cascode amplifier - wayne state universitywebpages.eng.wayne.edu/cadence/ece6570/doc/lect8_1.pdf ·...

29
Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source load. Figure 1(b) shows the ideal current source is implemented by PMOS with constant gate to source voltage. Vo V DD M1 (a) V G2 V i M2 V G3 V DD Vo Vi M1 M3 (b) V G2 M2 V TN0 +V= V DD -(|V TP0 |+|V|)= V TN0 +V TN2 +2V= |V TP0 |+| V| V TN2 +V V TN0 +V (3) (2) (7) (6) (1) (5) (4) V SS =0 V TN0 +V V V Figure 1. Cascode amplifier with simple current load. 1. Low Frequency Small Signal Equivalent Circuit Figure 2(a) and 2(b) show its low frequency small signal equivalent circuit. Figure 2( c) shows its two-port representation and port variables assignment. 1

Upload: lenguyet

Post on 10-Mar-2018

262 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source load. Figure 1(b) shows the ideal current source is implemented by PMOS with constant gate to source voltage.

Vo

VDD

M1

(a)

VG2

Vi

M2

VG3

VDD

Vo

Vi M1

M3

(b)

VG2M2

VTN0+∆V=

VDD-(|VTP0|+|∆V|)=

VTN0+VTN2+2∆V=

|VTP0|+|∆V|

VTN2+∆V

VTN0+∆V

(3)

(2)

(7)

(6)

(1)

(5)

(4) VSS=0

VTN0+∆V

∆V

∆V

Figure 1. Cascode amplifier with simple current load.

1. Low Frequency Small Signal Equivalent Circuit Figure 2(a) and 2(b) show its low frequency small signal equivalent circuit. Figure 2( c) shows its two-port representation and port variables assignment.

1

Page 2: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

G1 D1

S1

S2 D2

Vo

+

Vi

--

gds1

gds2 gds3

+

gm1vgs1

gm2vgs2

gmb2vbs2

+

-

VS2

vgs2=-VS2; vbs2=-VS2

G1 D1

S1

S2 D2

Vo

+

Vi

--

gds1

gds2 gds3

+

gm1vgs1

gm2VS2

gmb2VS2

+

-

VS2

vgs2=-VS2; vbs2=-VS2

ZibZob

GLYa YbVi

+ +

V1a V2a = V1b

I1a I2bI2a I1b

Zoa

Figure 2. Cascode amplifier low frequency small signal equivalent circuit.

2

Page 3: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

)0or Z(YY );ror Z(gYY SaSSds3

bLds3

bLL =∞=====

The current equation of network a is:

a2ds1

a1m1

a2

a1

VgVgI

0I

+=

=

The corresponding Y-parameter matrix is:

=

ds1m1

a

gg00

Y

The current equation of network b is:

b2ds2

b1ds2mb2m2

b2

b2ds2

b1ds2mb2m2

b1

Vg)Vggg(I

Vg-)Vggg(I

+++−=

++=

The corresponding Y-parameter matrix is:

++−

−++=

ds2ds2mb2m2

ds2ds2mb2m2b

g)ggg(gggg

Y

The common gate stage gain is:

ds3ds2

ds2mb2m2bL

b22

b21b

V ggggg

YyyA

+++

=+

−=

The input impedance of common gate stage (the load of common source stage) is:

m2ds3ds2mb2m2

ds3ds2bL

b11

b

bL

b22a

Lbi g

2g)ggg(

ggYydetY

YyZZ ≈++

+=

++

==

The gain of the common source stage is:

2gg

2g-g)gg(gggggg

)gg(g

g)ggg()g(gg)gg(g

ggg)ggg(

g

gYy

yA

mb2m2

m1

ds3mb2m2ds3ds2ds3ds1ds2ds1

ds3ds2m1

ds3ds2mb2m2ds3ds2ds1

ds3ds2m1

ds3ds2

ds3ds2mb2m2ds1

m1aL

a22

a21a

V

≈+

≈++++

+−=

+++++−

=

+++

+

−=

+−

=

Assuming all gm are equal, and all gds are equal. In addition gm >>gmb, and gm>>gds. With a gain of 2 the miller capacitance Cgd1 of the common source stage is negligible.

3

Page 4: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

The overall gain is:

ds

m

ds3ds2mb2m2ds3ds1ds2ds1

ds2mb2m2m1

ds3mb2m2ds3ds2ds3ds1ds2ds1

ds3ds2m1

ds3ds2

ds2mb2m2aV

bVV

gg

g)ggg(gggg)ggg(g-

g)gg(gggggg)gg(g

ggggg

AAA

−≈

++++++

=

++++

+−

+

++==

The output impedance of the cascode amplifier is computed by obtaining the output impedance of the common source stage ( or the source impedance of the common gate stage) first. That is,

ds1a22

aS

a22

a

aS

a11b

Sao g

1y1

YydetYYy

ZZ ==++

==

The result is obtained by dividing the numerator and denominator by YSa . The output impedance of the

cascode is the output impedance of the common gate stage.

ds1ds2m2ds2ds1ds1ds2mb2m2ds1ds2

ds1ds2mb2m2b

Sb22

b

bS

b11b

o rrgrrrr)gg(gg

ggggYydetY

YyZ ≈+++=

+++=

++

=

That is, the output impedance is equal to the output impedance, rds1 , of the first stage (common source) magnified by the gain, gm2rds2 , of the second stage (common gate ). The effective load is the parallel combination of output impedance of the cascode amplifier and the load.

ds3ds3ds1ds2m2ds3ds2ds1ds1ds2mb2m2Lboo r)//rrrg(r//)rrrr)gg((Z//ZZ ≈≈+++==

The overall gain is approximately equal to :

ds3m1om1V rgZgA −≈−= Although the output impedance has been magnified but the effective load impedance is determined by smaller impedance. That is, rds3. The overall gain of the cascode amplifier can be increased if we can increased rds3. This can be achieved by adding a cascode at the load. This is shown in Figure 3. Figure 4 shows its low frequency small signal equivalent circuit and its two-port representations and port variables assignment. There are three two-port networks. The Y-parameter matrices are derived as follows: The current equation of network a is:

a2ds1

a1m1

a2

a1

VgVgI

0I

+=

=

The corresponding Y-parameter matrix is:

4

Page 5: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

=

ds1m1

a

gg00

Y

The current equation of network b is:

b2ds2

b1ds2mb2m2

b2

b2ds2

b1ds2mb2m2

b1

Vg)Vggg(I

Vg-)Vggg(I

+++−=

++=

The corresponding Y-parameter matrix is:

++−

−++=

ds2ds2mb2m2

ds2ds2mb2m2b

g)ggg(gggg

Y

The current equation of network c is:

c2ds3

c1ds3mb3m3

c2

c2ds3

c1ds3mb3m3

c1

Vg)Vggg(I

Vg-)Vggg(I

+++−=

++=

The corresponding Y-parameter matrix is:

++−

−++=

ds3ds3mb3m3

ds3ds3mb3m3c

g)ggg(gggg

Y

The output impedance of network b has been obtained earlier it is,

ds1ds2m2ds2ds1ds1ds2mb2m2bo rrgrrrr)gg(Z ≈+++=

The output impedance of network c is computed as follows:

ds4ds3m3ds4ds3ds4ds3mb3m3ds4ds3

ds4ds3mb3m3cS

c22

c

cS

c11c

o rrgrrrr)gg(gg

ggggYydetY

YyZ ≈+++=

+++=

++

=

The effective load impedance is the parallel compbination of the output impedance of network b and c.

2rg

//ZZZ2dsmc

oboo ≈=

Assuming all gm are equal and all gds are equal.

5

Page 6: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

Vo

VDD

M1

(a)

VG2

Vi

M2

VG4

VDD

M3

Vo

Vi M1

(b)

VG2M2

M4

VG3

VDD- (|VTP0|+|∆V|)=

VDD-(|VTP0|+|VTP3|+2|∆V|)=

VTN0+VTN2+2∆V=

VTN0+∆V=

(|VTP0|+|∆V|)

(|VTP3|+|∆V|)

VTN2+∆V

VTN0+∆V

(7)

(5)

(1)

(2)

(4) VSS=0

(8)

(9)

(3)

(6)

VDD

VSS VSS

Figure 3. Cascode amplifier with cascode current load.

6

Page 7: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

G1 D1

S1

S2 D2

Vo

-

++

Vi

-

gds1

gds2

gds3

gm1vgs1

gm2VS2

gmb2VS2

+

-

VS2

vgs2=-VS2; vbs2=-VS2

gds4

gm3VS3

gmb3V3

+

VS3

-

Yd Yc

Ya Yb

D3S3D4

S4

Zob

Ya YbVi

+

V1a V2a = V1b

I1a I2bI2a I1b

Zoc

Zo

+

Vo

-

Yc

+

gds4

Figure 4. Cascode amplifier with cascode load low frequency small signal equivalent circuit.

7

Page 8: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

2. High Frequency Small Signal Equivalent Circuit

VDD

Vo

CL

Vi

M2

M1

Cgd1

Cgs2

Cdb1

Csb2

Cdb2Cgd2

VG1

VG2Cdb3Cgd3

M3

Cgs1

Figure 5. Cascode amplifier parasitic capacitances. Figure 5 shows all the parasitic capacitances needed for high frequency modelling. Figure 6(a) shows the high frequency small signal equivalent circuit of cascode amplifier with simple current load. Figure 6(b) its two-port representation and port variables assignment.

CCCCCC ;CCCC ;CC)0or Z(Y ;CgYY

Lgd3db3db2gd23sb2gs2db12gd11

SS3ds3bLL

++++=++===∞=+== s

The input capacitance Cgs1 is assummed to be part of the input voltage source. Cgs1 is shorted out by the input voltage source, it does not affect the circuit operation, hence can be ignored or deleted.. C3 is assummed to be part of the load. The current of the first stage (network a) is given by:

a221ds1

a11m1

a2

a21

a11

a1

)]VC(Cg[)VC-g(I

VCVCI

+++=

−=

ssss

8

Page 9: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

S1

G1 D1 S2 D2

Vo

+

--

gds1

gds2 gds3

+

gm1vgs1

gm2VS2

gmb2VS2

+

-

VS2

vgs2=-VS2; vbs2=-VS2

Zib Zob

GLYa YbVi

+ +

V1a V2a = V1b

I1a I2bI2a I1b

C1

Cgs1C2 C3

C2=Cdb1+Cgs2+Csb2 C3=Cgd2+Cdb2+Cdb3+Cgd3+CLC1=Cgd1

Vi

Figure 6. Cascode amplifier high frequency equivalent circuit. The corresponding Y-parameter matrix is:

++

−=

)]C(Cg[C-gCC

Y21ds11m1

11a

ssss

The current equation of network b is:

9

Page 10: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

a2ds2

a1ds2mb2m2

b2

a2ds2

a1ds2mb2m2

b1

Vg )Vggg(I

Vg -)Vggg(I

+++−=

++=

The corresponding Y-parameter matrix is :

++−++

=ds2ds2mb2m2

ds2ds2mb2m2b

g)ggg(g-ggg

Y

The voltage gain of network b is:

3ds3ds2

ds2mb2m2bL

b22

b21b

V Cggggg

YyyA

s++++

=+

−=

The input impedance of network b or load of network a is:

)C)(ggg(gCgg

YydetYYyZZ

3ds3ds2mb2m2

3ds3ds2bL

b11

b

bL

b22a

Lbi s

s+++

++=

++

==

The voltage gain of network a is:

)C)(ggg(g)sCgg)()Cs(Cg()sCg)(gsC-(g-

sCgg)C)(ggg(g

)Cs(Cg

)sC-(g-Yy

y-A

3ds3ds2mb2m23ds3ds221ds1

3ds3ds21m1

3ds3ds2

3ds3ds2mb2m221ds1

1m1aL

a22

a21a

V

s

s

++++++++++

=

+++++

+++=

+=

The overall gain of the cascode amplifier is:

10

Page 11: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

)ggg(ggggc)ggg(gggg

)g(gC)g(gC)ggg(gCb

)ggg(gggg)C(CC

a

:where]abc[1

)gg)(gsC-(g-)C)(ggg(g)sCgg)()Cs(Cg(

)gg)(gsC-(g-)C)(ggg(g)sCgg)()Cs(Cg(

)sCg)(gsC-(g-

Cggggg

AAA

ds2ds1mb2m2ds3ds2ds1

ds2ds1mb2m2ds3ds2ds1

ds3ds21ds3ds22mb2m2ds2ds13

ds2ds1mb2m2ds3ds2ds1

213

2ds2mb2m21m1

3ds3ds2mb2m23ds3ds221ds1

ds2mb2m21m1

3ds3ds2mb2m23ds3ds221ds1

3ds3ds21m1

3ds3ds2

ds2mb2m2

aV

bVV

++++=++++

+++++++=

+++++

=

++++

=

++++++++++

=

++++++++

++

++++

=

=

ss

s

s

s

If the poles are far apart, it can be approximated as follows:

|p||p| :wherepp1

p11

pp1

p1

p11

p1

p1ab1)D(

12

2

211

2

212121

2

>>

+

−≈

+

+−=

−=++= sssssssss

That is,

21

m2

213

ds3ds21ds3ds22mb2m2ds2ds132

3

ds3

ds3ds21ds3ds22mb2m2ds2ds13

ds2ds1mb2m2ds3ds2ds11

CCg

)C(CC])g(gC)g(gC)ggg(gC[

abp

Cg

)g(gC)g(gC)ggg(gC)]ggg(ggg[g-

b1p

+−

≈+

+++++++−=

−=

−≈

+++++++++++

=−

=

Note that the poles are associated with the inverse product of the resistance and capacitance of a node to ground. p1 is associated with node D2 to ground, and p2 is associated with D1 (or S2) to ground. The cascode amplifier also has a zero at the right half plane given by:

1

m11 C

gz =

11

Page 12: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

Cascode Amplifier Experiments

3. Cascode Amplifier with Simple Current Load The biasing voltages will be determined by ignoring the effect of the bulk voltage on M2. Using the biasing principle discussed in the current sink/source section. The biasing requirement from Figure 1(b) are:

5.2V|)5.1||1(|V|)V||V(|VV52(1.5)2(1)V2V2V

2.51.51VVV

DDDDTP0DDG3

TNG2

TN0bias

−=+−−=∆+−==+=∆+=

=+=∆+=

The output voltage dynamic range with the above biasing is:

5.7V If ;6V45.1VV42(1.5)1

VVVV2V

DDO

DDO

DDOTN

=≤≤−≤≤=+∆−≤≤∆+

52.57.52.5-VV DDG3 =−== The effect of bulk bias on M2 on the output voltage will be considered next. The actual minimum output voltage will be determined. The threshold voltage of M2 is no longer equal to VT0, due to the present of the bulk bias.

6V325.3

25.35.175.1VVV

1.5VV

1.751.5-1.75-5VVVV75.1V

iterationby Vfor Sove)VVV(VV

VVVV)V(V)V(VV

VV

O

DS2(min)DS1(min)O(min)

DS2(min)

TN2G2DS1(min)

TN2

TN2

TN2G2T0TN2

TN2G2DS1

DS1TN0BS2TN0TN2

DS1BS2

≤≤

=+=+=

=∆=

==∆−−==

−∆−−++=

∆−−=

−++=−−+=

−=

φφγ

φφγφφγ

The bulk bias increases the output voltage dynamic range. Using the above biasing voltages, Pspice simulation is conducted to obtain the DC transfer characteristic curve. The Pspice netlist below is used to obtain the DC transfer characteristic.

12

Page 13: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

*PSpice file for NMOS Common Gate Amplifier with *PMOS Current Load *Filename="Lab3.cir" VIN 1 0 DC 2.5212VOLT AC 1V VDD 3 0 DC 7.5VOLT VSS 4 0 DC 0VOLT VG2 6 0 DC 5VOLT VG3 7 0 DC 5VOLT M1 5 1 4 4 MN W=9.6U L=5.4U M2 2 6 5 4 MN W=9.6U L=5.4U M3 2 7 3 3 MP W=25.8U L=5.4U .MODEL MN NMOS VTO=1 KP=40U + GAMMA=1.0 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 .MODEL MP PMOS VTO=-1 KP=15U + GAMMA=0.6 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 *Analysis .DC VIN 0 7.5 0.05 .TF V(2) VIN .AC DEC 100 1HZ 10GHZ .PROBE .END The exact Vbias is determined by locating a point in the DC transfer characteristic curve with the highest slope. The AC small signal characteristic and operating node voltages are then obtained at this operating point. The Pspice node voltages at the operating point is given below: NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 2.5212 ( 2) 4.6987 ( 3) 7.5000 ( 4) 0.0000 ( 5) 1.7410 ( 6) 5.0000 ( 7) 5.0000 The voltage at node 5 is 1.7410 which is reasonably closed to the calculated value of VDS1(min)=1.75. If we ignore the bulk bias of M2 the calculated value is :

2.51.51VVV TN0DS1(min) =+=∆+= The DC transfer characteristic curve is given below:

13

Page 14: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

Theoretical calculations of the small signal parameters are given below:

36.355dbor 65.756)(.495E6)-E79.132(RgA

mho79.1326)-6)(101E-E3.87(2I2gg

M495.6)-E101)(02(.

1I1rR

A1011)-0-26/2)(2.521-E3.87()V-V-V)(2/(I

87.3uA/V4u)6)(9.6u/4.-E40((W/L)K

outm1V0

DSQN1m2m1

DSQds3out

22T0SSbiasN1DSQ

21NN1

−=−=−=

====

====

===

===

u

u

β

λ

β

β

The Pspice results are:

36.644dbor 95.67AM5.R

V0

out

−==

**** SMALL-SIGNAL CHARACTERISTICS

14

Page 15: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

V(2)/VIN = -6.795E+01 INPUT RESISTANCE AT VIN = 1.000E+20 OUTPUT RESISTANCE AT V(2) = 5.000E+05

4. Cascode Amplifier High Frequency Model Experiments The parasitic capacitances will be determined to check the theory against Pspice simulation results. The capacitances are determined at the operating point. The reverse bulk bias are first calculated at the quiescent operating point. For M1 VBD=V(4)-V(5)=0-1.7410=-1.7410 VBS=0, bulk connected to source For M2 VBD=V(4)-V(2)=0-4.6987=-4.6967 VBS=V(4)-V(5)=0-1.7410=-1.7410 For M3 VBD=-(V(3)-V(2))=-(7.5-4.6987)=-2.8013 The MATLAB program is invoked to obtain the parasitic capacitances. For M1, [CGS,CGD,CBD,CBS]=cap(9.6,5.4,-1.7410,0) CGS=23.2704fF, CGD=3.84fF, CGD=24.1791fF, CBS=61.84fF For M2,

[CGS,CGD,CBD,CBS]=cap(9.6,5.4,-4.6987,-1.7410) CGS=23.2704fF, CGD=3.84fF, CGD=16.0715fF, CBS=38.2591fF For M3,

[CGS,CGD,CBD,CBS]=cap(25.8,5.4,-2.8013,0) CGS=62.5392fF, CGD=10.32fF, CGD=47.956fF, CBS=152.02Ff In the simulation without specifying the area and perimeter of source and drain, only Cgs and Cgd are accounted in computing the parasitic capacitances. These are calculatedbelow: C1=Cgd1=3.84fF C2=Cgs2=23.2704fF C3=Cgd2+Cgd3+CL=3.84fF+10.32fF+0=14.16fF

15

Page 16: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

19.1243.6238.15904.898E9

E938.9tan-34.1E99.38E9tan-90

pw

tan-z

wtan-90PM

G43.52

E91.342zf

E91.3415-E84.3

6-E79.132Cgz

G7799.2

E9898.42pf

E9898.415-E)2704.2384.3(

6-E79.132CC

gp

G493.12

E938.92

wf

9.38E9E6)67.142)(75.65(wAw

M7.222

E667.1422

wf

E667.14215)-E6)(14.16E495.0(

1Cr

1pw

1-1-

2

GBW1-GBW1-

z

1

m1

2p2

21

m22

GBWGBW

BWV0GBW

BWBW

3ds31BW

=−−=

=

=

===

===

===

=+−

=+

−=

===

===

===

====

ππ

ππ

ππ

ππ

In the Pspice simulation, if the PM is determined at the frequency where zero db gain occurs the result is:

33.84PM@0dbG 1fGBW

==

This result seem to be quite different from the theoretical result of

12.19PMG493.1fGBW

==

The discrepancy occurs because the non-dominant pole p2=4.898E9 occurs before the gain bandwith product wGBW=9.38E9. The gain bandwidth calculation assume that the slope of –20db/dec is maintain before intersecting the zero db line. With p2 occuring before wGBW means that the slope becomes –40db/dec, causing it to intersect the zero db gain line sooner. If one extend the –20db/dec line in the Pspice simulation, this line will intersect the zero db gain axis at:

1.53GM)496.22)(95.67(fAf BWV0GBW === If the phase margin is determined at 1.53G, the result is 16.744° which is closer to the theretical calculation of 12.19°. That is, the

16

Page 17: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

theretical calculation will be in error if the non-dominant pole p2 occurs before wGBW.

17

Page 18: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

The PM of 33.84 is rather low. For stability a PM of at least 60 is desirable. Looking at the PM calculation, one can increase the PM by decreasing wGBW. Increasing the value of capacitor C3 will decrease wGBW while maintaining the value of p2. C3 is a function of the load capacitance CL. One can compute the value of CL needed to achieve the desired PM. To illustrate this we will compute the value of CL for a PM=80. First compute wGBW to achieve PM=80.

G75.0w

104.898E9

wtan

34.1E9w

tan

10p

wtan

zw

tan

80p

wtan-

zw

tan-90PM

GBW

GBW1-GBW1-

2

GBW1-GBW1-

2

GBW1-GBW1-

=

=

+

=

+

=

=

The value of load capacitance is then calculated to achieve wGBW.

18

Page 19: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

168.87fF14.16fF-183.03fF14.16fF-.75E9)(.495E6)(0

67.95fF16.14wr

AC

C fF16.14wr

AC

Cr1Aw

GBWds3

V0L

LGBWds3

V03

3ds3V0GBW

===−=

+==

=

The result of Pspice simulation with CL added shows that PM is now 82.195°.

Filename=”cascexp3.doc”

5. Cascode Amplifier With Cascode Current Load Experiments The derivation of the biasing circuit is shown in Figure 7. The complete circuit is shown in Figure 8.

19

Page 20: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

MBP2

MBP1

(3) VDD

(4) VSS

(9)

(8)

IBP=101UA

MBN2

MBN1

(7)

(10)

+Vin (1)

IBN=101UA

MBP2

MBP1

(9)

(8)

(3) VDD

(4) VSS

IBP=101UA

MBN2

MBN1

(7)

(10)

+Vin (1)

(9)

(8)

(a) (b)

(c) Figure 7. Biasing circuit for the cascode amplifier with cascode load.

20

Page 21: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

MBP2

MBP1

(9)

(8)

(3) VDD=10

(4) VSS=0

MBN2

MBN1

(7)

(10)

+Vin (1)

(9)

(8)

MBP4

MBP3

M4

M3

M2

M1

(2)

(6)

(5)

Vo

IBP

Figure 8. Complete circuit of the cascode amplifier with cascode load. Netlist for the complete circuit of Figure 8 is shown below: *PSpice file for NMOS Common Gate Amplifier with *PMOS Current Load *Filename="Lab32b.cir" *All bulks are connected to supply rail .PARAM Wn=9.6U, Ln=5.4U .PARAM Wp=25.8U, Lp=5.4U VIN 1 10 DC 0VOLT AC 1V VDD 3 0 DC 10VOLT VSS 4 0 DC 0VOLT M1 5 1 4 4 NMOS1 W={Wn} L={Ln} M2 2 7 5 4 NMOS1 W={Wn} L={Ln} M3 2 8 6 3 PMOS1 W={Wp} L={Lp} M4 6 9 3 3 PMOS1 W={Wp} L={Lp} *Biasing circuit MBN1 10 10 4 4 NMOS1 W={Wn} L={Ln} MBN2 7 7 10 4 NMOS1 W={Wn} L={Ln} IBP 8 4 100UA MBP1 8 8 9 3 PMOS1 W={Wp} L={Lp} MBP2 9 9 3 3 PMOS1 W={Wp} L={Lp} MBP3 7 8 11 3 PMOS1 W={Wp} L={Lp} MBP4 11 9 3 3 PMOS1 W={Wp} L={Lp}

21

Page 22: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

.MODEL NMOS1 NMOS VTO=1 KP=40U + GAMMA=1.0 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 .MODEL PMOS1 PMOS VTO=-1 KP=15U + GAMMA=0.6 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 *Analysis .DC VIN -2.5 7.5 0.05 .TF V(2) VIN .AC DEC 100 1HZ 10GHZ .PROBE .END NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 2.4774 ( 2) 5.9211 ( 3) 10.0000 ( 4) 0.0000 ( 5) 2.4774 ( 6) 7.5450 ( 7) 5.9211 ( 8) 4.4772 ( 9) 7.5280 ( 10) 2.4774 ( 11) 7.5450 The biasing voltages are obtained from the above table VG1=Vbias=V(10)=2.4774 VG2=V(7)=5.9211 VG3=V(8)=4.4772 VG4=V(9)=7.5280 The low frequency small signal parameters are:

mho13.1326)-6)(100E-E3.87(2I2gg

M5.6)-E100)(02(.

1I1rr

IuA 100I87.3uA/V4u)6)(9.6u/4.-E40((W/L)K

DSQN1m2m1

DSQds2ds1

BIASDSQ

21NN1

u====

====

=====

β

λ

β

22

Page 23: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

2182.78)6)(16.52E6-E13.132(RgA

M52.162

0.5E6)6)(0.5E6)(-E13.132(2

rrgR

outm1V0

ds1ds2m2out

===

===

Pspice simulation results: **** SMALL-SIGNAL CHARACTERISTICS V(2)/VIN = -3.136E+03 INPUT RESISTANCE AT VIN = -2.424E+19 OUTPUT RESISTANCE AT V(2) = 2.342E+07

23

Page 24: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

6. Cascode Amplifier Design Example

24

Page 25: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

Design specification Given: AV>=10,000 Ro>=10Meg Find: VDD, acceptable output voltage swing, and transistor sizing

MBP2

MBP1

(9)

(8)

(3) VDD

(4) VSS=0

MBN2

MBN1

(7)

(10)

+Vin (1)

(9)

(8)

MBP4

MBP3

M4

M3

M2

M1

(2)

(6)

(5)

Vo

IBP

(11)

VTN0+∆V

VTN+∆V

|VTP0|+|∆V|

|VTP|+|∆V|

VDD-(|VTP0|+|VTP|+2|∆V|)

VTN0+VTN+2∆V

Design Procedure

umho1000M10

10000RA

g

R-gA

O

Vm1

Om1V

−=−=−=

=

OOPON

OPONO

2RRR//RRR==

=

M141.010000

2M)10(A2R

AR2

gR2

r

rr ; 2RrgrrgR

VO

V

2O

m1

OO1

O2O1O2

O1m1O1O2m2ON

=====

===≈

25

Page 26: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

uA354M)141.0)(02.0(

1r1I

I1r

O1DSQ

DSQO1

===

=

λ

λ

3.356)-6)(354E-2(40E

6)-E1000(I2K

gW/L)(W/L)(

I(W/L)K2I2g2

DSQN

2m1

21

DSQ1NDSQNm1

====

== β

708.06)(35.3)-E40(

6)-E354(2(W/L)K

2I2IV

V)/2)(()V-/2)(V(I

1N

DSQDSQ

22TGSDSQ

====∆

∆==

β

ββ

Output voltage swing neglecting bulk to source effect

e)(acceptabl V5.7V ; 084.5V416.2)acceptable(not V5V ; 584.2V416.2

416.2V))708(.21(VV416.2)708.0(21)V2V(VVV2V

DDDD

DDDD

DDDDO

T0PDDOT0N

=≤≤=≤≤

−=+−≤≤=+

∆+−≤≤∆+

Designing for equal ∆V or βR=1

13.94)3.35(5-15E6-40E(W/L)

KK

W/L)(W/L)( 1P

N33 ====

L3L282

3313.94

LW

LW

LW

L3L9.105

333.35

LW

LW

LW

Peff

P

3

3

3

3

Neff

N

2

2

1

1

=

===

=

===

For Lambda L=0.6

U3LL169.2U282(0.6U)L282W

3U2.8U2(0.5U)3(0.6U)2LD3LLD2LL63.6U63.54U)105.9(0.6UL9.105W

NP

P

NeffN

N

=====

≈=+=+=+=≈===

26

Page 27: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

*PSpice file for NMOS Common Gate Amplifier with *PMOS Current Load *Filename="Lab61.cir" *All bulks are connected to supply rail .PARAM Wn=63.6U, Ln=3U .PARAM Wp=169.2U, Lp=3U VIN 1 10 DC 0VOLT AC 1V VDD 3 0 DC 7.5VOLT VSS 4 0 DC 0VOLT M1 5 1 4 4 NMOS1 W={Wn} L={Ln} M2 2 7 5 4 NMOS1 W={Wn} L={Ln} M3 2 8 6 3 PMOS1 W={Wp} L={Lp} M4 6 9 3 3 PMOS1 W={Wp} L={Lp} *Biasing circuit MBN1 10 10 4 4 NMOS1 W={Wn} L={Ln} MBN2 7 7 10 4 NMOS1 W={Wn} L={Ln} IBP 8 4 354UA MBP1 8 8 9 3 PMOS1 W={Wp} L={Lp} MBP2 9 9 3 3 PMOS1 W={Wp} L={Lp} MBP3 7 8 11 3 PMOS1 W={Wp} L={Lp} MBP4 11 9 3 3 PMOS1 W={Wp} L={Lp} .MODEL NMOS1 NMOS VTO=1 KP=40U + GAMMA=1.0 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 .MODEL PMOS1 PMOS VTO=-1 KP=15U + GAMMA=0.6 LAMBDA=0.02 PHI=0.6 + TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10 + U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9 *Analysis .DC VIN -2.5 7.5 0.05 .TF V(2) VIN .AC DEC 100 1HZ 10GHZ .PROBE .END **** SMALL-SIGNAL CHARACTERISTICS V(2)/VIN = -1.268E+04 INPUT RESISTANCE AT VIN = -1.318E+19 OUTPUT RESISTANCE AT V(2) = 1.321E+07 NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 1.7334 ( 2) 4.2146 ( 3) 7.5000 ( 4) 0.0000 ( 5) 1.7334 ( 6) 5.7694 ( 7) 4.2146 ( 8) 3.5826

27

Page 28: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

( 9) 5.7657 ( 10) 1.7334 ( 11) 5.7694

The circuit is simulated with VDD=5V to show that the resulting the cascode does not yield the desired gain and output impedance. Replace the VDD line in the netlist to:

28

Page 29: Cascode Amplifier - Wayne State Universitywebpages.eng.wayne.edu/cadence/ECE6570/doc/lect8_1.pdf · Cascode Amplifier Figure 1(a) shows a cascode amplifier with ideal current source

VDD 3 0 DC 5VOLT **** SMALL-SIGNAL CHARACTERISTICS V(2)/VIN = -1.216E+01 INPUT RESISTANCE AT VIN = 3.651E+18 OUTPUT RESISTANCE AT V(2) = 1.285E+04 NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 1.7233 ( 2) 4.1910 ( 3) 5.0000 ( 4) 0.0000 ( 5) 1.7233 ( 6) 4.3287 ( 7) 4.1910 ( 8) 1.0826 ( 9) 3.2657 ( 10) 1.7233 ( 11) 4.3287

29