 0 ideal. In the vectorfields side, we denote๐ธโ€ฒ = ๐ธ + (๐ธ,๐ธโŒ‹ and define inductively ๐ธ(0) = ๐ธ, ๐ธ๐‘— = (๐ธ๐‘—โˆ’1)โ€ฒ. Then โ„(๐‘—) is the

annihilator of ๐ธ(๐‘—). This comes from the following lemma, a simple consequence ofCartanโ€™s magic formula:

Lemma 2.1. โ„(1) is the annihilator of ๐ธ(1) = ๐ธ + (๐ธ,๐ธโŒ‹.

Proof. Just stare at

๐‘‘๐œƒ(๐‘‰,๐‘Š ) = ยฑ๐‘‰ ๐œƒ(๐‘Š ) ยฑ๐‘Š๐œƒ(๐‘‰ ) ยฑ ๐œƒ(๐‘‰,๐‘Š โŒ‹where the correct signs do not matter. ๏ฟฝ

Remark 2.1. The filtration of ideals โ„(๐‘—) forms the annihilators of ๐ธ(๐‘—) where๐ธ๐‘—+1 = ๐ธ๐‘— + (๐ธ๐‘— ,๐ธ๐‘—โŒ‹ which form the bigโ€™ growth vector. If, instead, we take๐ธ = ๐ธ1 = ๐ป = ๐ป1 and ๐ป๐‘—+1 = ๐ธ + (๐ธ,๐ป๐‘—โŒ‹ we get the โ€˜smallโ€™ growth vector. In

Page 7: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 21

general ๐ธ๐‘– contains ๐ป๐‘–. In the examples discussed here the big and the smallsequences are the same. As we will see shortly, nonholonomic geometry (meaning๐ท๐‘‹๐‘Œ ) sees only the first derived ideal.

2.2. The Levi-Civita connection. Once a frame in ๐‘„ is chosen, it definesa riemannian metric ๐‘‡ in ๐‘„ for which it is an orthonormal basis. Let (๐‘’๐ผ) be anorthonormal frame and (๐œ”๐ผ) its dual coframe satisfying ๐œ”๐ผ(๐‘’๐ฝ) = ๐›ฟ๐ผ๐ฝ . The metricwrites in terms of the coframe as

๐‘” = (๐œ”1)2 + โ‹… โ‹… โ‹… + (๐œ”๐‘›)2.Recall that the Levi-Civita connection of the metric is given by (see eg. [52])

(2.1) โˆ‡๐‘‹๐‘’๐ฝ = ๐œ”๐ผ๐ฝ(๐‘‹)๐‘’๐ผ ,where the connection forms ๐œ”๐ผ๐ฝ satisfy (uniquely) the structure equations

๐‘‘๐œ”๐ผ + ๐œ”๐ผ๐ฝ โˆง ๐œ”๐ฝ = 0, ๐œ”๐ผ๐ฝ = โˆ’๐œ”๐ฝ๐ผ .

In the traditional Christoffel symbols notation one writes

(2.2) โˆ‡๐‘’๐พ๐‘’๐ฝ = ฮ“๐ผ๐พ๐ฝ๐‘’๐ผ , ฮ“๐ผ

๐พ๐ฝ = ๐œ”๐ผ๐ฝ(๐‘’๐พ), ฮ“๐ผ๐พ๐ฝ = โˆ’ฮ“๐ฝ

๐พ๐ผ ,

Proposition 2.1 (Cartanโ€™s moving frames approach for geodesics).

โˆ‡๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = 0 โ‡” ๏ฟฝ๏ฟฝ๐พ = โˆ’๐‘ฃ๐ผ๐‘ฃ๐ฝฮ“๐พ๐ผ๐ฝ(๐‘ž), ๏ฟฝ๏ฟฝ = ๐‘ฃ๐ฟ๐‘’๐ฟ, ฮ“๐พ

๐ผ๐ฝ = ๐œ”๐พ๐ฝ(๐‘’๐ผ).

2.3. Euler-Arnold equations: ฮ“๐ผ๐พ๐ฝ

versus ๐‘๐พ๐ผ๐ฝ

. In control problems, it isvery useful to prepare a table of the expansions of the commutators (๐‘’๐ฝ , ๐‘’๐พโŒ‹ in itsown moving frame {๐‘’๐ฟ}

(๐‘’๐ฝ , ๐‘’๐พโŒ‹ = ๐‘๐ฟ๐ฝ๐พ(๐‘ž)๐‘’๐ฟ.Thus it is important to relate the Christoffel symbols ฮ“๐ผ

๐พ๐ฝ = ๐œ”๐ผ๐ฝ(๐‘’๐พ) with thevalues of ๐‘๐พ๐ผ๐ฝ(= ๐œ”๐พ(๐‘’๐ผ , ๐‘’๐ฝโŒ‹).

Proposition 2.2. We have the relations

(2.3) ๐œ”๐ผ๐พ(๐‘’๐ฝ) โˆ’ ๐œ”๐ผ๐ฝ(๐‘’๐พ) = ๐œ”๐ผ(๐‘’๐ฝ , ๐‘’๐พโŒ‹

(2.4) 2ฮ“๐ฝ๐ผ๐พ = 2๐œ”๐ฝ๐พ(๐‘’๐ผ) = ๐œ”๐ผ(๐‘’๐ฝ , ๐‘’๐พโŒ‹ โˆ’ ๐œ”๐ฝ(๐‘’๐พ , ๐‘’๐ผโŒ‹ โˆ’ ๐œ”๐พ(๐‘’๐ผ , ๐‘’๐ฝโŒ‹.

Proof. ๐‘‘๐œ”๐ผ(๐‘’๐ฝ , ๐‘’๐พ) = โˆ’๐œ”๐ผ(๐‘’๐ฝ , ๐‘’๐พโŒ‹ = โˆ’โˆ‘๐ฟ ๐œ”๐ผ๐ฟ โˆง ๐œ”๐ฟ)(๐‘’๐ฝ , ๐‘’๐พ) = ๐œ”๐ผ๐ฝ(๐‘’๐พ) โˆ’๐œ”๐ผ๐พ(๐‘’๐ฝ). Hence (2.3) follows. These relations can be inverted with the usualtrick. If we write the cyclic permutations of (2.3), we get three equations relatingsix quantities on the right hand side, but in reality they are just three objects due tothe anti-symmetry of ๐œ”๐ผ๐ฝ(๐‘’๐พ) in the lower indices ๐ผ, ๐ฝ . Solving this linear systemyields (2.4). ๏ฟฝ

Proposition 2.3 (Eulerโ€“Arnold equations). The geodesic equations can alsobe written as

(2.5) โˆ‡๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = 0 โ‡” ๏ฟฝ๏ฟฝ๐พ = โˆ’๐‘ฃ๐ผ๐‘ฃ๐ฝ((๐‘๐ผ๐พ๐ฝ + ๐‘๐ฝ๐พ๐ผ)โ‡‘2โŒ‹ = โˆ’๐‘ฃ๐ผ๐‘ฃ๐ฝ๐‘๐ผ๐พ๐ฝ(๐‘ž), ๏ฟฝ๏ฟฝ = ๐‘ฃ๐ฟ๐‘’๐ฟ.

Proof. Immediate from the previous Proposition. One of the three terms in(2.4) does not contribute due to the skew symmetry with respect to ๐ผ, ๐ฝ . ๏ฟฝ

Page 8: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

22 EHLERS AND KOILLER

Example 2.1. For a Lie group, with say, a left invariant frame and left invariantmetric the ๐‘๐ผ๐พ๐ฝ are constants. The expert reader will recognize that (2.5) becomesthe Arnoldโ€“Euler equations in the Lie Algebra, in the case of an orthonormal frame.For a general non-orthonormal frame (see eg. [62])

(2.6) ฮฉ๐ผ = ๐‘”๐ผ๐พ๐‘๐ฝ๐ฟ๐พ๐‘”๐ฝ๐‘€ฮฉ๐‘€ฮฉ๐ฟ,

where we changed to the usual notation ๐‘ฃ๐ผ = ฮฉ๐ผ and we define a left invariantmetric by 2๐‘‡ = (๐บฮฉ,ฮฉ), with ๐บ = (๐บ๐ผ๐ฝ) is a symmetric positive definite matrix.The vector ฮฉ represents a Lie algebra element expanded in the basis ๐‘’๐พ . Thepresence of entries ๐‘”๐ผ๐พ of the cometric matrix ๐บโˆ’1 is morally a โ€œnonlocalโ€ effect.

2.4. Straightest paths (a la Cartan or a la Eulerโ€“Arnold). We will usethe following conventions and un-conventions: capital roman letters ๐ผ, ๐ฝ, . . . runfrom 1 to ๐‘›. Lower case roman ๐‘–, ๐‘—, . . . run from 1 to ๐‘  (The dimension of theconstraint distribution). Greek characters ๐›ผ,๐›ฝ, ๐›พ, from ๐‘ + 1 to ๐‘›. Summation overrepeated indices is assumed unless otherwise stated. We apologize if we are some-times careless in using upper or lower indices, and sometimes we put ฮฃ to indicatea summation more explicitly. We will further subdivide the Greek characters intolower and upper case to account for forms belonging to the derived ideal โ„ โ€ฒ ofโ„ = span{๐œ”๐›ผ}.

Cartan proposed studying nonholonomic systems using adapted coframes

๐œ” = โŒŠ๐œ”๐‘–

๐œ”๐›ผ} , where 1 โฉฝ ๐‘– โฉฝ ๐‘ , ๐‘  + 1 โฉฝ ๐›ผ โฉฝ ๐‘›.

This coframe is dual to an adapted orthonormal moving frame {๐‘’๐‘–, ๐‘’๐›ผ}, the first ๐‘ vectors being tangent to ๐ธ.

Proposition 2.4. The Nh connection of Definition 1.1 is obtained simply byrunning the indices only up to ๐‘ :

๐ท๐‘’๐‘–๐‘’๐‘— = ฮ“๐‘˜๐‘–๐‘—๐‘’๐‘˜ (1 โฉฝ ๐‘–, ๐‘—, ๐‘˜ โฉฝ ๐‘ ).

A curve ๐‘(๐‘ก) is a straightest path if ๏ฟฝ๏ฟฝ = โˆ‘๐‘ ๐‘˜=1 ๐‘ฃ๐‘˜๐‘’๐‘˜ (๐‘ฃ๐‘˜ = ๐œ”๐‘˜(๏ฟฝ๏ฟฝ)quasivelocities)

with (see (2.2) and (2.5))(2.7) ๏ฟฝ๏ฟฝ๐‘˜ = โˆ’๐‘ฃ๐‘–๐‘ฃ๐‘—ฮ“๐‘˜

๐‘–๐‘— or equivalently, ๏ฟฝ๏ฟฝ๐‘˜ = โˆ’๐‘ฃ๐‘–๐‘ฃ๐‘—๐‘๐‘–๐‘˜๐‘— .

In the sequel we will sometimes use the ฮ“๐‘—๐‘–๐‘˜ = ๐œ”๐‘—๐‘–(๐‘’๐‘˜) (that we call the Cartan

format) and sometimes the ๐‘๐‘–๐‘˜๐‘— = ๐œ”๐‘–(๐‘’๐‘˜, ๐‘’๐‘—โŒ‹ (that we call the Arnoldโ€“Euler format),whichever is more convenient in the situation being considered.

Corollary 2.1. Given a left invariant distribution ๐ธ, and a left invariantmetric (it may be given by a matrix ๐บ), the nonholonomic equations are obtainedby the orthogonal projection with respect to this metric, of the Euler equations(2.5), (2.6) for non-orthonormal frames for ฮฉ on the distribution ๐ธ.

Nota bene. We stress that although ฮ“๐‘˜๐‘–๐‘— โ‰  ๐‘๐‘–๐‘˜๐‘— , the difference is skew symmetric

in the indices ๐‘–, ๐‘—. For the straightest path equations the difference will disappearafter the summations over ๐‘–, ๐‘— of the corresponding โ—ป๐‘ฃ๐‘–๐‘ฃ๐‘— , so we may take the ๐‘๐‘–๐‘˜๐‘— .

But for the nh connection we need to stick to the ฮ“๐‘˜๐‘–๐‘— .

Page 9: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 23

2.5. Example: maximally symmetric 2-3-5 distribution. Let

๐‘’1 =๐œ•

๐œ•๐‘ฅ1โˆ’ ๐‘ฅ2

๐œ•

๐œ•๐‘ฅ3โˆ’ ๐‘ฅ1๐‘ฅ2

๐œ•

๐œ•๐‘ฅ4โˆ’ ๐‘ฅ2

2

๐œ•

๐œ•๐‘ฅ5

๐‘’2 =๐œ•

๐œ•๐‘ฅ2+ ๐‘ฅ1

๐œ•

๐œ•๐‘ฅ3+ ๐‘ฅ2

1

๐œ•

๐œ•๐‘ฅ4+ ๐‘ฅ1๐‘ฅ2

๐œ•

๐œ•๐‘ฅ5

๐‘’3 = (๐‘’1, ๐‘’2โŒ‹ = 2๐œ•

๐œ•๐‘ฅ3+ 3๐‘ฅ1

๐œ•

๐œ•๐‘ฅ4+ 3๐‘ฅ2

๐œ•

๐œ•๐‘ฅ5

๐‘’4 = (๐‘’1, ๐‘’3โŒ‹ = 3๐œ•

๐œ•๐‘ฅ4,

๐‘’5 = (๐‘’2, ๐‘’3โŒ‹ = 3๐œ•

๐œ•๐‘ฅ5

which form a basis for a 5-dimensional nilpotent Lie algebra onR5. The exponentialmap gives a diffeomorphism between the nilpotent algebra and the group. Usingthe Bakerโ€“Campbellโ€“Hausdorf formula one determines the cubic polynomial grouplaw which is:

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฅ1

๐‘ฅ2

๐‘ฅ3

๐‘ฅ4

๐‘ฅ5

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โ‹…

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฆ1๐‘ฆ2๐‘ฆ3๐‘ฆ4๐‘ฆ5

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘ฅ1 + ๐‘ฆ1๐‘ฅ2 + ๐‘ฆ2

๐‘ฅ3 + ๐‘ฆ3 + 12(๐‘ฅ1๐‘ฆ2 โˆ’ ๐‘ฅ2๐‘ฆ1)

๐‘ฅ4 + ๐‘ฆ4 + 12(๐‘ฅ1๐‘ฆ3 โˆ’ ๐‘ฅ3๐‘ฆ1) + 1

12(๐‘ฅ2๐‘ฆ

21 โˆ’ ๐‘ฅ1๐‘ฆ1๐‘ฆ2 + ๐‘ฅ2

1๐‘ฆ2 โˆ’ ๐‘ฅ1๐‘ฅ2๐‘ฆ1)๐‘ฅ5 + ๐‘ฆ5 + 1

2(๐‘ฅ2๐‘ฆ3 โˆ’ ๐‘ฅ3๐‘ฆ2) + 1

12(๐‘ฅ2๐‘ฆ1๐‘ฆ2 โˆ’ ๐‘ฅ1๐‘ฆ

22 + ๐‘ฅ1๐‘ฅ2๐‘ฆ2 โˆ’ ๐‘ฅ2

2๐‘ฆ1)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

By construction the vector fields ๐‘‹๐‘– provide a left invariant frame on ๐บ. Thedual coframe is

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐œ‚1

๐œ‚2

๐œ‚3

๐œ‚4

๐œ‚5

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐‘‘๐‘ฅ1

๐‘‘๐‘ฅ212(โˆ’๐‘ฅ2๐‘‘๐‘ฅ1 + ๐‘ฅ1๐‘‘๐‘ฅ2 โˆ’ ๐‘‘๐‘ฅ3)

16(โˆ’๐‘ฅ1๐‘ฅ2๐‘‘๐‘ฅ1 + ๐‘ฅ2

1๐‘‘๐‘ฅ2 โˆ’ 3๐‘ฅ1๐‘‘๐‘ฅ3 + 2๐‘‘๐‘ฅ4)16(โˆ’๐‘ฅ2

2๐‘‘๐‘ฅ1 + ๐‘ฅ1๐‘ฅ2๐‘‘๐‘ฅ2 โˆ’ 3๐‘ฅ2๐‘‘๐‘ฅ3 + 2๐‘‘๐‘ฅ5)

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

Proposition 2.5. Let ๐ธ = span(๐‘’1, ๐‘’2) be a rank two distribution on an ๐‘›-dimensional Riemannian manifold ๐‘„. In terms of an orthonormal coframe ๐œ”,

๏ฟฝ๏ฟฝ1 = โˆ’๐œ”112๐‘ฃ1๐‘ฃ2 โˆ’ ๐œ”2

12(๐‘ฃ2)2, ๏ฟฝ๏ฟฝ2 = ๐œ”112(๐‘ฃ1)2 + ๐œ”2

12๐‘ฃ1๐‘ฃ2

where

(2.8) ๐œ”212 = โˆ’

๐‘‘๐œ”1 โˆง ๐œ”3 โˆง โ‹… โ‹… โ‹… โˆง ๐œ”๐‘›

๐œ”1 โˆง โ‹… โ‹… โ‹… โˆง ๐œ”๐‘›and ๐œ”1

12 = โˆ’๐‘‘๐œ”2 โˆง ๐œ”3 โˆง โ‹… โ‹… โ‹… โˆง ๐œ”๐‘›

๐œ”1 โˆง โ‹… โ‹… โ‹… โˆง ๐œ”๐‘›.

Proof. Since ๐œ” provides a basis for the cotangent space, we can express eachcomponent of the Levi-Civita connection one-form ๐œ”๐‘–๐‘— as ๐œ”

1๐‘–๐‘—๐œ”

1+โ‹… โ‹… โ‹…+๐œ”๐‘›๐‘–๐‘—๐œ”

๐‘›. Because

๐‘  = 2 we only need ๐œ”12 and since the path ๐‘ is tangent to ๐ธ we only need ๐œ”112๐œ”

1 and๐œ”212๐œ”

2. Using the structure equations we compute ๐‘‘๐œ”1โˆง๐œ”3โˆงโ‹… โ‹… โ‹…โˆง๐œ”๐‘› = โˆ’๐œ”112๐œ”

1โˆงโ‹… โ‹… โ‹…โˆง๐œ”๐‘›

and ๐‘‘๐œ”2 โˆง ๐œ”3 โ‹… โ‹… โ‹… โˆง ๐œ”๐‘› = ๐œ”212๐œ”

1 โˆง โ‹… โ‹… โ‹… โˆง ๐œ”๐‘›. ๏ฟฝ

[This is easily modified for rank ๐‘  distributions with ๐‘  > 2. One obtains a linearsystem of equations for the required coefficients of the Levi-Civita connection.]

Page 10: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

24 EHLERS AND KOILLER

We take ๐‘” = (๐œ‚1)2 + โ‹… โ‹… โ‹… + (๐œ‚5)2 making the given frame orthonormal. Since๐‘‘๐œ‚1 = ๐‘‘๐œ‚2 = 0, the previous proposition implies that the nonholonomic geodesicequations are ๏ฟฝ๏ฟฝ1 = ๏ฟฝ๏ฟฝ2 = 0. Hence

(๏ฟฝ๏ฟฝ1, ๏ฟฝ๏ฟฝ2, ๏ฟฝ๏ฟฝ3, ๏ฟฝ๏ฟฝ4, ๏ฟฝ๏ฟฝ5) = ๐ด๐‘’1 +๐ต๐‘’2

which are equivalent to the system of equations

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๏ฟฝ๏ฟฝ1

๏ฟฝ๏ฟฝ2

๏ฟฝ๏ฟฝ3

๏ฟฝ๏ฟฝ4

๏ฟฝ๏ฟฝ5

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐ด๐ต

๐‘ฅ1๏ฟฝ๏ฟฝ2 โˆ’ ๐‘ฅ2๏ฟฝ๏ฟฝ1

๐‘ฅ21๏ฟฝ๏ฟฝ2 โˆ’ ๐‘ฅ1๐‘ฅ2๏ฟฝ๏ฟฝ1

โˆ’๐‘ฅ22๏ฟฝ๏ฟฝ1 + ๐‘ฅ1๐‘ฅ2๏ฟฝ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

whose solutions give the nonhonolomic geodesics in terms of polynomials of up tothird degree (for ๐‘ฅ4, ๐‘ฅ5).

Remark 2.2. Cartan introduced in his thesis [26], and developed in two veryfamous papers [27,28], the simplest exceptional complex Lie algebra ๐’ข2. It turnsout that ๐ธ is the maximally symmetric 2-3-5 distribution and that its Lie algebraof symmetries is precisely the 14-dimensional, non-compact real form of ๐’ข2.

Cartanโ€™s work has been discussed in the 1990โ€™s by Bryant and Hsu [22,23] andmore recently in Agrachev, [1], Bor and Montgomey [12], and Baez [4,5]. Two wayshave been found to realize โ€œconcretelyโ€ a Lie group for ๐’ข2. One is via octonionsand the other as the symmetries of the rolling distribution, without slip or twist, oftwo spheres in the ratio 1:3. It seems that Cartan never explicitly discussed rolling,but it is implicit in his work. Bryant pointed out that for the 1:3 (or 3:1, it doesnot matter) rolling distribution, Cartanโ€™s tensor F (the lowest order invariant for2-plane fields in R5) vanishes, thus it is locally equivalent to โ€˜flatโ€™ distribution fromCartanโ€™s 1910 paper-the nilpotent 2-3-5 as we presented above.

3. G-structures in nonholonomic geometry

At the 1928 ICM Elie Cartan described the transformations of coframes ona manifold leading to the same nh connection. In modern language, a family ofcoframes together with a matrix group ๐บ of transformation is called a ๐บ-structure.It is a sub-bundle of the coframe bundle ๐œ‹โˆถ๐น โˆ—(๐‘„)โ†’ ๐‘„, as a ๐บ๐‘™(๐‘›) principal bundle[50,75]. Both for subriemannian (SR) or nonholonomic (NH) geometry, the storybegins with the change of coframes

(3.1) ( ๏ฟฝ๏ฟฝ๐‘–

๏ฟฝ๏ฟฝ๐›ผ) = (๐ถ ๐ต0 ๐ด

) (๐œ”๐‘–

๐œ”๐›ผ)

with๐ถ โˆˆ ๐‘‚(๐‘ ), ๐ด โˆˆ ๐บ๐‘™(๐‘› โˆ’ ๐‘ ), ๐ต โˆˆ๐‘€(๐‘ , ๐‘› โˆ’ ๐‘ ).

3.1. โ€œMaster packagesโ€. We now derive the conditions for strong and weakequivalence. Dually to (3.1), the frames change via

(๐‘’๐‘–, ๐‘’๐›ผ) = (๐‘’๐‘–, ๐‘’๐›ผ)(๐ถ ๐ต0 ๐ด

) .

Page 11: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 25

We can take ๐ถ = identity without loss of generality. They correspond to changingthe metric in ๐‘„ but keeping it unaltered inside ๐ธ. In the case of SR geometry,there are no restrictions in these matrices, this is the initial G-structure. For nhsystems things are more subtle. Proposition 2.4 implies

Proposition 3.1. i) Strong equivalence: the nh connection is preservedunder the change of metric if and only if for all 1 โฉฝ ๐‘–, ๐‘—, ๐‘˜ โฉฝ ๐‘ .

ฮ“๐‘˜๐‘–๐‘— = ฮ“๐‘˜

๐‘–๐‘— .

ii) Weak equivalence: the trajectories are preserved under the change of met-ric if and only if

๐‘๐‘–๐‘˜๐‘— = ๐‘๐‘–๐‘˜๐‘— + skew symmetric stuff in ๐‘–, ๐‘—.

We thank Prof. Waldyr Oliva for calling our attention to the additional flexi-bility in the weak notion. It is due to the โ€œnota beneโ€ in section 2.4.

To find the transformation rules we take ๐ถ = identity, so ๐‘’๐‘– = ๐‘’๐‘–, 1 โฉฝ ๐‘– โฉฝ ๐‘  andre-compute the structure constants:

(๐‘’โ„“, ๐‘’๐‘–โŒ‹ = (๐‘’โ„“, ๐‘’๐‘–โŒ‹ = ๐‘๐‘—โ„“๐‘–๐‘’๐‘— + ๐‘๐›ผโ„“๐‘–(๐ต๐‘—๐›ผ๐‘’๐‘— + stuff ๐‘’๐œ†) = (๐‘๐‘—โ„“๐‘– + ๐‘๐›ผโ„“๐‘–๐ต๐‘—๐›ผ)๐‘’๐‘— + stuff ๐‘’๐œ†.

We get immediately that for 1 โฉฝ ๐‘–, ๐‘—, โ„“ โฉฝ ๐‘ , and sum over ๐‘  + 1 โฉฝ ๐›ผ โฉฝ ๐‘›:

Proposition 3.2.

๐‘๐‘—โ„“๐‘– โ†’ ๐‘๐‘—โ„“๐‘– = ๐‘๐‘—โ„“๐‘– + ๐‘๐›ผโ„“๐‘–๐ต๐‘—๐›ผ

(which clearly is still skew symmetric with respect to indices โ„“, ๐‘–.)

ฮ“๐‘—๐‘–๐‘˜ โ†’ ฮ“๐‘—

๐‘–๐‘˜ = ฮ“๐‘—๐‘–๐‘˜ +

1

2(๐‘๐›ผ๐‘—๐‘˜๐ต๐‘–๐›ผ โˆ’ ๐‘๐›ผ๐‘˜๐‘–๐ต๐‘—๐›ผ + ๐‘๐›ผ๐‘—๐‘–๐ต๐‘˜๐›ผ)

(which clearly is still skew symmetric with respect to indices ๐‘—, ๐‘˜.)

Proposition 3.3 (Master equations). The โ€œpackage of conditionsโ€ for nh con-nection equivalence is

(3.2) ๐‘๐›ผ๐‘—๐‘˜๐ต๐‘–๐›ผ โˆ’ ๐‘๐›ผ๐‘˜๐‘–๐ต๐‘—๐›ผ + ๐‘๐›ผ๐‘—๐‘–๐ต๐‘˜๐›ผ = 0.

For the straightest paths equivalence the conditions are

(3.3) ๐‘๐›ผโ„“๐‘–๐ต๐‘—๐›ผ + ๐‘๐›ผโ„“๐‘—๐ต๐‘–๐›ผ = 0.

For a Chaplygin system where ๐‘„โ†’ ๐‘† is a principal bundle, ๐ต and the ๐‘๐›ผโ„“๐‘— willbe functions of the base variable.

Since the preservation of the nh connection implies that the trajectories aremaintained, (3.2) implies (3.3).

A question then arises: in what circumstances does (3.3) in turn imply (3.2),i.e. the two equivalence notions coincide?

We present situations where the notions coincide in the next section 4. Thecounter example by Terra an Oliva [76] is reviewed in section 4.6.

Page 12: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

26 EHLERS AND KOILLER

3.2. Change of metric preserving the nh connection (Cartanโ€™s way).Both sets of conditions as given by the above proposition 3.3 seem difficult toanalyze. The package (3.2) for nh connection equivalence looks specially diabolical.Probably, this is why Cartan chose to work with coframes structure equations. Hefocused only on the nh connection equivalence. Let us now review his approach.

In the previous section 2.1 we defined the first derived ideal โ„(1). Recall thatit is formed by combinations ๐œƒ = โˆ‘๐‘Ž๐›ผ๐œ”

๐›ผ (coefficients are functions in ๐‘„) of the๐œ”๐›ผ such that ๐‘‘๐œƒ โˆˆ โ„. This means that the 2-form ๐‘‘๐œƒ, as a 2-form, can be writtenin terms of wedge products where every term contains at least one of the ๐œ”๐›ผโ€™s; inother words, there are no terms of the form ๐œ”๐‘–โˆง๐œ”๐‘— . Equivalently, ๐‘‘๐œƒ vanishes whenapplied to a pair of vectors in ๐ธ. This is clear from Cartanโ€™s magic formula.

We mentioned in the introduction that Cartan observed that for nh systems,there must be restrictions on ๐ต in order to preserve the nh connection. He provedthat for strongly nonholonomic (Snh) distributions, ๐ต โ‰ก 0. Thus, in that case, ๐นmust remain perpendicular to ๐ธ in the new metric, although one can change themetric at will in ๐น . Probably the reason that Cartan was only interested in thenonholonomic connection (and not the trajectories) is because he showed that thereis a unique (intrinsically defined!) special metric in ๐น . A more general result was

presented in [63]. Let ๐‘Ÿ = dim(โ„(1)), sodim(๐ธ + (๐ธ,๐ธโŒ‹) = ๐‘› โˆ’ ๐‘Ÿ.

As we mentioned before, we subdivide the ๐‘› โˆ’ ๐‘  Greek indices into ๐‘Ÿ capital Greekindices ฮฆ and ๐‘ก = ๐‘›โˆ’๐‘ โˆ’๐‘Ÿ lower case Greek (those listed as the last batch of objects).In the sequel, when we say โ€œall the Greekโ€, it means both lower and upper case.

Definition 3.1. The specially adapted frames for ๐‘‡๐‘„

(3.4) (๐‘’๐‘–, ๐‘’ฮฆ, ๐‘’๐œ‘), 1 โฉฝ ๐‘– โฉฝ ๐‘ , ๐‘  + 1 โฉฝ ฮฆ โฉฝ ๐‘  + ๐‘Ÿ, ๐‘  + ๐‘Ÿ + 1 โฉฝ ๐œ‘ โฉฝ ๐‘›

are those that satisfy the following requirements:

i) The ๐‘’๐‘– span ๐ธ.ii) The ๐‘’๐œ‘ generate a complement ๐น of ๐ธ in ๐ธ + (๐ธ,๐ธโŒ‹ (thus (๐‘’๐‘–, ๐‘’๐œ‘) generate

๐ธ + (๐ธ,๐ธโŒ‹, which is annihilated by โ„(1)).iii) The ๐‘’ฮฆ are chosen to complete the full frame for ๐‘‡๐‘„ (we placed them in the

middle sector for convenience).

The dual coframe of the frame just constructed is denoted

(๐œ”๐‘–, ๐œ”ฮฆ, ๐œ”๐œ‘)โ€ , 1 โฉฝ ๐‘– โฉฝ ๐‘ , ๐‘  + 1 โฉฝ ฮฆ โฉฝ ๐‘  + ๐‘Ÿ, ๐‘  + ๐‘Ÿ + 1 โฉฝ ๐œ‘ โฉฝ ๐‘›.

Notice that by duality, the ๐œ”ฮฆ โˆˆ โ„(1). The last forms, in lower case Greek, arein โ„ but not in โ„(1). The most general change of frames among specially adaptedones is of the form

(3.5) (๐‘’๐‘–, ๐‘’ฮฆ, ๐‘’๐œ‘) = (๐‘’๐‘–, ๐‘’ฮฆ, ๐‘’๐œ‘)โŽ›โŽœโŽ

๐ถ ๐ต1 ๐ต2

0 ๐ด๐‘œ 02,30 ๐ด1 ๐ด2

โŽžโŽŸโŽ 

where the 023 block is zero by construction, that is: the first and last batches stillgenerate ๐ธ + (๐ธ,๐ธโŒ‹. Also ๐ถ โˆˆ ๐‘‚(๐‘ ), ๐ด๐‘œ โˆˆ ๐บ๐‘™(๐‘Ÿ), ๐ด2 โˆˆ ๐บ๐‘™(๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ).

Page 13: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 27

It is not hard to check that all possible metrics in ๐‘„ are contemplated bythis construction: given any frame {๐‘“๐ผ}๐ผ=1,...๐‘› in ๐‘„, there is an orthogonal matrix๐‘… โˆˆ ๐‘‚(๐‘›) such that the rotated frame {๐‘“๐ผ} โ‹…๐‘… has the first ๐‘  vectors in ๐ธ and thefirst ๐‘  + ๐‘Ÿ vectors in ๐ธ + (๐ธ,๐ธโŒ‹.

The change of coframes writes as

(3.6)โŽ›โŽœโŽ

๏ฟฝ๏ฟฝ๐‘–

๏ฟฝ๏ฟฝฮฆ

๏ฟฝ๏ฟฝ๐›ผ

โŽžโŽŸโŽ =โŽ›โŽœโŽ

๐ถ ๐ต1 ๐ต2

0 ๐ด๐‘œ 02,30 ๐ด1 ๐ด2

โŽžโŽŸโŽ 

โŽ›โŽœโŽ

๐œ”๐‘–

๐œ”ฮฆ

๐œ”๐›ผ

โŽžโŽŸโŽ .

Theorem 3.1. [63] In the notation of (3.5) and (3.6), make ๐ถ = identitywithout loss in generality. The condition for the nh connection to be the same forthe two metrics, determined by the corresponding coframes, is

๐ต2 = 0.

For the proof, we must compare the structure equations

(3.7) ๐‘‘๐œ”๐‘– = โˆ’๐œ”๐‘–๐‘— โˆง ๐œ”๐‘— โˆ’ ๐œ”๐‘–๐›ผ โˆง ๐œ”๐›ผ, ๐‘‘๏ฟฝ๏ฟฝ๐‘– = โˆ’๏ฟฝ๏ฟฝ๐‘–๐‘— โˆง ๏ฟฝ๏ฟฝ๐‘— โˆ’ ๏ฟฝ๏ฟฝ๐‘–๐›ผ โˆง ๏ฟฝ๏ฟฝ๐›ผ.

Definition 3.2. We say that forms (on any degree) are ๐ธ-equivalent if theirdifference is in โ„ and denote โˆผ๐ธ . So anything containing one of the Greeks (the๐œ”๐›ผโ€™s or the ๐œ”ฮฆโ€™s) can be dropped in terms of the equivalence relation.

Lemma 3.1. The nh connection is preserved if and only if ๐‘‘๏ฟฝ๏ฟฝ๐‘– โˆผ๐ธ ๐‘‘๐œ”๐‘–.

Proof. By (3.6) with ๐ถ = identity, we have ๐‘’๐‘– = ๐‘’๐‘–. In view of (2.1) and (2.7)the connection is preserved by the change of metrics if and only if

๐œ”๐‘–๐‘— โˆผ๐ธ ๏ฟฝ๏ฟฝ๐‘–๐‘— .

So in view of (3.7) we get ๐‘‘๏ฟฝ๏ฟฝ๐‘– โˆผ๐ธ ๐‘‘๐œ”๐‘–. ๏ฟฝ

Proof of Theorem 3.1. Since ๏ฟฝ๏ฟฝ๐‘– = ๐œ”๐‘–+(๐ต1)๐‘–ฮฆ๐œ”ฮฆ+(๐ต2)๐‘–๐›ผ๐œ”๐›ผ it follows fromthe lemma that ๐‘‘((๐ต1)๐‘–ฮฆ๐œ”ฮฆ + (๐ต2)๐‘–๐›ผ๐œ”๐›ผโŒ‹ โˆผ๐ธ 0. Now,

๐‘‘((๐ต1)๐‘–ฮฆ๐œ”ฮฆโŒ‹ = ๐‘‘(๐ต1)๐‘–ฮฆ โˆง ๐œ”ฮฆ + (๐ต1)๐‘–ฮฆ๐‘‘๐œ”ฮฆ โˆผ๐ธ 0

as ๐‘‘๐œ”ฮฆ โˆผ๐ธ 0 (because by choice ๐œ”ฮฆ โˆˆ โ„(1)). It follows that

๐‘‘((๐ต2)๐‘–๐›ผ โˆง ๐œ”๐›ผโŒ‹ = (๐ต2)๐‘–๐›ผ โˆง ๐œ”๐›ผ โˆผ๐ธ 0.

This means that the 1-form given by the combination (๐ต2)๐‘–๐›ผ๐‘‘๐œ”๐›ผ is in โ„(1). Butunless all the coefficients vanish this is impossible. We exhausted the generators ofโ„(1) with the upper case Greek indices. Hence ๐ต2 = 0. It was once said that whenbasic theorems are interesting they are trivial to prove. ๏ฟฝ

Summary. In subriemannian geometry one can add any combination of formsin โ„ to the ๐œ”๐‘–. In nonholonomic geometry we can still add forms in โ„(1) andpreserve the connection. Thus nh geometry has some degree of โ€œnear-sightednessโ€.

Page 14: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

28 EHLERS AND KOILLER

3.3. Initial ๐บ-structure for Nh connection equivalence. The condition๐ต2 = 0 means geometrically that the orthogonal complement ๐น of ๐ธ in ๐ธ(1) cannotbe changed. But the metric in ๐น can be altered. Any complement ๐ป of ๐ธ(1) to๐‘‡๐‘„ can be declared orthogonal to ๐ธ(1) without affecting the connection. From adifferent perspective, look back at the Levi-Civita connection of ๐‘„, restricted tothe latin indices

(3.8) โˆ‡๐‘’๐‘˜๐‘’๐‘— = ๐œ”๐‘–๐‘—(๐‘’๐‘˜)๐‘’๐‘– + ๐œ”ฮฆ๐‘—(๐‘’๐‘˜)๐‘’ฮฆ + ๐œ”๐›ผ๐‘—(๐‘’๐‘˜)๐‘’๐›ผ.

In general the ๐œ”ฮฆ๐‘—(๐‘’๐‘˜)๐‘’ฮฆ โˆˆ๐ป do not vanish, and they are outside ๐ธ + (๐ธ,๐ธโŒ‹. Thisis not harmful, since the nh connections are obtained by dropping out all the Greeks๐‘’ฮฆ and ๐‘’๐›ผ terms in (3.8). The first terms, defining the nh connections are the samein both metrics.

Theorem 3.2. The initial ๐บ-structure for the equivalence problem for Nh con-nections ๐ท๐‘‹๐‘Œ is the sub-bundle on the frame bundle consisting of coframes

๐œ” = (๐œ”๐‘–, ๐œ”ฮฆ, ๐œ”๐œ‘)โ€ , 1 โฉฝ ๐‘– โฉฝ ๐‘ , ๐‘  + 1 โฉฝ ฮฆ โฉฝ ๐‘  + ๐‘Ÿ, ๐‘  + ๐‘Ÿ + 1 โฉฝ ๐œ‘ โฉฝ ๐‘›

where ๐œ”ฮฆ, ๐œ”๐œ‘ annihilate ๐ธ and ๐œ”ฮฆ annihilate ๐ธ1 = ๐ธ+(๐ธ,๐ธโŒ‹. The initial ๐บ-groupacting on ๐œ” consists of matrices of the form

โŽ›โŽœโŽ

๐ถ ๐ต1 00 ๐ด๐‘œ 00 ๐ด1 ๐ด2

โŽžโŽŸโŽ 

with ๐ถ โˆˆ ๐‘‚(๐‘ ), ๐ต1 โˆˆ๐‘€(๐‘ , ๐‘Ÿ), ๐ด๐‘œ โˆˆ ๐บ๐‘™(๐‘Ÿ, ๐‘Ÿ), ๐ด1 โˆˆ๐‘€(๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ, ๐‘Ÿ), ๐ด2 โˆˆ ๐บ๐‘™(๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ).

Dimension count. Let dim๐ธ = ๐‘ , dim๐น = ๐‘ก, dim๐ป = ๐‘Ÿ, so that ๐‘› = dim๐‘„ = ๐‘Ÿ+ ๐‘ + ๐‘ก.The number of independent functions is

๐‘ (๐‘  + 1)โ‡‘2 + ๐‘ก(๐‘ก + 1)โ‡‘2 + ๐‘Ÿ(๐‘  + ๐‘ก).

Revisiting example 2.5. Here โ„ = โ„0 = span{๐œ‚3, ๐œ‚4, ๐œ‚5} and we can compute

๐‘‘๐œ‚1 = ๐‘‘๐‘ฅ1 โˆง ๐‘‘๐‘ฅ2 โ‡‘โ‰ก 0, ๐‘‘๐œ‚4 = ๐‘‘๐‘ฅ1 โˆง ๐œ‚3 โ‰ก 0, ๐‘‘๐œ‚5 = ๐‘‘๐‘ฅ2 โˆง ๐œ‚3 โ‰ก 0 (all mod โ„),

hence the uppercase Greeks are โ„1 = span{๐œ‚4, ๐œ‚5}. Furthermore we can check that๐‘‘๐œ‚4 and ๐‘‘๐œ‚5 โ‡‘โ‰ก 0 mod ๐ผ1 so that โ„2 = 0.

The column vector (๐œ‚1, ๐œ‚2, ๐œ‚3, ๐œ‚4, ๐œ‚5)๐‘ก๐‘Ÿ is thus an adapted coframe, where forconvenience we kept the uppercase Greeks ๐œ‚4, ๐œ‚5 at the end of the list. The initial๐บ0 โŠ‚ ๐บ๐‘™(5) consists of all matrices of the form

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ

๐ถ11 ๐ถ12 0 ๐‘14 ๐‘15๐ถ21 ๐ถ22 0 ๐‘24 ๐‘250 0 ๐‘Ž33 ๐‘Ž34 ๐‘Ž350 0 0 ๐‘Ž44 ๐‘Ž450 0 0 ๐‘Ž54 ๐‘Ž55

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

In light of proposition 2.8, Cartanโ€™s condition is easy to appreciate. If we let ๐ถbe the identity matrix and replace ๐œ‚1 with ๐œ‚1 = ๐œ‚1 + ๐‘14๐œ‚4 + ๐‘15๐œ‚5 and ๐œ‚2 with

Page 15: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 29

๐œ‚2 = ๐œ‚2 + ๐‘24๐œ‚4 + ๐‘25๐œ‚5, then the coefficients ๐›ผ212 and ๐›ผ1

12 in the motion equations(2.5) remain unchanged since

๐‘‘๐œ‚4 โˆง ๐œ‚3 โˆง ๐œ‚4 โˆง ๐œ‚5 = ๐‘‘๐œ‚5 โˆง ๐œ‚3 โˆง ๐œ‚4 โˆง ๐œ‚5 = 0.

4. Remarks on weak equivalence-preserving the acceleration ๐ท๐‘‹๐‘‹

Cartanโ€™s equivalence criterion-to preserve the nh connection, obviously impliesthat their nonholonomic paths are the same. Much to our surprise, Terra and Olivahave recently found an example of a change of metric that does not preserve thenh connection but still preserves the paths. We will discuss their example at theend of this section. First, we will make some considerations indicating that thisis an โ€œextreme eventโ€™. We start by showing that when dim๐ธ = 2, preservation oftrajectories implies, conversely, preservation of the connection. In [37,38,64], thecases of, respectively, 2-3, 2-3-5, and 2-3-4 distribution growth were studied.

4.1. Rank two distributions.

Proposition 4.1. For any nonintegrable distribution ๐ธ of rank 2 on a manifold๐‘„ of dimension ๐‘› endowed with an arbitrary Riemannian metric, the straightestpath equations are preserved if and only if ๐ต2 = 0.

Proof. Theorem 3.1 yields sufficiency. To show necessity, let ๐œ” = (๐œ”1, . . . , ๐œ”๐‘›)โ€ ,where โ€  indicates transpose, be an specially adapted coframe (3.4) in Definition 3.1,

with โ„ = span{๐œ”3, . . . , ๐œ”๐‘›}, โ„(1) = span{๐œ”3, . . . , ๐œ”๐‘›โˆ’1}, and ๐‘” = (๐œ”1)2 + โ‹… โ‹… โ‹… + (๐œ”๐‘›)2.Here โ„(1) is the annihilator of the three-dimensional distribution ๐ธ(1) = ๐ธ+ (๐ธ,๐ธโŒ‹,and ๐œ”๐‘› โˆ‰ โ„(1). Note that in the special case ๐‘› = 3, โ„(1) = 0 and ๐œ”3 โˆ‰ ๐ผ(1).

The structure equations for ๐œ” are

๐‘‘

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ”1

๐œ”2

๐œ”3

โ‹ฏ๐œ”๐‘›โˆ’1

๐œ”๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โ‰ก

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐‘“1๐œ”1 โˆง ๐œ”2

๐‘“2๐œ”1 โˆง ๐œ”2

0โ‹ฏ0

๐‘“๐‘›๐œ”1 โˆง ๐œ”2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

(mod ๐ผ).

Note that ๐‘“๐‘› โ‰  0 since ๐œ”๐‘› โˆ‰ ๐ผ(1). Applying Proposition 2.3, the straightest pathsequations for the quasivelocities ๐‘ฃ1 and ๐‘ฃ2 are

(4.1)๏ฟฝ๏ฟฝ1 = ๐‘“2๐‘ฃ1๐‘ฃ2 + ๐‘“1(๐‘ฃ2)2

๏ฟฝ๏ฟฝ2 = โˆ’๐‘“2(๐‘ฃ1)2 + ๐‘“1๐‘ฃ1๐‘ฃ2.

Now suppose that in equation (3.6) ๐ต2 = (๐‘1, ๐‘2)โ€  and, without loss of general-ity, ๐ถ, ๐ด0, and ๐ด2 are identity matrices, and that ๐ด1 = 0. The modified coframe is

thus ๏ฟฝ๏ฟฝ = (๐œ”1, . . . , ๏ฟฝ๏ฟฝ๐‘›)โ€  = (๐œ”1+๐‘1๐œ”๐‘›, ๐œ”2+๐‘2๐œ”๐‘›, ๐œ”3, . . . , ๐œ”๐‘›)โ€  with associated modifiedmetric (๏ฟฝ๏ฟฝ1)2 + โ‹… โ‹… โ‹… + (๏ฟฝ๏ฟฝ๐‘›)2. Note that the quasivelocities ๐‘ฃ1 and ๐‘ฃ2 are unchanged.

The structure equations for ๏ฟฝ๏ฟฝ are

Page 16: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

30 EHLERS AND KOILLER

๐‘‘

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๏ฟฝ๏ฟฝ1

๏ฟฝ๏ฟฝ2

๏ฟฝ๏ฟฝ3

โ‹ฏ๏ฟฝ๏ฟฝ๐‘›โˆ’1

๏ฟฝ๏ฟฝ๐‘›

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

โ‰ก

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

(๐‘“1 + ๐‘1๐‘“๐‘›)๏ฟฝ๏ฟฝ1 โˆง ๏ฟฝ๏ฟฝ2

(๐‘“2 + ๐‘2๐‘“๐‘›)๏ฟฝ๏ฟฝ1 โˆง ๏ฟฝ๏ฟฝ2

0โ‹ฏ0

๐‘“๐‘›๏ฟฝ๏ฟฝ1 โˆง ๏ฟฝ๏ฟฝ2

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

(mod ๐ผ).

The straightest path equations for (the same) quasivelocities are now

๏ฟฝ๏ฟฝ1 = (๐‘“2 + ๐‘2๐‘“๐‘›)๐‘ฃ1๐‘ฃ2 + (๐‘“1 + ๐‘1๐‘“๐‘›)(๐‘ฃ2)2

๏ฟฝ๏ฟฝ2 = โˆ’(๐‘“2 + ๐‘2๐‘“๐‘›)(๐‘ฃ1)2 + (๐‘“1 + ๐‘1๐‘“๐‘›)๐‘ฃ1๐‘ฃ2.

Comparing with the original equations (4.1) and recalling that ๐‘“๐‘› โ‰  0, we can seethat it is necessary for ๐‘1 = ๐‘2 = 0 to preserve the nonholonomic paths. ๏ฟฝ

4.2. โ€œMaster equationโ€ for keeping the straightest paths, revisited.Recall that the nonholonomic dynamics in the Eulerโ€“Arnold format is given by

(4.2) ๏ฟฝ๏ฟฝ๐‘– = ๐‘๐‘—โ„“๐‘–(๐‘ž)๐‘ฃ๐‘—๐‘ฃโ„“, 1 โฉฝ ๐‘–, ๐‘—, โ„“ โฉฝ ๐‘ , ๐‘ž = ๐‘ฃ๐‘–๐‘’๐‘–,

where the ๐‘’๐‘– โˆˆ ๐ธ (๐‘– = 1, . . . ๐‘ ) are part of a full orthonormal frame ๐‘’๐ฝ (๐ฝ = 1, . . . ๐‘›),with

(๐‘’๐ผ , ๐‘’๐ฝโŒ‹ = ๐‘๐พ๐ผ๐ฝ๐‘’๐พ .

Recall that we change metric as follows. An orthonormal basis {๐‘’๐‘–, ๐‘’๐›ผ} for the newmetric is related to {๐‘’๐‘–, ๐‘’๐›ผ} by

(4.3) ๐‘’๐‘— = ๐‘’๐‘–๐ถ๐‘–๐‘— , ๐‘’๐›ผ = ๐‘’๐‘—๐ต๐‘—๐›ผ + ๐‘’๐œ†๐ด๐œ†๐›ผ.

Here ๐ต is ๐‘  ร— ๐‘Ÿ and ๐ด is ๐‘Ÿ ร— ๐‘Ÿ, functions of ๐‘ž โˆˆ ๐‘„. We take ๐ถ =identity, so ๐‘’๐‘– = ๐‘’๐‘–.

Definition 4.1. For each ๐‘– = 1, . . . ๐‘ , denote by ๐ถ๐‘– the (๐‘› โˆ’ ๐‘ ) ร— ๐‘  matrix

(๐ถ๐‘–)๐›ผโ„“ = ๐‘๐›ผโ„“๐‘–.

We call them โ€œweightsโ€. Note that the last ๐‘Ÿ rows of those matrices are zerosince we are working with specially adapted frames.

We get immediately from the package of conditions (3.3):

Proposition 4.2 (Master Equation for Weak Equivalence). The necessary andsufficient condition for a change of metrics (4.3) to preserve the straightest pathsequation (4.2) is:

All the ๐‘  ร— ๐‘  โ€œweighted matricesโ€ ๐ต๐ถ๐‘– for ๐‘– = 1, . . . ๐‘  are skew symmetric.

Recall that this means

(4.4) โˆ‘๐›ผ

(๐‘๐›ผโ„“๐‘–๐ต๐‘—๐›ผ + ๐‘๐›ผ๐‘—๐‘–๐ตโ„“๐›ผ) = 0, for all 1 โฉฝ ๐‘—, โ„“ โฉฝ ๐‘  and 1 โฉฝ ๐‘– โฉฝ ๐‘ .

As we mentioned before, the skew symmetry requirement is natural since any skewsymmetric bilinear form ๐‘ฃโ€ ๐ด๐‘ค vanishes when ๐‘ฃ = ๐‘ค. In hindsight this propositionresults from the Euler-Arnold form for the nonholonomic dynamics, using the ๐‘๐‘˜๐‘–๐‘—(๐‘ž)instead of the ฮ“๐‘˜

๐‘–๐‘—(๐‘ž).

Page 17: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 31

4.3. There are more equations than unknowns. Let ๐‘Ÿ = dimโ„(1), so๐‘ก = ๐‘›โˆ’๐‘ โˆ’ ๐‘Ÿ is the dimension of the complement ๐น of ๐ธ in ๐ธ(1). This is the numberof the ๐›ผ indices that matter forming matrix ๐ต2. Note that for all the remaining๐›ผโ€™s we have ๐‘๐›ผ๐‘–๐‘— = 0. We differentiated those latter in Definition 3.1 by using uppercase Greek letters (and indeed there are ๐‘Ÿ of them).

Each matrix ๐ถ๐‘– has two blocks. The upper, which we call ๐ถ๐‘–, is the relevantone, of size (๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ) ร— ๐‘ . The lower block is of size ๐‘Ÿ ร— ๐‘  and is filled with zeros.Therefore, in computing the products ๐ต๐ถ๐‘–, we should divide matrix ๐ต in twoblocks. The left one, which we call ๐ต2, is of size ๐‘ ร— (๐‘›โˆ’ ๐‘ โˆ’ ๐‘Ÿ) and meets the upperblocks ๐ถ๐‘–. The right one, which we call ๐ต1, is of size ๐‘  ร— ๐‘Ÿ.

We can see that there are no conditions for ๐ต1 since it meets the lower partof the ๐ถ๐‘– which are zero. The skew symmetry conditions (4.4) are limited to thesmall Greek indices ๐›ผโ€™s, and apply to block ๐ต2, of size ๐‘  ร— (๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ). The numberof unknowns is ๐‘ข = ๐‘ (๐‘› โˆ’ ๐‘  โˆ’ ๐‘Ÿ). On the other hand, the number ๐‘ of equationsencoded in ๐ถ๐‘–๐ต2 + (๐ถ๐‘–๐ต2)๐‘‡ = 0 is

๐‘ = ๐‘ (๐‘ (๐‘  + 1)โ‡‘2) = ๐‘ 2(๐‘  + 1)โ‡‘2.

We could assert for sure that there are nonzero solutions for ๐ต2 if there were moreunknowns than equations, ๐‘ข > ๐‘, i.e., if ๐‘ ร—(๐‘›โˆ’๐‘ โˆ’๐‘Ÿ) > ๐‘ 2(๐‘ +1)โ‡‘2, or equivalently, if

๐‘› > ๐‘ (๐‘  + 1)โ‡‘2 + ๐‘  + ๐‘Ÿ (โˆ—).

However, this is never the case. Since dim๐ธ(1) โฉฝ ๐‘  + ๐‘ (๐‘  โˆ’ 1)โ‡‘2 = ๐‘ (๐‘  + 1)โ‡‘2 (themaximum number of new vectorfields that one can form with the brackets) we get

๐‘› โฉฝ ๐‘Ÿ + ๐‘ (๐‘  + 1)โ‡‘2

which precludes (*). So there are always more equations than unknowns.

4.4. Corank 1, strongly nh, distributions. Here ๐‘  = ๐‘› โˆ’ 1, ๐‘Ÿ = 0. Is itpossible to find an example of nh geodesics equivalence with ๐ต โ‰  0? We indicatewhy not using the Master Equations. We will give a more general argument in thenext subsection, using Cartanโ€™s viewpoint. To begin with, note that there are farmore conditions (๐‘ = (๐‘› โˆ’ 1)2๐‘›โ‡‘2) than unknowns (๐‘ข = ๐‘› โˆ’ 1).

Matrices ๐ถ๐‘–,1 โฉฝ ๐‘– โฉฝ ๐‘› โˆ’ 1 are row-vectors of size ๐‘› โˆ’ 1

๐ถ๐‘– = (๐‘๐‘›1๐‘–, ๐‘๐‘›2๐‘–, . . . , ๐‘๐‘›๐‘›โˆ’1,๐‘–)

and the matrix ๐ต2 = ๐ต is a column vector of size ๐‘› โˆ’ 1

๐ต = (๐‘1, . . . ๐‘๐‘›โˆ’1)โ€ .

The product ๐ต๐ถ๐‘— is a (๐‘› โˆ’ 1) ร— (๐‘› โˆ’ 1) matrix whose ๐‘–-th row (1 โฉฝ ๐‘– โฉฝ ๐‘› โˆ’ 1) is

๐‘๐‘–(๐‘๐‘›1๐‘— , ๐‘๐‘›2๐‘— , . . . , ๐‘๐‘›๐‘›โˆ’1,๐‘—).

For the nh connection equivalence we know already that all ๐‘๐‘–, ๐‘– = 1, . . . , ๐‘  = ๐‘›โˆ’1must vanish since the distribution is Snh. But it would be interesting to have adirect argument using the conditions (3.2). Since there is only one ๐›ผ = ๐‘›, the usualalternating trick shows that every term in (3.2) vanishes, i.e. all ๐‘๐‘›๐‘—๐‘˜๐‘๐‘– = 0. Sincesome ๐‘๐‘›๐‘–๐‘˜ โ‰  0, we conclude that all ๐‘๐‘– = 0.

Page 18: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

32 EHLERS AND KOILLER

It is a little bit more difficult to analyze the conditions for keeping the straight-est paths (i.e., weak equivalence)

(4.5) ๐‘๐‘–๐‘๐‘›๐‘˜๐‘— + ๐‘๐‘˜๐‘

๐‘›๐‘–๐‘— = 0

for all 1 โฉฝ ๐‘–, ๐‘—, ๐‘˜ โฉฝ ๐‘› โˆ’ 1. It is convenient to form the skew symmetric matrix

๐ถ = (๐‘๐‘›๐‘–๐‘—).Making ๐‘˜ = ๐‘— in (4.5) kills automatically the first term and we get ๐‘๐‘—๐‘

๐‘›๐‘–๐‘— = 0 (not a

sum over ๐‘—, it is just a single product).

Proposition 4.3. If ๐‘๐‘›๐‘–๐‘— โ‰  0 then ๐‘๐‘— = ๐‘๐‘– = 0.

If there is an example with a ๐‘๐‘— โ‰  0, then the whole ๐‘—-th column (so also the

๐‘—-th row) of ๐ถ must vanish. Conversely, suppose the ๐‘—-th colum of ๐ถ is formed byzeros (so also the ๐‘—-th row). Then the equation (4.5) for that value ๐‘— is void. Itseems therefore that the most favorable case for the possibility of having a nonzero๐ต is when only one structure coefficient is nonzero.

At first sight it seems that that pair of ๐‘โ€ฒ๐‘  vanishes and all the other couldbe arbitrary. We now show that (4.5) forces a lot of others (we think that thisargument gives all) to be zero too.

When one structure coefficient is nonzero we have the group R๐‘š ร—๐ป3, where๐ป3 is the smallest Heisenberg group. Denote (๐‘ฆ1, . . . , ๐‘ฆ๐‘š, ๐‘ฅ, ๐‘ฆ, ๐‘ง) the coordinates.The corank 1, strongly nh distribution ๐ธ is generated by the ๐œ•โ‡‘๐œ•๐‘ฆ๐‘–, together with

๐‘‹1 = ๐œ•โ‡‘๐œ•๐‘ฅ, ๐‘‹2 = ๐œ•โ‡‘๐œ•๐‘ฆ + ๐‘ฅ๐œ•โ‡‘๐œ•๐‘ง.The only nonzero commutator is (๐‘‹1,๐‘‹2โŒ‹ = ๐œ•โ‡‘๐œ•๐‘ง.๐ต is a column matrix with ๐‘š + 2 entries. Let us look at the first ๐‘š entries

๐‘๐‘–, ๐‘– = 1, . . .๐‘š. The second term in (4.5) vanishes because all the possible ๐‘โˆ—๐‘–โˆ— = 0.But we may take ๐‘˜ = ๐‘š + 1, ๐‘— = ๐‘š + 2 and since ๐‘๐‘š+3

๐‘š+1,๐‘š+2 = 1 we conclude that๐‘๐‘– = 0, ๐‘– = 1, . . .๐‘š. In order to show that ๐‘๐‘š+1 and ๐‘๐‘š+2 also vanish in the nhgeodesic equivalence we now look directly at ๐ป3. More generally, the reasoning isvalid for all Heisenberg algebras ๐ป๐‘›, ๐‘› = 2๐‘š + 1.

The last coordinate is called ๐‘ง. The distribution of rank ๐‘› โˆ’ 1 = 2๐‘š (even)is generated by vectorfieds ๐‘ƒ๐‘–โ€™s and ๐‘„๐‘— โ€™s with (๐‘ƒ๐‘–,๐‘„๐‘—โŒ‹ = ๐›ฟ๐‘–๐‘—๐œ•โ‡‘๐œ•๐‘ง, 1 โฉฝ ๐‘–, ๐‘— โฉฝ ๐‘š.Conditions (4.5) lead to ๐ต = 0. This is because when we make ๐‘– = ๐‘˜, we get2๐‘๐‘˜๐‘

๐‘›๐‘˜๐‘— = 0 (again, a plain product). But for every ๐‘˜ there exists one (unique) ๐‘—

with ๐‘๐‘›๐‘˜๐‘— โ‰  0.Therefore for the standard metric in the Heisenberg distribution, there is no

difference between preserving the connection and preserving the straightest paths.

4.5. Corank of ๐ธ in ๐ธ(1) = ๐ธ + (๐ธ,๐ธโŒ‹ < 3. The reasoning we now presenttakes care of the previous case ๐‘  = ๐‘› โˆ’ 1 and many others. It implies for instancethat to find examples where the straightest paths are the same in non-equivalentnH connections, the corank of ๐ธ in ๐ธ + (๐ธ,๐ธโŒ‹ must be at least 3, no matter whatthe rank of ๐ธ is. So such examples can happen in (3,6), (4,7,. . . ),(4,8,. . . ), etc. butnot in (2,3), (2,3,4), (2,3,5), (3,5), etc. The minimal example is in (3,6), preciselythe situation in [76].

Page 19: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 33

We present the argument for a rank 3 distribution just to write things outexplicitly. We show that to preserve the straightest paths, covectors that are notin โ„1 cannot be added to the ๐œ”๐‘–, ๐‘– = 1,2,3 if ๐ธ + (๐ธ,๐ธโŒ‹ has dimension 4 or 5.

Proposition 4.4. Suppose ๐ธ is a totally nonholonomic, rank 3 distributionon a manifold ๐‘„ of dimension ๐‘› > 3. If the corank of ๐ธ โŠ‚ ๐ธ + (๐ธ,๐ธโŒ‹ is one or two,then the block ๐ต2 in (3.6) is zero.

Proof. We slightly change the notational conventions as follows. Suppose ๐œ” isa specially adapted coframe for this distribution for which ๐œ”๐œ‘, 4 โฉฝ ๐œ‘ โฉฝ ๐‘Ÿ, span โ„(1).When can we add multiples of ๐œ”ฮฆ, ๐‘Ÿ+1 โฉฝ ฮฆ โฉฝ ๐‘› to the ๐œ”๐‘–, 1 โฉฝ ๐‘– โฉฝ 3, while preservingthe straightest path equations?

Let (๐œ”๐‘–๐‘—โŒ‹ be the Levi-Civita connection forms matrix relative to the coframe

๐œ”. Expand the components of ๐œ” as ๐œ”๐‘–๐‘— = โˆ‘๐‘›๐‘˜=1 ๐œ”

๐‘˜๐‘–๐‘—๐œ‚

๐‘˜. The nh trajectories are then

๏ฟฝ๏ฟฝ1 = โˆ’๐‘ฃ2(๐œ”112๐‘ฃ1 + ๐œ”2

12๐‘ฃ2 + ๐œ”312๐‘ฃ3) โˆ’ ๐‘ฃ3(๐œ”1

13๐‘ฃ1 + ๐œ”213๐‘ฃ2 + ๐œ”3

13๐‘ฃ3)๏ฟฝ๏ฟฝ2 = ๐‘ฃ1(๐œ”1

12๐‘ฃ1 + ๐œ”212๐‘ฃ2 + ๐œ”3

12๐‘ฃ3) โˆ’ ๐‘ฃ3(๐œ”123๐‘ฃ1 + ๐œ”2

23๐‘ฃ2 + ๐œ”323๐‘ฃ3)(4.6)

๏ฟฝ๏ฟฝ3 = ๐‘ฃ1(๐œ”113๐‘ฃ1 + ๐œ”2

13๐‘ฃ2 + ๐œ”313๐‘ฃ3) โˆ’ ๐‘ฃ2(๐œ”1

23๐‘ฃ1 + ๐œ”223๐‘ฃ2 + ๐œ”3

23๐‘ฃ3).

Now suppose ๐ต2 โ‰  0 and we modify ๐œ” by adding linear combinations ๐‘€๐‘– = โˆ‘๐‘Žฮฆ๐œ”ฮฆ

to the ๐œ”๐‘–, 1 โฉฝ ๐‘– โฉฝ 3, to obtain a new coframe ๏ฟฝ๏ฟฝ. The distribution ๐ธ is preserved,but the metric has changed. Denote the Levi-Civita connection form relative tothe modified coframe by ๏ฟฝ๏ฟฝ = (๏ฟฝ๏ฟฝ๐‘–๐‘—โŒ‹ with components ๏ฟฝ๏ฟฝ๐‘–๐‘— = โˆ‘๐‘›

๐‘˜=1 ๏ฟฝ๏ฟฝ๐‘˜๐‘–๐‘—๐œ‚

๐‘˜.The equations for the quasivelocities (the same as above) are now

๏ฟฝ๏ฟฝ1 = โˆ’๐‘ฃ2(๏ฟฝ๏ฟฝ112๐‘ฃ1 + ๏ฟฝ๏ฟฝ2

12๐‘ฃ2 + ๏ฟฝ๏ฟฝ312๐‘ฃ3) โˆ’ ๐‘ฃ3(๏ฟฝ๏ฟฝ1

13๐‘ฃ1 + ๏ฟฝ๏ฟฝ213๐‘ฃ2 + ๏ฟฝ๏ฟฝ3

13๐‘ฃ3)๏ฟฝ๏ฟฝ2 = ๐‘ฃ1(๏ฟฝ๏ฟฝ1

12๐‘ฃ1 + ๏ฟฝ๏ฟฝ212๐‘ฃ2 + ๏ฟฝ๏ฟฝ3

12๐‘ฃ3) โˆ’ ๐‘ฃ3(๏ฟฝ๏ฟฝ123๐‘ฃ1 + ๏ฟฝ๏ฟฝ2

23๐‘ฃ2 + ๏ฟฝ๏ฟฝ323๐‘ฃ3)(4.7)

๏ฟฝ๏ฟฝ3 = ๐‘ฃ1(๏ฟฝ๏ฟฝ113๐‘ฃ1 + ๏ฟฝ๏ฟฝ2

13๐‘ฃ2 + ๏ฟฝ๏ฟฝ313๐‘ฃ3) โˆ’ ๐‘ฃ2(๏ฟฝ๏ฟฝ1

23๐‘ฃ1 + ๏ฟฝ๏ฟฝ223๐‘ฃ2 + ๏ฟฝ๏ฟฝ3

23๐‘ฃ3).

Subtracting the expressions for ๏ฟฝ๏ฟฝ1 in (4.6) and (4.7) and equating the coefficientsin ๐‘ฃ๐‘–๐‘ฃ๐‘— to zero we obtain

๐œ”112 โˆ’ ๏ฟฝ๏ฟฝ1

12 = ๐œ”212 โˆ’ ๏ฟฝ๏ฟฝ2

12 = ๐œ”113 โˆ’ ๏ฟฝ๏ฟฝ1

13 = ๐œ”313 โˆ’ ๏ฟฝ๏ฟฝ3

13 = 0

and

(4.8) ๐œ”312 โˆ’ ๏ฟฝ๏ฟฝ3

12 = โˆ’(๐œ”213 โˆ’ ๏ฟฝ๏ฟฝ2

13).

Doing the same for ๏ฟฝ๏ฟฝ2 and ๏ฟฝ๏ฟฝ3 we find that

๐œ”312 โˆ’ ๏ฟฝ๏ฟฝ3

12 = (๐œ”123 โˆ’ ๏ฟฝ๏ฟฝ1

23)(4.9)

๐œ”213 โˆ’ ๏ฟฝ๏ฟฝ2

13 = โˆ’(๐œ”123 โˆ’ ๏ฟฝ๏ฟฝ1

23)(4.10)

with the difference between all other pairs equal to zero.Equations (4.8), (4.9), and (4.10) are not independent and we can write

(4.11) ๐œ”312 โˆ’ ๏ฟฝ๏ฟฝ3

12 = โˆ’(๐œ”213 โˆ’ ๏ฟฝ๏ฟฝ2

13) = ๐œ”123 โˆ’ ๏ฟฝ๏ฟฝ1

23 = ๐‘„.

Page 20: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

34 EHLERS AND KOILLER

We know that connection forms ๐œ” and ๏ฟฝ๏ฟฝ = ๐œ”+ฮ” lead to the same nH trajectoriesif and only if

ฮ” =โŽ›โŽœโŽœโŽœโŽ

0 ๐‘„๐œ‚3 โˆ’๐‘„๐œ‚2 โˆ— โˆ—โˆ’๐‘„๐œ‚3 0 ๐‘„๐œ‚1 โˆ— โˆ—๐‘„๐œ‚2 โˆ’๐‘„๐œ‚1 0 โˆ— โˆ—โˆ—โˆ— โˆ— โˆ— 0 โˆ—

โŽžโŽŸโŽŸโŽŸโŽ 

(mod ๐ผ).

Since ๐‘‘๏ฟฝ๏ฟฝ = โˆ’๏ฟฝ๏ฟฝ โˆง ๏ฟฝ๏ฟฝ = โˆ’(๐œ” +ฮ”) โˆง ๏ฟฝ๏ฟฝ we must have

(4.12) ๐‘‘โŽ›โŽœโŽ

๐‘€1

๐‘€2

๐‘€3

โŽžโŽŸโŽ โ‰กโŽ›โŽœโŽ

โˆ’2๐‘„๐œ‚2 โˆง ๐œ‚3

2๐‘„๐œ‚1 โˆง ๐œ‚3

โˆ’2๐‘„๐œ‚1 โˆง ๐œ‚2

โŽžโŽŸโŽ 

(mod ๐ผ).

Since the ๐‘‘๐‘€๐‘– are linearly independent, the ๐‘€๐‘– must be linearly independent.This is only possible if the corank of ๐ธ in ๐ธ + (๐ธ,๐ธโŒ‹ is three or more. ๏ฟฝ

The conclusion of this proposition is also true for distributions of rank greaterthan three. In this case (4.11) becomes

๐‘„ = ๐œ”๐พ๐‘–๐‘— โˆ’ ๏ฟฝ๏ฟฝ๐‘˜

๐‘–๐‘— = โˆ’(๐œ”๐‘—๐‘–๐‘˜ โˆ’ ๏ฟฝ๏ฟฝ๐‘—

๐‘–๐‘˜) = ๐œ”๐‘–๐‘—๐‘˜ โˆ’ ๏ฟฝ๏ฟฝ๐‘–

๐‘—๐‘˜

and, modulo ๐œ‚ โˆ’ {๐œ‚๐‘–, ๐œ‚๐‘— , ๐œ‚๐‘˜}, (4.12) becomes

๐‘‘โŽ›โŽœโŽ

๐‘€๐‘–

๐‘€๐‘—

๐‘€๐‘˜

โŽžโŽŸโŽ โ‰กโŽ›โŽœโŽ

โˆ’2๐‘„๐œ‚๐‘— โˆง ๐œ‚๐‘˜

2๐‘„๐œ‚๐‘– โˆง ๐œ‚๐‘˜

โˆ’2๐‘„๐œ‚๐‘– โˆง ๐œ‚๐‘—

โŽžโŽŸโŽ 

(mod ๐ผ)

and the conclusion follows as before.

4.6. The example in ๐‘„ = ๐‘†๐‘‚(4) by Terra and Oliva [76]. In this ex-ample, ๐‘› = 6, ๐‘  = ๐‘Ÿ = 3. First we will discuss it using the Cartan approach, andafterwards by a modification of the โ€œmaster equationsโ€, which may be helpful inconcocting other families of examples.

4.6.1. Via Cartan equations. Let {๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3, ๐‘ฅ4, ๐‘ฅ5, ๐‘ฅ6} be a basis for ๐‘ ๐‘œ(4)with

๐‘ฅ1 =โŽ›โŽœโŽœโŽœโŽ

0 0 0 โˆ’10 0 0 00 0 0 01 0 0 0

โŽžโŽŸโŽŸโŽŸโŽ , ๐‘ฅ2 =

โŽ›โŽœโŽœโŽœโŽ

0 0 0 00 0 0 โˆ’10 0 0 00 1 0 0

โŽžโŽŸโŽŸโŽŸโŽ , ๐‘ฅ3 =

โŽ›โŽœโŽœโŽœโŽ

0 0 0 00 0 0 00 0 0 โˆ’10 0 1 0

โŽžโŽŸโŽŸโŽŸโŽ ,

๐‘ฅ4 =โŽ›โŽœโŽœโŽœโŽ

0 0 0 00 0 โˆ’1 00 1 0 00 0 0 0

โŽžโŽŸโŽŸโŽŸโŽ , ๐‘ฅ5 =

โŽ›โŽœโŽœโŽœโŽ

0 0 1 00 0 0 0โˆ’1 0 0 00 0 0 0

โŽžโŽŸโŽŸโŽŸโŽ , ๐‘ฅ6 =

โŽ›โŽœโŽœโŽœโŽ

0 โˆ’1 0 01 0 0 00 0 0 00 0 0 0

โŽžโŽŸโŽŸโŽŸโŽ .

Let ๐‘‹ = {๐‘‹1,๐‘‹2,๐‘‹3,๐‘‹4,๐‘‹5,๐‘‹6} be the corresponding left invariant frame for๐‘‡๐‘„. Consider the bi-invariant metric ๐‘” on ๐‘†๐‘‚(4) induced by the Cartanโ€“Killingform:

๐‘”(๐‘‹๐‘–,๐‘‹๐‘—) = โˆ’1

2tr(๐‘ฅ๐‘–, ๐‘ฅ๐‘—).

Page 21: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 35

It is easy to see that relative to ๐‘”, ๐‘‹ is an orthonormal frame. The distribution๐ธ = span{๐‘‹1,๐‘‹2,๐‘‹3} is 1-step bracket generating with

(๐‘‹2,๐‘‹3โŒ‹ =๐‘‹4, (๐‘‹3,๐‘‹1โŒ‹ =๐‘‹5, (๐‘‹1,๐‘‹2โŒ‹ =๐‘‹6.

Let ๐œ” = (๐œ”๐‘–โŒ‹ be the dual coframe with ๐œ”๐‘–(๐‘‹๐‘—) = ๐›ฟ๐‘–๐‘— . The structure equations are

๐‘‘๐œ”1 = โˆ’(โˆ’๐œ”3 โˆง ๐œ”5 + ๐œ”2 โˆง ๐œ”6)๐‘‘๐œ”2 = โˆ’(โˆ’๐œ”1 โˆง ๐œ”6 + ๐œ”3 โˆง ๐œ”4)๐‘‘๐œ”3 = โˆ’(๐œ”1 โˆง ๐œ”5 โˆ’ ๐œ”2 โˆง ๐œ”4)๐‘‘๐œ”4 = โˆ’(๐œ”2 โˆง ๐œ”3 + ๐œ”5 โˆง ๐œ”6)๐‘‘๐œ”5 = โˆ’(โˆ’๐œ”1 โˆง ๐œ”3 โˆ’ ๐œ”4 โˆง ๐œ”6)๐‘‘๐œ”6 = โˆ’(๐œ”1 โˆง ๐œ”2 + ๐œ”4 โˆง ๐œ”5).

โ„ is spanned by {๐œ”4, ๐œ”5, ๐œ”6} and โ„1 = 0. The connection forms are

(๐œ”๐‘–๐‘—โŒ‹ =1

2

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

0 โˆ’๐œ”6 ๐œ”5 0 โˆ’๐œ”3 ๐œ”2

๐œ”6 0 โˆ’๐œ”4 ๐œ”3 0 โˆ’๐œ”1

โˆ’๐œ”5 ๐œ”4 0 โˆ’๐œ”2 ๐œ”1 00 โˆ’๐œ”3 โˆ’๐œ”2 0 โˆ’๐œ”6 ๐œ”5

๐œ”3 0 โˆ’๐œ”1 ๐œ”6 0 โˆ’๐œ”4

โˆ’๐œ”2 ๐œ”1 0 โˆ’๐œ”5 ๐œ”4 0

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

If ๐‘ is a straightest path with ๏ฟฝ๏ฟฝ = ๐‘ฃ1๐‘‹1 + ๐‘ฃ2๐‘‹2 + ๐‘ฃ3๐‘‹3, the nonholonomic equationsare simply

๐‘ฃ1 = ๐‘ฃ2 = ๐‘ฃ3 = 0 (since ๐œ”๐‘–๐‘—(๏ฟฝ๏ฟฝ) = 0, 1 โฉฝ ๐‘–, ๐‘— โฉฝ 3).For 0 < ๐‘Ž < 1 let ๐บ be a deformation of ๐‘” given by (relative to the ordered basis ๐‘‹)

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1 0 0 ๐‘Ž 0 00 1 0 0 ๐‘Ž 00 0 1 0 0 ๐‘Ž๐‘Ž 0 0 1 0 00 ๐‘Ž 0 0 1 00 0 ๐‘Ž 0 0 1

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

Since the distribution ๐น spanned by ๐‘‹4, ๐‘‹5, ๐‘‹6 is not orthogonal to ๐ธ when๐‘Ž โ‰  0, the nh connections are different. Terra and Oliva observed in [76] that onegets the same nonholonomic paths.

In terms of the original coframe ๐œ”, the coframe ๏ฟฝ๏ฟฝ for this metric is

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๏ฟฝ๏ฟฝ1

๏ฟฝ๏ฟฝ2

๏ฟฝ๏ฟฝ3

๏ฟฝ๏ฟฝ4

๏ฟฝ๏ฟฝ5

๏ฟฝ๏ฟฝ6

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

=

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

๐œ”1 + ๐‘Ž๐œ”4

๐œ”2 + ๐‘Ž๐œ”5

๐œ”3 + ๐‘Ž๐œ”6โŒ‹1 โˆ’ ๐‘Ž2๐œ”4

โŒ‹1 โˆ’ ๐‘Ž2๐œ”5

โŒ‹1 โˆ’ ๐‘Ž2๐œ”6

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ 

.

Page 22: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

36 EHLERS AND KOILLER

Note that we have added to ๐œ”1, ๐œ”2, and ๐œ”3 multiples of ๐œ”4, ๐œ”5, and ๐œ”6, which arenot in the first derived ideal. So the connection form restricted to ๐ธ will change.True enough, the structure equations for ๏ฟฝ๏ฟฝ are

๐‘‘๐œ”1 = โˆ’(โˆ’๐œ”3 โˆง ๐œ”5 + ๐œ”2 โˆง ๐œ”6) โˆ’ ๐‘Ž(๐œ”2 โˆง ๐œ”3 + ๐œ”5 โˆง ๐œ”6)๐‘‘๐œ”2 = โˆ’(โˆ’๐œ”1 โˆง ๐œ”6 + ๐œ”3 โˆง ๐œ”4) โˆ’ ๐‘Ž(โˆ’๐œ”1 โˆง ๐œ”3 โˆ’ ๐œ”4 โˆง ๐œ”6)๐‘‘๐œ”3 = โˆ’(๐œ”1 โˆง ๐œ”5 โˆ’ ๐œ”2 โˆง ๐œ”4) โˆ’ ๐‘Ž(๐œ”1 โˆง ๐œ”2 + ๐œ”4 โˆง ๐œ”5)

๐‘‘๐œ”4 = โˆ’โŒ‹1 โˆ’ ๐‘Ž2(๐œ”2 โˆง ๐œ”3 + ๐œ”5 โˆง ๐œ”6)

๐‘‘๐œ”5 = โˆ’โŒ‹1 โˆ’ ๐‘Ž2(โˆ’๐œ”1 โˆง ๐œ”3 โˆ’ ๐œ”4 โˆง ๐œ”6)

๐‘‘๐œ”6 = โˆ’โŒ‹1 โˆ’ ๐‘Ž2(๐œ”1 โˆง ๐œ”2 + ๐œ”4 โˆง ๐œ”5).

As expected the connection form, when restricted to ๐ธ changes: mod (โ„) we get

๏ฟฝ๏ฟฝ12 = โˆ’๐‘Ž

2๏ฟฝ๏ฟฝ3, ๏ฟฝ๏ฟฝ13 =

๐‘Ž

2๏ฟฝ๏ฟฝ2, ๏ฟฝ๏ฟฝ23 = โˆ’

๐‘Ž

2๏ฟฝ๏ฟฝ1.

The nonholonomic equations for the deformed metric are then

๏ฟฝ๏ฟฝ1 = โˆ’๐‘ฃ1๐œ”11(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ2๐œ”12(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ3๐œ”13(๏ฟฝ๏ฟฝ) = โˆ’๐‘ฃ1(0) โˆ’ ๐‘ฃ2( โˆ’๐‘Ž

2๐‘ฃ3) โˆ’ ๐‘ฃ3(

๐‘Ž

2๐‘ฃ3) = 0

๏ฟฝ๏ฟฝ2 = โˆ’๐‘ฃ1๐œ”21(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ2๐œ”22(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ3๐œ”23(๏ฟฝ๏ฟฝ) = โˆ’๐‘ฃ1(๐‘Ž

2๐‘ฃ3) โˆ’ ๐‘ฃ2(0) โˆ’ ๐‘ฃ3( โˆ’

๐‘Ž

2๐‘ฃ1) = 0

๏ฟฝ๏ฟฝ3 = โˆ’๐‘ฃ1๐œ”31(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ2๐œ”32(๏ฟฝ๏ฟฝ) โˆ’ ๐‘ฃ3๐œ”33(๏ฟฝ๏ฟฝ) = โˆ’๐‘ฃ1( โˆ’๐‘Ž

2๐‘ฃ2) โˆ’ ๐‘ฃ2(

๐‘Ž

2๐‘ฃ1) โˆ’ ๐‘ฃ3(0) = 0.

While the nonholonomic connection has changed, the changes cancel exactly in thestraightest path equations. A mathematical gem indeed!

4.6.2. Via Euler-Arnold equations (2.6). With the expectation to concoct otherexamples, we invoke Proposition 2.1 on a Lie algebra of dimension ๐‘›. We denoteby ๐บ the matrix of the metric relative to a basis ๐‘’๐ผ , ๐‘– = 1, . . . ๐‘›, and we denoteby ฮฉ๐ผ , ๐ผ = 1, . . . , ๐‘› the coordinates in this basis. Denote by ๐‘ƒ๐บ the orthogonalprojection over ๐ธ, spanned by the first vectors ๐‘– = 1, . . . , ๐‘ . The equations for thenonholonomic system are obtained by applying ๐‘ƒ๐บ to the right hand side of ฮฉ inthe Euler-Arnold equations for geodesics in the Lie group.

We now recall a Linear Algebra formula to project over a subspace generatedby vectors ๐‘Ž1, . . . , ๐‘Ž๐‘ . Let ๐ด be the ๐‘› ร— ๐‘  matrix whose columns are the ๐‘Ž๐‘–.

๐‘ƒ๐บ(ฮฉ) = ๐ด(๐ดโ€ ๐บ๐ด)โˆ’1๐ดโ€ ๐บฮฉ.

This is often more convenient than a Gramโ€“Schmidt procedure on the ๐‘Ž๐‘–.When the ๐‘Ž๐‘– = ๐‘’๐‘– are the first ๐‘  vectors of the basis ๐‘’๐ผ , then

๐ด = โŒŠ๐ผ๐‘ ร—๐‘ 0๐‘Ÿร—๐‘ 

} , ๐‘Ÿ = ๐‘› โˆ’ ๐‘ .

A simple computation yields that the projection has matrix

๐‘ƒ๐บ = โŒŠ๐ผ (๐บ11)โˆ’1๐บ12

0 0} ,

Page 23: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 37

or simplifying the notation, by cutting the rows of zeros

๐‘ƒ๐บ(ฮฉ) = (๐ผ โ‹ƒ (๐บ11)โˆ’1๐บ12โŒ‹ฮฉ

where ๐บ is partitioned as (๐บ11 is ๐‘  ร— ๐‘  and ๐บ12 is ๐‘  ร— ๐‘Ÿ)

๐บ = โŒŠ๐บ11 ๐บ12

โˆ— โˆ— } .

We thus get a recipe to compute the nh equations for the ฮฉ๐‘–, ๐‘– = 1, . . . , ๐‘ : Addto each of the first ๐‘  equations ฮฉ๐‘– a suitable combination of the remaining ฮฉ๐›ผ,๐›ผ = ๐‘  + 1, . . . , ๐‘›, and afterwards cross out all terms containing one of the ฮฉ๐›ผโ€™s(since they vanish on ๐ธ). The coefficients on the combination are ๐‘”๐‘–๐‘—๐‘”๐‘—๐›ผ, where

the tilde means that we are inverting the minor block ๐บ11 (that we denote ๏ฟฝ๏ฟฝ).

(Notice that the formulas for all the ฮฉ๐ผ require the inverse of the full matrix ๐บ).We now construct a family of metrics for which the projections become very

simple. Consider an even dimensional vector space, of dimension ๐‘› = 2๐‘ , where halfof the basis is denoted ๐ด๐‘– and the other half ๐ต๐›ผ. Let

๐บ = โŒŠ ๐ผ ๐‘†๐‘†โ€  ๐ผ

} .

where ๐พ is a symmetric matrix so that ๐บ is still invertible. Actually, we only need๐พ to commute with its transpose. It is immediate to verify that in this case

๐บโˆ’1 = โŒŠ (๐ผ โˆ’ ๐‘†๐‘†โ€ )โˆ’1 โˆ’๐‘†(๐ผ โˆ’ ๐‘†๐‘†โ€ )โˆ’1โˆ’๐‘†โ€ (๐ผ โˆ’ ๐‘†๐‘†โ€ )โˆ’1 (๐ผ โˆ’ ๐‘†๐‘†โ€ )โˆ’1 } .

๐‘ƒ๐บ = (๐ผ โ‹ƒ ๐‘†โŒ‹.

Taking into account that

๐‘”๐ฝ๐‘š =)โŒ‰โŒ‰โŒ‹โŒ‰โŒ‰]

๐›ฟ๐ฝ๐‘š, 1 โฉฝ ๐ฝ โฉฝ ๐‘ 

๐‘†๐›ผ๐‘š, ๐‘  + 1 โฉฝ ๐ฝ = ๐‘  + ๐›ผ โฉฝ ๐‘›

the resulting equations for the nh dynamics are

ฮฉ๐‘– = โˆ‘1โฉฝ๐‘š,โ„“โฉฝ๐‘ 

(๐‘๐‘šโ„“๐‘– +๐‘ 

โˆ‘๐›ผ=1

๐‘๐‘ +๐›ผโ„“๐‘– ๐‘†๐›ผ๐‘š)ฮฉ๐‘šฮฉโ„“, ๐‘– = 1 . . . ๐‘ .

We reintroduced the summation symbols for better clarity. We obtain a resultsimilar to the โ€œmaster equationsโ€.

Proposition 4.5. The nonholonomic dynamics is independent of the matrix๐‘† if and only if the expression

(4.13) ๐ด๐‘–โ„“,๐‘š =

๐‘ 

โˆ‘๐›ผ=1

๐‘๐‘ +๐›ผโ„“๐‘– ๐‘†๐›ผ๐‘š

is skew symmetric in the indices โ„“,๐‘š, for all ๐‘– = 1, . . . ๐‘ .

Page 24: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

38 EHLERS AND KOILLER

We can now re-check Terra and Olivaโ€™s example. We shuffle the basis for ๐‘ ๐‘œ(4).For ๐‘’4, ๐‘’5, ๐‘’6 we take the standard 3ร—3 skew symmetric matrices bordered by zerosin the fourth row and column,

(๐‘’๐‘–)๐‘—๐‘˜ = (๐ด๐‘–)๐‘—๐‘˜ = โˆ’๐œ–๐‘–๐‘—๐‘˜, ๐‘–, ๐‘—, ๐‘˜ = 1,2,3

and for ๐‘’1 = ๐ต1, ๐‘’2 = ๐ต2, ๐‘’3 = ๐ต3 the only nonzero entries will be in the last rowand colum, as shown below:

๐ด1 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 0 0 00 0 โˆ’1 00 1 0 00 0 0 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

, ๐ด2 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 0 1 00 0 0 0โˆ’1 0 0 00 0 0 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

, ๐ด3 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 โˆ’1 0 01 0 0 00 0 0 00 0 0 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

,

๐ต1 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 0 0 โˆ’10 0 0 00 0 0 01 0 0 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

, ๐ต2 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 0 0 00 0 0 โˆ’10 0 0 00 1 0 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

, ๐ต3 =

โŽจโŽโŽโŽโŽโŽโŽโŽโŽช

0 0 0 00 0 0 00 0 0 โˆ’10 0 1 0

โŽฌโŽ โŽ โŽ โŽ โŽ โŽ โŽ โŽฎ

.

The structure constants are

(๐ด๐‘–,๐ด๐‘—โŒ‹ = ๐œ–๐‘–๐‘—๐‘˜๐ด๐‘˜, (๐ต๐‘–,๐ต๐‘—โŒ‹ = ๐œ–๐‘–๐‘—๐‘˜๐ด๐‘˜, (๐ด๐‘–,๐ต๐‘—โŒ‹ = ๐œ–๐‘–๐‘—๐‘˜๐ต๐‘˜.

Relative to the basis ๐‘’1 = ๐ต1, ๐‘’2 = ๐ต2, ๐‘’3 = ๐ต3, ๐‘’4 = ๐ด1, ๐‘’5 = ๐ด2, ๐‘’6 = ๐ด3, asdone in the previous subsection, the family of metrics is given by the 6 ร— 6 matrix(symmetric, positive definite) ๐บ with

๐‘† = ๐‘Ž๐ผ3ร—3.

For ๐‘Ž = 0 the metric is bi-invariant. The unconstrained dynamics system is trivial:ฮฉ๐ผ = 0, ๐ผ = 1, . . . ,6. In fact, since ๐‘”๐ฝ๐‘€ = ๐›ฟ๐ฝ๐‘€ , we get ฮฉ๐พ = ๐‘๐ฝ๐ฟ๐พฮฉ๐ฝฮฉ๐ฟ. Observethat all the non-vanishing structure constants satisfy ๐‘๐ฝ๐ฟ๐พ = โˆ’๐‘๐ฟ๐ฝ๐พ so the terms inthe right hand side cancel in pairs6.

We test the condition (4.13) with 0 < ๐‘Ž < 1.Due to the symmetries between the indices 1,2,3 in ๐บ and in the Lie brackets,

it is enough to test for ๐‘– = 1 and โ„“,๐‘š = 2,3, with ๐‘†๐‘๐‘ž = ๐‘Ž๐›ฟ๐‘๐‘ž.

โ„“ =๐‘š = 2 โˆถ ๐‘521๐‘†22 but ๐‘521 = ๐œ–212 = 0.

โ„“ =๐‘š = 3 โˆถ ๐‘631๐‘†22 but ๐‘631 = ๐œ–313 = 0.

โ„“ = 2,๐‘š = 3 โˆถ ๐‘621๐‘†33 but ๐‘621 = ๐œ–213 = โˆ’1.โ„“ = 3,๐‘š = 2 โˆถ ๐‘531๐‘†22 but ๐‘531 = ๐œ–312 = +1.

The skew symmetry requirement of Proposition 4.5 is fulfilled. Although theunconstrained Eulerโ€“Arnold system does not vanish, it projects orthogonally over๐ธ, so the nonholonomic dynamics is trivial.

6This is true for ๐‘†๐‘‚(๐‘›). The standard bi-invariant metric in ๐‘ ๐‘‚(๐‘›) is given by the Killingform, โˆฮฉ1,ฮฉ2 = โˆ’(1โ‡‘2) tr(ฮฉ1ฮฉ2) which defines an isomorphim ๐‘ ๐‘‚(๐‘›) โ‰ก ๐‘ ๐‘‚(๐‘›)โˆ—. Eulerโ€™s equationsthen write as ๏ฟฝ๏ฟฝ = (๐‘€,ฮฉโŒ‹, ๐‘€ = ๐บ(ฮฉ) โˆˆ ๐‘ ๐‘‚(๐‘›). The positive definite bilinear operator giving thetotal energy of the ๐‘›-dimensional rigid body is defined by ๐ป = โˆ๐บ(ฮฉ1),ฮฉ2. Obviously for ๐บ = ๐‘–๐‘‘,

๏ฟฝ๏ฟฝ = (ฮฉ,ฮฉโŒ‹ โ‰ก 0. ๐‘†๐‘‚(4) is special: it has a two parameter family of bi-invariant metrics.

Page 25: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 39

5. Cartan meets Chaplygin

We outline a research proposal: equivalence problems for Chaplygin systems.There is a new twist. One can focus on the dynamics on the base. The horizontallift to the total space will be considered โ€œjustโ€ a quadrature (this makes no justiceto linear ODEs with time varying coefficients).

Given two purely inertial ๐บ-Chaplygin systems (symmetry group ๐บ),

(5.1) (๐บ๐‘Ÿ โ†ช ๐‘„๐‘› โ†’ ๐‘†๐‘ , ๐‘‡, ๐œ” โˆถ ๐‘‡๐‘„โ†’ ๐’ข), (๐บโ†ช ๏ฟฝ๏ฟฝ๐‘› โ†’ ๐‘†๐‘ , ๐‘‡,๏ฟฝ๏ฟฝ โˆถ ๐‘‡๏ฟฝ๏ฟฝโ†’ ๐’ข),

with constraint distributions ๐ธ = ker๐œ”, ๏ฟฝ๏ฟฝ = ker ๏ฟฝ๏ฟฝ, respectively, find what are theinvariants that imply the existence of a local diffeomorphism ๐œ‘ โˆถ ๐‘„ โ†’ ๏ฟฝ๏ฟฝ satisfyinga required criterion, which could be, if ๐ธ = ๏ฟฝ๏ฟฝ,

i) Preserving the nh connections, as discussed in sections 3 and 4:

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๐‘Œ = ๐œ‘โˆ—(๐ท๐‘‹๐‘Œ ), ๏ฟฝ๏ฟฝ = ๐œ‘โˆ—(๐‘‹), ๐‘Œ = ๐œ‘โˆ—๐‘Œ.

ii) Sending the straightest paths in ๐‘„ to the straightest paths in ๏ฟฝ๏ฟฝ.

๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ๏ฟฝ = ๐œ‘โˆ—(๐ท๐‘‹๐‘‹), ๏ฟฝ๏ฟฝ = ๐œ‘โˆ—(๐‘‹).

If ๐ธ โ‰  ๏ฟฝ๏ฟฝ (we change the connection in addition to the metric):iii) Preserving the projected connections in ๐‘†.

iv) Sending the reduced paths in ๐‘† to the reduced paths in ๐‘†.

In equivalence problems it is traditional to work locally, on neighborhoods ofpoints ๐‘ž โˆˆ ๐‘„ and ๐‘ž โˆˆ ๏ฟฝ๏ฟฝ. So there is no loss in generality to assume

๐‘„ = ๐‘ˆ ร—๐บ, ๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ ร—๐บ,

with ๐‘ˆ = ๏ฟฝ๏ฟฝ an open set in R๐‘ . To start, one needs to describe the initial subbundlesinside the full coframe bundle ๐น โˆ—(๐‘ˆ ร—๐บ) and the corresponding matrix group.

5.1. The reduced affine connection. Let ๐‘‡ be a ๐บ-invariant riemannianmetric in ๐‘„. Given ๐‘‹,๐‘Œ vectorfields in ๐‘†, one defines an affine connection in ๐‘†as follows. Lift them to horizontal vectorfields โ„Ž(๐‘‹), โ„Ž(๐‘Œ ) in ๐‘„. Going back todefinition 1.1, compute

๐ทโ„Ž(๐‘‹)โ„Ž(๐‘Œ ) = Proj๐ธ โˆ‡โ„Ž(๐‘‹)โ„Ž(๐‘Œ )

where โˆ‡ is the Levi-Civita connection in ๐‘„ associated to the metric ๐‘‡ . It is easyto see that it is also ๐บ-invariant.

Definition 5.1. The reduced affine connection is

(5.2) ๐ท๐‘†๐‘‹๐‘Œ = ๐œ‹โˆ—(๐ทโ„Ž(๐‘‹)โ„Ž(๐‘Œ )).

Query 5.1. ๐ท๐‘† is an affine connection in ๐‘† in the usual sense. One should beable to compute its structure equations, plus the torsion and curvature tensors interms of moving frames in ๐‘†. For this task, one can use results by A. Lewis in [69].

Page 26: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

40 EHLERS AND KOILLER

Definition 5.2. The reduced Chaplygin dynamics is governed by

๐ท๐‘†๐‘‹๐‘‹ = 0

the geodesic (i.e. straightest path) equation of the affine connection ๐ท๐‘† . It is ametric connection with respect to the projected metric ๐‘‡๐‘† .

Problem. In (5.1), fix a principal bundle ๐บ๐‘Ÿ โ†ช ๐‘„๐‘› โ†’ ๐‘†๐‘ , with vertical spaces๐‘‰ . We allow ๐‘‡ and ๐œ” to change. When do the reduced connections ๐ท = ๐ท๐‘† and๏ฟฝ๏ฟฝ = ๏ฟฝ๏ฟฝ๐‘† given by the definition (5.2) have the same geodesics (criterion iv)?

One considers the difference tensor

๐ต(๐‘‹,๐‘Œ ) = ๏ฟฝ๏ฟฝ๐‘†๐‘‹๐‘Œ โˆ’๐ท๐‘†

๐‘‹๐‘Œ

which is easily seen to be bilinear. As it is well known (see [52, section 5.4.]), ๐ท and

๏ฟฝ๏ฟฝ have the same geodesics if and only if ๐ต is skew-symmetric, which is equivalentto the (obvious) condition

๐ท๐‘†๐‘‹๐‘‹ = ๏ฟฝ๏ฟฝ๐‘†

๐‘‹๐‘‹.

At the ๐‘„ level, this amounts to the requirement that

(5.3) Proj๐ธ(โˆ‡โ„Ž(๐‘‹)โ„Ž(๐‘‹)) โˆ’Proj๏ฟฝ๏ฟฝ(โˆ‡โ„Ž(๐‘‹)โ„Ž(๐‘‹)) โˆˆ ๐‘‰

for all vectorfields ๐‘‹ in ๐‘†. ๐‘‰ is the (same) vertical distribution of the two principalconnections, the first orthogonal projection is relative to metric ๐‘‡ and the secondto ๐‘‡ , and likewise one takes the two distinct Levi-Civita covariant derivatives.

6. Final comments and other research directions

6.1. Cartan equivalence of Chaplygin systems. The basic task is how touse (5.3) in section 5 to obtain the initial structure for Cartan equivalence in termsof frames in ๐‘† and the Lie algebra of the group ๐บ. For integrable distributions thesolution is very simple. Both reduced dynamics are hamiltonian, with ๐ป = ๏ฟฝ๏ฟฝ beingthe respective kinetic energies in ๐‘„ restricted to the corresponding distributionsand then projected to ๐‘†. Since for metrics the unique invariant is the Riemanniancurvature, the requirement is that ๐‘‡ โ‹ƒ๐ธ and ๐‘‡ โ‹ƒ๏ฟฝ๏ฟฝ be the lifts (to their distributions)of a same metric ๐‘” in ๐‘†, the complements being arbitrary. The reduced connectionis simply the Levi-Civita connection of the metric ๐‘”๐‘†.

For nonintegrable distributions there is a complication: the projected system in๐‘† non-hamiltonian. The reduced equations are of the form ๐ท๐‘”

๐‘‹๐‘‹ = ๐น (๐‘‹), where ๐นis a โ€œgyroscopic typeโ€ force, i.e. ๐‘”(๐น (๐‘‹),๐‘‹) โ‰ก 0. This force comes from a โ€œ(๐ฝ,๐พ)โ€term combining the momentum map of the ๐บ-action in ๐‘„ and the curvature of theconnection (see eg [62]). The problem becomes more interesting and is related tothe query 5.1. We also thank the referee for pointing out that a duality existsbetween a Levi-Civita type connection and an almost-Poisson bracket, in the moreabstract context of mechanics in Lie algebroids [9,49,67].

6.2. Non-equivalent connections with the same straightest paths.The example of Terra and Olive generates interest in finding in what circumstancesthe weak equivalence does not imply the strong. We saw that there is a need forhaving โ€œroomโ€ for at least three dimensions between ๐ธ and ๐ธ + (๐ธ,๐ธโŒ‹. In suchcases, are there consequences for the equivalence problem? For hamiltonization?

Page 27: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 41

6.3. Perspectives on Hamiltonization. Chaplyginโ€™s reducing multipliersmethod was geometrized in [21]. We mentioned in the introduction that it istied intimately to hamiltonization and integrability. Currently, the almost Poissondescription of nh systems is how one starts the quest for hamiltonization [19].Hamiltonization is done usually after reduction of symmetries and a change of timescale depending on reduced variables (in Chaplygin systems the base manifold).Time change is related to the existence of a smooth invariant measure.

Unfortunately, our impression is that Cartanโ€™s equivalence approach (changingthe metric) is of no avail for these purposes (we hope to be wrong). At any rate,we are preparing a sequel paper, in which Cartan moving frames in ๐‘„ are extendedto moving frames in ๐‘‡ โˆ—๐‘„ and then used to produce a simple way to obtain theMaschke/Schaft bracket [24,72,79]7.

Necessary and sufficient conditions for the existence of invariant measures canbe found in eg. [25,43]. Compiling a list of the known nh systems with a smoothinvariant measure is in order, together with information about which ones have beenhamiltonized and their integrability. For a rolling rigid body (several versions ofthe problem) results on the existence of an invariant measure and Hamiltonizationhave been gathered in the form of tables [15,16,18]. In these papers, a conformallyHamiltonian representation is found for a reduced system on ๐‘‡ โˆ—๐‘†2. See [46] fora negative case. Chaplygin sphere was shown to be Hamiltonizable in [13] andthe methodology explained in [17]. A glimpse of the subject (we apologize for themany omissions since the theme is booming) can be found in references such as (inrandom order) [6,7,34,39โ€“42,44,48,53,56โ€“61,85,86]. There are many more andmore will be coming! Some recent information follows, kindly given to us by LuisNaranjo and Ivan Mamaev.

6.3.1. Possibility of hamiltonization in the first level (๐ฟ๐‘’๐‘”(๐ธ) = โ„ณ โŠ‚ ๐‘‡ โˆ—๐‘„).Sufficient conditions in order for a Chaplygin system to be hamiltonizable at thefirst level ๐‘‡ โˆ—(๐‘„โ‡‘๐บ), similar to Stanchenkoโ€™s [83], were found by Naranjo and Mar-rero (personal communication). For Chaplyginโ€™s sphere, such conditions are notsatisfied. It is believed that, in general, one cannot achieve hamiltonization at thefirst level. However, this question should be formulated in a clearer manner8.

6.3.2. Obstructions to Hamiltonization. The conformal Hamiltonization of abivector ๐ต seems a very interesting problem. Given a function ๐ป, a mandatoryrequirement is the existence of an invariant measure for ๐‘‹๐ป = ๐ต โ‹… ๐‘‘๐ป. In the caseof nh systems, some obstructions to Hamiltonization are discussed in [14,19,20].

6.3.3. Turning integrals into Casimirs. The underlining idea is to modify theMashke van der Schaft bracket [72,79] to make first integrals into Casimirs of thereduced system [47].

7Adding semi-basic bivectors that do not affect the dynamics (a la Stanchenko [83]) willbecome evident in this approach. The experts will agree that such preliminary constructions,

before reduction, can help hamiltonization.8 For instance, in the case of Chaplyginโ€™s sphere, if it is homogeneous, then the system

on โ„ณ can be understood as an invariant subsystem of a Hamiltonian system, namely, that of a

homogeneous sphere moving in ๐‘…2 without constraints. In this case ๐ฟ๐‘’๐‘”(๐ธ) is a level set of thefirst integrals of the Hamiltonian system on ๐‘‡ โˆ—๐‘„.

Page 28: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

42 EHLERS AND KOILLER

6.4. Themes from Cartanโ€™s ICM1928 paper. One wonders why Cartandid not discuss the weak notion of equivalence. We believe that he was concernedmainly with ๐ท๐ธ

๐‘‹๐‘Œ in the strongly nonholonomic case (1 step, ๐ธ + (๐ธ,๐ธโŒ‹ = ๐‘‡๐‘„).Recall, we saw that in this case, for the preservation of the partial nh-connectionon ๐ธ, the metric can be changed outside ๐ธ as long as the orthogonal space ๐น = ๐ธโŠฅ

with respect to the original metric in ๐‘„ stays the same. Cartan was interested ina complementary partial connection on ๐น . For this he shows in ยง 6 to 8 that thereis an intrinsically defined metric in ๐น such that the partial connection ๐ท๐น (nowprojecting to ๐น ) plus a suitable 2-tensor has zero torsion.

Moreover, it seems to us that at their time Cartan and contemporaries antici-pated a construction that is nowadays popular in robotics, control theory, computervision and statistics on manifolds (see eg. [74,81]). Namely, obtaining the devel-opment of a curve in ๐‘„ over a fixed tangent space using the connection. The โ€˜trueโ€™mechanics at a point ๐‘ž โˆˆ ๐‘„ is transported to a mirror Euclidian setting. The in-ertial motion in ๐‘„ becomes a motion with Euclidian metric but with an appliedforce (using parallel transport of an object at ๐‘ž). We think it will be rewardingto revisit those aspects of Cartanโ€™s paper, not discussed in this review, and justtouched upon in [63].

Acknowledgments. We thank Profs. Waldyr Oliva and Glaucio Terra forsending us their example prior to publication; thanks to Profs. Luis Naranjo andIvan Mamaev for up-to-date information about the status of the Hamiltonizationproblem. We thank Profs. Vladimir Dragovic and Bozidar Jovanovic for the invi-tation to submit a contribution to the special volume in memory of Sergey Alex-eyevich Chaplygin (1869โ€“1942) on the occasion of his 150th anniversary. J. Koillerwas supported by a UFJF visiting fellowship.

References

1. A.A. Agrachev, Rolling balls and octonions, Proc. Steklov Inst. Math. 258 (2007), 13โ€“22.

2. V. I. Arnolโ€™d, Mathematical Methods of Classical Mechanics, Grad. Texts Math. 60, Springer-Verlag New York, 1989.

3. V. I. Arnolโ€™d, S. P. Novikov (eds.), Dynamical Systems VII: ntegrable Systems, Nonholonomic

Dynamical Systems, Encycl. Math. Sci. 16, Springer-Verlag Berlin Heidelberg, 1994.4. J. C. Baez, J. Huerta, ๐บ2 and the Rolling Ball, Trans. Am. Math. Soc. 366(10) (2014),

5257โ€“5293.

5. J. C. Baez, The octonions, Bull. Am. Math. Soc. 39 (2002), 145โ€“205.6. P. Balseiro, L. C. Garcฤฑa-Naranjo, Gauge transformations, twisted Poisson brackets and

Hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal. 205 (2012), 267โ€“310.

7. P. Balseiro, O. E. Fernandez, Reduction of nonholonomic systems in two stages and Hamil-tonization, Nonlinearity 28(8) (2015) 2873โ€“2891.

8. A. Baksa, On geometrization of some nonholonomic systems, Theor. Appl. Mech. (Belgrade)

44(2) (2017), 133โ€“140.9. M. Barbero-Linan, M. de Leon, D.M. de Diego, J. C. Marrero, M.C. Munoz-Lecanda, Kine-

matic reduction and the Hamiltonโ€“Jacobi equation, J. Geom. Mech. 4(3) (2012), 207โ€“237.10. A.M. Bloch, J. E. Marsden, D.V. Zenkov, Nonholonomic dynamics, Notices Am. Math. Soc.

52 (2005), 324โ€“333.11. A.M. Bloch, Nonholonomic Mechanics and Control, Interdiscip. Appl. Math. 24, 2nd ed.,

Springer-Verlag New York, 2015.

Page 29: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 43

12. G. Bor, R. Montgomery, ๐บ2 and the rolling distribution, Enseign. Math. (2) 55 (2009),

157โ€“196.

13. A.V. Borisov, I. S. Mamaev, Chaplyginโ€™s ball rolling problem is Hamiltonian Math. Notes70(5) (2001), 720โ€“723. (Translated from Matematicheskie Zametki 70(5) (2001), 793โ€“795).

14. A.V. Borisov, I. S. Mamaev, Obstacle to the reduction of nonholonomic systems to the Hamil-tonian form, Dokl. Phys. 47(12) (2002), 892โ€“894.

15. A.V. Borisov, I. S. Mamaev, The rolling motion of a rigid body on a plane and a sphere.

Hierarchy of dynamics, Regul. Chaotic Dyn. 7(2) (2002), 177โ€“200.16. A.V. Borisov, I. S. Mamaev, A.A. Kilin, The rolling motion of a ball on a surface. New

integrals and hierarchy of dynamics, Regul. Chaotic Dyn. 7(2) (2002), 201โ€“219.

17. A.V. Borisov, I. S. Mamaev, Isomorphism and Hamilton representation of some nonholo-nomic systems, Sib. Math. J. 48(1) (2007), 26โ€“36.

18. A.V. Borisov, I. S. Mamaev, I. A. Bizyaev, The hierarchy of dynamics of a rigid body rolling

without slipping and spinning on a plane and a sphere, Regul. Chaotic Dyn. 18(3) (2013),277โ€“328.

19. A.V. Borisov, I. S. Mamaev, A.V. Tsiganov, Non-holonomic dynamics and Poisson geometry,

Russ. Math. Surv. 69(3) (2014), 481โ€“538.20. A.V. Bolsinov, A.V. Borisov, I. S. Mamaev, Hamiltonization of nonholonomic systems in the

neighborhood of invariant manifolds, Regul. Chaotic Dyn. 16(5) (2011), 443โ€“464.21. A.V. Bolsinov, A.V. Borisov. I. S. Mamaev, Geometrisation of Chaplyginโ€™s reducing multiplier

theorem, Nonlinearity 28(7) (2015), 2307โ€“2318.

22. R. Bryant, Elie Cartan and geometric duality, notes from a lecture given at the Institut Elie

Cartan, June 19, 1998, http://www.math.duke.edu/โˆผbryant/Cartan.pdf

23. R. Bryant, L. Hsu, Rigidity of integral curves of rank two distributions, Invent. Math. 114(1993), 435โ€“461.

24. F. Cantrijn, M. de Leond, D. Martฤฑn de Diego, On almost-Poisson structures in nonholonomic

mechanics, Nonlinearity, 12(3) (1999), 721โ€“738.25. F. Cantrijn, J. Cortes, M. de Leon, D. Martin de Diego, On the geometry of generalized

Chaplygin systems, Math. Proc. Camb. Philos. Soc. 132 (2002), 323โ€“351.

26. E. Cartan, Sur la structure des groupes simples finis et continus, C. R. Acad. Sci. 116 (1893),

784โ€“786.27. E. Cartan, Sur la Structure des Groupes de Transformations Finis et Continus, Ph.D. thesis,

Paris, Nony, 1894.

28. E. Cartan, Les systemes de Pfaff a cinque variables et lโ€™es equations aux derivees partielles

du second ordre, Ann. Sci. Ecole Normale 27 (1910) 109โ€“192.

29. E. Cartan, Sur la representation geometrique des systemes mat/โ€™eriels nonholonomes, Atti

del Congresso Internazionale dei Matematici, Bologna, tomo IV, 1928, 253โ€“261.

30. S.A. Chaplygin, On a ball rolling on a horizontal plane, Mat. Sb. 24 (1903), 139โ€“168. Engl.transl.: Regul. Chaotic Dyn. 7(2) (2002), 131โ€“148.

31. S.A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multipliertheorem, Regul. Chaotic Dyn. 13(4) (2008), 369โ€“376. Originally published in: Matematicheskii

sbornik (Mathematical Collection), 1911.

32. S. S. Chern, C. Chevalley, Elie Cartan and his mathematical work, Bull. Am. Math. Soc.

58(2) (1952), 217โ€“250.

33. P. Crepel, J. Le Rond Dโ€™Alembert, Traite de dynamique (1743, 1758 ), in: Ivor Grattan-Guinness (ed.), Landmark Writings in Western Mathematics 1640โ€“1940, 159โ€“167, ElsevierScience, 2005.

34. V. Dragovic, B. Gajic, B. Jovanovic, Generalizations of classical integrable nonholonomicrigid body systems, J. Phys. A, Math. Gen. 31(49) (1998), 9861โ€“9869.

35. V. Dragovic, B. Gajic, The Wagner curvature tensor in nonholonomic mechanics, Regul.

Chaotic Dyn 8(1) (2003), 105โ€“124.36. J. J. Duistermaat, Chaplyginโ€™s sphere, https://arxiv.org/abs/math/0409019

Page 30: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

44 EHLERS AND KOILLER

37. K.M. Ehlers, Geometric equivalence on nonholonomic 3-manifolds, Proceed. AIMS Forth

Internl. Conf. Dyn. Systems and Diff. Equations, May 24โ€“27, 2002, Wilmington, Conference

Publications 2003 (Special), 246โ€“255.38. K.M. Ehlers, J. Koiller, Rubber Rolling: Geometry and Dynamics of 2-3-5 Distributions, in:

A.V. Borisov, V.V. Kozlov, I. S. Mamaev, M.A. Sokolovskiy. (Org.), IUTAM Symposiumon Hamiltonian Dynamics, Vortex Structures, Turbulence, 6, 469โ€“479, Dordrecht, Holanda:

Springer Verlag, 2008.

39. Y.N. Fedorov, B. Jovanovic, Nonholonomic LR systems as generalized Chaplygin systemswith an invariant measure and flows on homogeneous spaces, J. Nonlinear Sci. 14(4) (2004)

341โ€“381.

40. Y.N. Fedorov, B. Jovanovic, Quasi-Chaplygin Systems and nonholonimic rigid body dynam-ics, Lett. Math.Phys. 76 (2006), 215โ€“230.

41. Y. Fedorov, B. Jovanovic, Integrable nonholonomic geodesic flows on compact Lie groups, in:

Topological methods in the theory of integrable systems, 115โ€“152, Camb. Sci. Publ., Cam-bridge, 2006.

42. Y. Fedorov, B. Jovanovic, Hamiltonization of the generalized Veselova LR system, Regul.

Chaotic Dyn. 14(4โ€“5) (2009), 495โ€“505.43. Y.N. Fedorov, L.C. Garcฤฑa-Naranjo, J. C. Marrero, Unimodularity and preservation of vol-

umes in nonholonomic mechanics, J. Nonlinear Sci. 25(1) (2015), 203โ€“246.44. O. E. Fernandez, A.M. Bloch, The Weitzenbock connection and time reparameterization in

nonholonomic mechanics, J. Math. Phys. 52 (2011), 012901.

45. B. Gajic, B. Jovanovic, Nonholonomic connections, time reparametrizations, and integrabilityof the rolling ball over a sphere, https://arxiv.org/abs/1805.10610

46. L.C. Garcฤฑa Naranjo, J. C. Marrero, Non-existence of an invariant measure for a homogeneous

ellipsoid rolling on the plane, Regul. Chaotic Dyn. 18 (2013), 372โ€“379.47. L.C. Garcฤฑa-Naranjo, J. Montaldi, Gauge momenta as Casimir functions of nonholonomic

systems, Arch. Ration. Mech. Anal. 228 (2018) 563โ€“602.

48. L.C. Garcฤฑa-Naranjo, Reduction of almost Poisson brackets and Hamiltonization of the Chap-lygin sphere, Discrete Contin. Dyn. Syst., Ser. S 3(1) (2010), 37โ€“60.

49. L.C. Garcฤฑa-Naranjo, J. C. Marrero, The geometry of nonholonomic Chaplygin systems re-

visited, to appear in Nonlinearity (arXiv:1812.01422 [math-ph]).50. R.B. Gardner, The Method of Equivalence and Its Applications, CBMS-NSF Reg. Conf. Ser.

Appl. Math. 58, 1989.

51. H. Hertz, The Principles of Mechanics Presented in a New Form, Dover Phoenix Edi-tions, 2004.

52. N. J. Hicks, Notes on differential geometry, Van Nostrand Reinhold, 1965.53. S. Hochgerner, L. C. Garcฤฑa-Naranjo, G-Chaplygin systems with internal symmetries, trun-

cation, and an (almost) symplectic view of Chaplygins ball, J. Geom. Mech. 1(1) (2009),

35โ€“53.54. V.V. Kozlov, Realization of nonintegrable constraints in classical mechanics, Soviet Phys.

Dokl. 28 (1983), 735โ€“737.

55. V.V. Kozlov, The problem of realizing constraints in dynamics, J. Appl. Math. Mech. 56(1992), 594โ€“600.

56. B. Jovanovic, Nonholonomic left and right flows on Lie groups, J. Phys. A 32(47) (1999),

8293โ€“8302.57. B. Jovanovi, Some multidimensional integrable cases of nonholonomic rigid body dynamics,

Regul. Chaotic Dyn. 8(1) (2003), 125โ€“132.

58. B. Jovanovic, LR and L+R systems, J. Phys. A 42(22) (2009), 225202.59. B. Jovanovic, Hamiltonization and integrability of the Chaplygin sphere in R๐‘›, J. Nonlinear

Sci. 20(5) (2010), 569โ€“593.60. B. Jovanovic, Invariant measures of modified LR and L+R systems, Regul. Chaotic Dyn.

20(5) (2015), 542โ€“552.61. B. Jovanovic, Rolling balls over spheres in R๐‘›, Nonlinearity 31(9) (2018), 4006โ€“4030.

Page 31: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

CARTAN MEETS CHAPLYGIN 45

62. J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Ration.

Mech. Anal. 118(2) (1992), 113โ€“148.

63. J. Koiller, P.R. Rodrigues, P. Pitanga, Non-holonomic connections following Elie Cartan,

An. Acad. Bras. Cienc. 73(2) (2001), 165โ€“190.64. J. Koiller, K.M. Ehlers, P.M. Rios, R. Montgomery, Nonholonomic systems via moving

frames: Cartan equivalence and Chaplygin Hamiltonization, In: J. E. Marsden, T. S. Ratiu.

(Org.), The Breadth of Symplectic and Poisson Geometry-Festchrift in Honor of Alan We-instein, Boston: Birkhauser, 2005, 232, 75โ€“120.

65. J. Koiller, K.M. Ehlers, Rubber Rolling over a Sphere, Regul. Chaotic Dyn. 12 (2007),

127โ€“152.66. M. de Leon, D.M. de Diego, On the geometry of nonholonomic Lagrangian systems, J. Math.

Phys. 37 (1996), 3389โ€“3414.

67. M. de Leon, J. C. Marrero, D.M. de Diego, Linear almost Poisson structures and Hamiltonโ€“Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech. 2(2) (2010),

159โ€“198.

68. A.D. Lewis, R.M. Murray, Variational principles for constrained systems: Theory and ex-periment, Int. J. Non-Linear Mech. 30(6) (1995), 793โ€“815.

69. A.D. Lewis, Affine connections and distributions with applications to nonholonomic mechan-ics, Rep. Math. Phys. 42(1โ€“2) (1998), 135โ€“164.

70. A.D. Lewis, The bountiful intersection of differential geometry, mechanics, and control the-

ory, Ann. Rev. Control, Robotics and Autonomous Syst. 1 (2018), 135โ€“158.71. L.A. Lyusternik, The early years of the Moscow mathematical school, Russ. Math. Surv. 22

(1967), 171โ€“211.

72. C.M. Marle, Various approaches to conservative and nonconservative nonholonomic systemsRep. Math. Phys. 42(1โ€“2) (1998), 211โ€“229.

73. M. Crampin, T. Mestdag, Anholonomic frames in constrained dynamics, Dyn. Syst. 25(2)

(2010), 159โ€“187.74. M. Godoy Molina, E. Grong, I. Markina, F. Silva Leite, An intrinsic formulation of the

problem on rolling manifolds, J. Dyn. Control Syst. 18(2) (2012), 181โ€“214.

75. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,Math. Surv. Monogr. 91, American Mathematical Society, 2006.

76. W.M. Oliva, G. Terra, Improving E. Cartan considerations on the invarince of nonholonomicmechanics, to appear in J. Geom. Mech.

77. P. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press, 2009.

78. H. Poincare, Hertzโ€™s ideas on mechanics, Revue Generale des Sciences pures et appliquees 8(1897), 734โ€“743.

79. A. J.V.D. Schaft, B.M. Maschke, On the Hamiltonian formulation of nonholonomic mechan-

ical systems, Rep. Math. Phys. 34(2) (1994), 225โ€“233.80. J. A. Shouten, On nonholonomic connections, Koninklijke akademie van wetenshappen te

Amsterdam, Proceeding of sciences 31(3) (1928), 291โ€“298.81. F. Silva Leite, L. Machado, F. Pina, Rolling maps for the Essential manifold, In: Mathematics

of Planet Earth: Dynamics, Games and Science, Chapter 20, Jean Pierre Bourguignon, Rolf

Jeltsch, Alberto Pinto, and Marcelo Viana Eds., Springer 2015.82. R. Siegmund-Schultze, โ€™Mathematics knows no racesโ€™: A political speech that David Hilbert

planned for the ICM in Bologna in 1928, Math. Intell. 38(1) (2016), 56โ€“66.

83. S. Stanchenko, Non-holonomic Chaplygin systems, J. Appl. Math. Mech. 53(1) (1989), 11โ€“17.84. J. L. Synge, Geodesics in non-holonomic geometry, Math. Ann. 99(1) (1928), 738โ€“751.

85. A.V. Tsiganov, Integrable Euler top and nonholonomic Chaplygin ball, J. Geom. Mech. 3(3)(2011), 337โ€“362.

86. A.V. Tsiganov, On the Lie integrability theorem for the Chaplygin ball, Regul. Chaotic Dyn.

19(2) (2014), 185โ€“197.

87. G. Vranceanu, Parallelisme dans une variete non holonome, Atti del Congresso Internazionaledei Matematici, Bologna, tomo V, 1928, 61โ€“67.

Page 32: CARTAN MEETS CHAPLYGIN Kurt M. Ehlers and Jair Koiller

46 EHLERS AND KOILLER

ะšะะ ะขะะ ะกะ ะ•ะ‹ะ• ะงะะŸะ›ะ˜ะ“ะ˜ะะ

ะ ะตะทะธะผะต. ะะฐ ะœะตั’ัƒะฝะฐั€ะพะดะฝะพะผ ะบะพะฝะณั€ะตััƒ ะผะฐั‚ะตะผะฐั‚ะธั‡ะฐั€ะฐ 1928, ะšะฐั€ั‚ะฐะฝ jะต ะฝะฐะฟะพ-ะผะตะฝัƒะพ ะดะฐ ัšะตะณะพะฒ โ€œะผะตั‚ะพะด ะตะบะฒะธะฒะฐะปะตะฝั†ะธjะตโ€ ะดะพะฒะพะดะธ ะดะพ ะธะฝะฒะฐั€ะธjะฐะฝั‚ะธ ะฝะตั…ะพะปะพะฝะพะผะฝะพะณ ัะธ-ัั‚ะตะผะฐ ะฝะฐ ะบะพะฝั„ะธะณัƒั€ะฐั†ะธะพะฝะพะผ ะฟั€ะพัั‚ะพั€ัƒ ๐‘„ ัะฐ ะ›ะฐะณั€ะฐะฝะถะธjะฐะฝะพะผ ะพะดั€ะตั’ะตะฝะธะผ ะบะธะฝะตั‚ะธั‡-ะบะพะผ ะตะฝะตั€ะณะธjะพะผ [29]. ะšะฐั€ั‚ะฐะฝ jะต ะดะฐะพ ะบะฐั€ะฐะบั‚ะตั€ะธัั‚ะธะบัƒ ะฟั€ะพะผะตะฝะต ะผะตั‚ั€ะธะบะต ะฒะฐะฝ ะดะธัั‚ั€ะธ-ะฑัƒั†ะธjะต ะฒะตะทะฐ ๐ธ โŠ‚ ๐‘‡๐‘„ ะบะพjะฐ ะพั‡ัƒะฒะฐะฒะฐ ะฝะตั…ะพะปะพะฝะพะผะฝัƒ ะฟะพะฒะตะทะฐะฝะพัั‚ ๐ท๐‘‹๐‘Œ = Proj๐ธ โˆ‡๐‘‹๐‘Œ ,๐‘‹,๐‘Œ โˆˆ ๐ธ, ะณะดะต jะต โˆ‡๐‘‹๐‘Œ ะ›ะตะฒะธ-ะงะธะฒะธั‚ะฐ ะฟะพะฒะตะทะฐะฝะพัั‚ ะฝะฐ ๐‘„ ะธ Proj๐ธ ะพั€ั‚ะพะณะพะฝะฐะปะฝะฐ ะฟั€ะพ-jะตะบั†ะธjะฐ ะฝะฐ ๐ธ. ะžะฒะดะต ั€ะฐะทะผะฐั‚ั€ะฐะผะพ ะฝะฐะฒะตะดะตะฝะธ ะฟั€ะพะฑะปะตะผ ะตะบะฒะธะฒะฐะปะตะฝั†ะธjะต ะฝะตั…ะพะปะพะฝะพะผะฝะธั…ะฟะพะฒะตะทะฐะฝะพัั‚ะธ ะทะฐ ะงะฐะฟะปะธะณะธะฝะพะฒะต ัะธัั‚ะตะผะต [30,31,62]. ะขะฐะบะพั’ะต ั€ะฐะทะผะฐั‚ั€ะฐะผะพ ะธ ะฟั€ะธะผะตั€- ะผะฐั‚ะตะผะฐั‚ะธั‡ะบะธ ะดั€ะฐะณัƒั™! - ะบะพะณะฐ ััƒ ะฟั€ะพะฝะฐัˆะปะธ ะžะปะธะฒะฐ ะธ ะขะตั€ะฐ [76]. ะขัƒ ะธะผะฐะผะพ ะฒะธัˆะตัะปะพะฑะพะดะต (ะดะฐะบะปะต ะธ ะฒะธัˆะต ะผะพะณัƒั›ะฝะพัั‚ะธ) ะบะพั€ะธัั‚ะตั›ะธ ัะปะฐะฑะธjัƒ ะตะบะฒะธะฒะฐะปะตะฝั‚ะฝะพัั‚ - ั‡ัƒะฒะฐjัƒัะต ัะฐะผะพ ะฝะฐjะฟั€ะฐะฒั™ะธ ะฟัƒั‚ะตะฒะธ: ๐ท๐‘‹๐‘‹ = 0. ะ˜ะฟะฐะบ, ั‚ั€ะฐะถะตัšะต ะฟั€ะธะผะตั€ะฐ ะบะพjะธ ััƒ ัะปะฐะฑะพ,ะฐะปะธ ะฝะต ัั‚ั€ะพะณะพ ะตะบะฒะธะฒะฐะปะตะฝั‚ะฝะธ ะดะพะฒะพะดะธ ะดะพ ะฟั€ะตะพะดั€ะตั’ะตะฝะพะณ ัะธัั‚ะตะผะฐ jะตะดะฝะฐั‡ะธะฝะฐ, ัˆั‚ะพะดะฐjะต ะธะฝะดะธั†ะธjัƒ ะดะฐ ััƒ ั‚ะฐะบะฒะธ ัะธัั‚ะตะผะธ ั€ะตั‚ะบะธ. ะœะธ ะฟะพะบะฐะทัƒjะตะผะพ ะดะฐ ัะต ะดะฒะฐ ะฟั€ะธัั‚ัƒะฟะฐะฟะพะบะปะฐะฟะฐjัƒ ัƒ ัะปะตะดะตั›ะธะผ ัะปัƒั‡ะฐjะตะฒะธะผะฐ: i) ะ”ะธัั‚ั€ะธะฑัƒั†ะธjะฐะผะฐ ั€ะฐะฝะบะฐ 2. ะะฐ ะฟั€ะธะผะตั€, ัƒะšะฐั€ั‚ะฐะฝะพะฒะพะผ ะฟั€ะธะผะตั€ัƒ ัั„ะตั€ะต ะบะพjะฐ ัะต ะบะพั‚ั€ั™ะฐ ะฟะพ ั€ะฐะฒะฝะธ ะฑะตะท ะบะปะธะทะฐัšะฐ ะธ ัƒะฒะธjะฐัšะฐะบะฐะดะฐ ะธะผะฐะผะพ (2,3,5) ะดะธัั‚ั€ะธะฑัƒั†ะธjัƒ; ii) ะšะฐะดะฐ jะต ะดะธัั‚ั€ะธะฑัƒั†ะธjะฐ ั€ะฐะฝะบะฐ 3 ะธะปะธ ะฒะธัˆะต,ะฝะตะพะฟั…ะพะดะฐะฝ ัƒัะปะพะฒ ะดะฐ ัะต ะฟั€ะธัั‚ัƒะฟะธ ั€ะฐะทะปะธะบัƒjัƒ jะต ะดะฐ jะต ะบะพั€ะฐะฝะบ ะพะด D ัƒ D+[D,D]ะฑะฐั€ะตะผ 3. ะžะฒะพ ะธัะบั™ัƒั‡ัƒjะต ะผะพะณัƒั›ะฝะพัั‚ ะฝะฐะปะฐะถะตัšะฐ ะฟั€ะธะผะตั€ะฐ ัƒ ัะปัƒั‡ะฐjัƒ (3,5) ะดะธัั‚ั€ะธ-ะฑัƒั†ะธjะฐ, ะบะฐะพ ะบะพะด ะงะฐะฟะปะธะณะธะฝะพะฒะต ัั„ะตั€ะต. ะ”ะฐะบะปะต ะฟั€ะตะดะธะฒะฐะฝ ะฟั€ะธะผะตั€ (3,6) ะดะธัั‚ั€ะธะฑัƒั†ะธjะตะบะพjะธ ััƒ ะดะพะฑะธะปะธ ะžะปะธะฒะฐ ะธ ะขะตั€ะฐ jะต ะผะธะฝะธะผะฐะปะฐะฝ.

Mathematics Department (Received 16.01.2019.)

Truckee Meadows Community College (Revised 22.05.2019.)Reno (Available online 25.06.2019.)

[email protected]

Departamento de Matematica

Universidade Federal de Juiz de ForaJuiz de Fora

Brazil

[email protected]