catalysis by small peptides an introduction...modular and facile synthesis design & understanding...

44
Catalysis by Small Peptides an Introduction Mario Wiesenfeldt November 4 th , 2020

Upload: others

Post on 04-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Catalysis by Small Peptidesan Introduction

    Mario Wiesenfeldt

    November 4th, 2020

  • Catalysis by Small Peptides

    Enzyme catalysis

    Xyl2P

    PXyl2

    RuNH2

    H2N OMe

    OMe

    iPr

    Catalysis by small peptides

    2–20 amino acids

    nonnatural amino acids – diverse reactivity

    non-covalent interactions with substrates – high selectivity

    modular and facile synthesis

    design &understanding

    diversereactivity

    tailor-made non-covalent interactions

    exceptionalselectivity

    Catalysis by small molecules

    Comparison between enzymes, transition metals, and small peptides: Lewis, C. J. ACS Catal. 2013, 3, 2954. (Selected) nobel lectures on asymmetric catalysis and directed evolution: Noyori, R. Angew. Chem., Int. Ed. 2019, 58, 14420 – Arnold, F. Angew. Chem., Int. Ed. 2002,

    41, 2008.

    Cl

    Cl

    NH

    N

    OO

    HN

    NH2

    O

    CO2H

  • Catalysis by Small Peptides

    Enzyme catalysis

    Xyl2P

    PXyl2

    RuNH2

    H2N OMe

    OMe

    iPr

    Catalysis by small peptides

    2–20 amino acids

    nonnatural amino acids – diverse reactivity

    non-covalent interactions with substrates – high selectivity

    modular and facile synthesis

    design &understanding

    enzyme-likeselectivity

    directed evolution or mergerwith (photo-) catalysis

    nonnaturalreactivity

    Catalysis by small molecules

    Nonnatural reactivity by photocatalysis: Biegasiewicz, K. F.; Cooper, S. J.; Gao, X.; Oblisnky, D.; Kim, J. H.; Garfinkle, S. E.; Joyce, L. A.; Sandoval, B.; Scholes, G. D.; Hyster, T. Science 2019, 364, 1166. Comparison between enzymes, transition metals, and small peptides:

    Lewis, C. J. ACS Catal. 2013, 3, 2954. (Selected) nobel lectures on asymmetric catalysis and directed evolution: Noyori, R. Angew. Chem., Int. Ed. 2019, 58, 14420 – Arnold, F. Angew. Chem., Int. Ed. 2002, 41, 2008.

    Cl

    Cl

    NH

    N

    OO

    HN

    NH2

    O

    CO2H

  • Small Peptides as Organocatalysts

    Introduction

    Catalytically relevant properties of small peptides

    Small peptides as organocatalyst

    Small peptides in Lewis acid and transition metal catalysis

    Small peptides in photoredox catalysis

    Summary

    This group meeting does not cover the available literature comprehensively. Instead, selected keystudies are discussed in order to explain the underlying concepts.

  • Small Peptides as Organocatalysts

    Introduction

    Catalytically relevant properties of small peptides

    Small peptides as organocatalyst

    Small peptides in Lewis acid and transition metal catalysis

    Small peptides in photoredox catalysis

    Summary

    This group meeting does not cover the available literature comprehensively. Instead, selected keystudies are discussed in order to explain the underlying concepts.

  • backbone

    Structure of a Peptide Catalyst

    Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int. Ed. 2008, 47, 1871.

    NH

    N

    OO

    HN

    NH2

    O

    CO2Hcatalytically activemoiety

    substrate bindingmoiety

  • Structure of a Peptide Catalyst

    Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int. Ed. 2008, 47, 1871.

    N

    N

    OO

    HN

    NH2

    O

    catalytically activemoiety

    substrate bindingmoiety

    backbone

    O

    O

    HON

    OR

    R

    complex three-dimensional geometry determined by primary and secondary protein structure

    conformational flexibility due to high number of rotatable bonds

    backbone serves as a tailor-made spacer between the catalytically active moiety and thesubstrate binding moiety

  • Design of the Secondary Structure

    Review: Metrano, A. J.; Chinn, A. J.; Shugrue, C. R.; Stone, E. A.; Kim, B.; Miller, S. Chem. Rev. 2020, asap.

    OOO

    H H

    α-helix

    N

    O

    NHBoc

    HO2C

    O

    HNO

    MeOBn

    HN

    HNO

    t-BuO MeO2C

    O

    NHTrt

    Rigid unnatural amino acids

    NH

    CO2Me

    Reiser

    O

    epoxidation catalyst (Miller)

    Natural secondary structure motifs

    Juliá-Collona epoxidationtype II β-turn

    MeMe

    HN

    O

    Burgess, Ortuno

    NHO

    Calmes, Amblard

    NH

    O

    Schreiner

    Peptide design is often centered around such structures with reduced conformational flexibility.

  • Design of the Secondary Structure

    Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301. Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 4504.

    N

    O

    NHBoc

    HO2C

    O

    HNO

    MeOBn

    HN

    HNO

    t-BuO MeO2C

    O

    NHTrt

    NMR &calculations

    ensemble of closely relatedground-state conformations

    type II β-turn epoxidation catalyst (Miller)

    NNH

    O

    O

    NHTrtHN

    OPh

    N

    O

    ONH

    CO2MeONHTrt

    O

    NHBoc

    HO2C

    epoxidation catalyst (Miller) heterogeneous ensemble

    NMR &calculations

    highly regioselective in theepoxidation of farnesol

    highly regio-and enantioselectivein the epoxidation of farnesol

  • Design of the Secondary Structure

    Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301. Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 4504.

    N

    O

    NHBoc

    HO2C

    O

    HNO

    MeOBn

    HN

    HNO

    t-BuO MeO2C

    O

    NHTrt

    NMR &calculations

    ensemble of closely relatedground-state conformations

    type II β-turn epoxidation catalyst (Miller)

    NNH

    O

    O

    NHTrtHN

    OPh

    N

    O

    ONH

    CO2MeONHTrt

    O

    NHBoc

    HO2C

    epoxidation catalyst (Miller) heterogeneous ensemble

    NMR &calculations

    highly regioselective in theepoxidation of farnesol

    highly regio-and enantioselectivein the epoxidation of farnesol

    Even highly flexible, conformationally heterogeneous peptides may act as highly selective catalysts.

  • Facile synthesis of large peptide libraries by split and pool synthesis

    split poolcouple split

    couple

    pool

    Strategies for Library Screening

    bead

    amino acid peptide library

    biased libraries by control the introduction of specific amino acids in each cycle

    exponential increase of complexity with the number of cycles

  • Visualization of hits by co-immobilized fluorescent tags

    Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496.

    Strategies for Library Screening

    HN

    O

    NHN

    O

    NHR

    1

    OH

    R2

    Ac2O

    R1

    OAc

    R2 fluorescentnot fluorescent

    peptide peptide

    hit validationand sequencing

    furtheroptimization

    librarysynthesis

    100,000 peptidesscreening of ca.1000 peptides

  • Lichtor, P.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321.Krattiger, P.; McCarthy, C.; Pfaltz, A.; Wennemers, H. Angew. Chem., Int. Ed. 2003, 42, 1722.

    Strategies for Library Screening

    Co-immobilization of substrates

    OH O

    O

    HN

    dye

    Me

    OHN

    Odye

    H

    O

    ScreeningAnalysis

    by GC/HPLC

    Sorting of individual beads into individual vials

    Related work has been reported by Jacobsen, Bradley, Barbas, Davies, Berkessel, Snapper, Hoveyda, and others.

  • Small Peptides as Organocatalysts

    Introduction

    Catalytically relevant properties of small peptides

    Small peptides as organocatalyst

    Small peptides in Lewis acid and transition metal catalysis

    Small peptides in photoredox catalysis

    Summary

    This group meeting does not cover the available literature comprehensively. Instead, selected keystudies are discussed in order to explain the underlying concepts.

  • Krattinger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101.

    Wennemers’ Tripeptide Catalyst

    OH O

    O

    HN

    dye

    Me

    OHN

    Odye

    H

    O

    NH

    N

    OO

    HN

    NH2

    O

    CO2H

    H

    O 10 mol%

    acetone, −20 °CO2N

    OH

    O2N

    Me

    O

    98%, 90% ee

    Hit identification by library screening

    Optimization in solution

  • Wiesner, M.; Revell, J. D.; Wennemers, H. Angew. Chem., Int. Ed. 2008, 47, 1871.

    Wennemers’ Tripeptide Catalyst

    3.7 Å

    7.3 Å

    lowest energy confi-guration of chiral peptide

    lowest energy con-figuration of proline

    O H

    NO

    O

    RR

    proline-catalyzedaldol reaction

    N

    N

    OO

    NH

    NH2

    O

    O

    O

    HR

    R

    X Y

    proposed conjugateaddition reaction

    vs

    H

    O

    R1 R2NO2

    1–5 mol% chiral peptide

    CHCl3/iPrOH, 25 °CH

    O

    R1

    R2

    NO2

    H-Pro-Pro-Asp-NH2

    chiral peptide syn/anti

    H-D-Pro-Pro-Asp-NH2

    96% 10:1 −85%

    93% 25:1 95%

    eeconversion

    16 examples with >90% ee

    reversal of selectivity byswitching the enantiomer

    of a single amino acid

  • ONH NHO

    HO2C

    NH2

    O

    N

    Siebler, C.; Maryasin, B.; Kuemin, M.; Erdmann, R. S.; Rigling, C.; Grünenfelder, C.; Ochsenfeld, C.; Wennemers, H. Chem. Sci. 2015, 6, 6725.Bächle, F.; Duschmalé, J.; Ebner, C.; Pfaltz, A.; Wennemers, H. Angew. Chem., Int. Ed. 2013, 52, 12619.

    Wiesner, M.; Neuburger, M.; Wennemers, H. Chem. Eur. J. 2009, 15, 10103.

    Wennemers’ Tripeptide Catalyst

    N

    R1

    R2N

    O

    OO

    OH

    N

    R1

    OHO

    R2NO2

    H2O

    H

    O

    R1

    R2

    NO2

    rate- and enantioselectivitydetermining step

    D-Pro-Pro moiety is critical

    free carboxylic acid required

    conformational flexibility in thebackbone tolerated

    Ktrans/cis ratio influences selectivity

    N

    O

    O

    n π* interaction

    NO

    O

    Ktrans/cis

    cislower dipole moment

    trans

    structure activity relationship

    R1 H

    O

  • Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

    Wennemers’ Tripeptide Catalyst

    ONH

    HN

    O

    CO2H

    NH2

    O

    N

    HN

    O

    CO2H

    NH2

    O

    N

    ONH

    O

    CO2H

    NH2

    O

    N

    ONH

    10:1 trans/cis 46:1 trans/cis 71:1 trans/cis

    H

    OEt Ph

    NO21 mol% chiral peptide

    1 mol% NMM, 20 °C, 2 hH

    O

    Et

    PhNO2

    maj

    or e

    nant

    iom

    er [%

    ]

    maj

    or d

    iast

    ereo

    mer

    [%]

    trans confomer [%] trans confomer [%]

    9:1 CHCl3/MeOHMeOH

    DioxaneTHF

    MeCNDMF

  • Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

    Wennemers’ Tripeptide Catalyst

    ONH

    HN

    O

    CO2H

    NH2

    O

    N

    HN

    O

    CO2H

    NH2

    O

    N

    ONH

    O

    CO2H

    NH2

    O

    N

    ONH

    10:1 trans/cis 46:1 trans/cis 71:1 trans/cis

    H

    OEt Ph

    NO21 mol% chiral peptide

    1 mol% NMM, 20 °C, 2 hH

    O

    Et

    PhNO2

    maj

    or e

    nant

    iom

    er [%

    ]

    maj

    or d

    iast

    ereo

    mer

    [%]

    trans confomer [%] trans confomer [%]

    9:1 CHCl3/MeOHMeOH

    DioxaneTHF

    MeCNDMF

    A higher proportion of the trans confomer leads to a higher enantio- and diastereoselectivity.

  • Schnitzer, T.; Wennemers, H. J. Am. Chem. Soc. 2017, 139, 15356.

    Wennemers’ Tripeptide Catalyst

    ONH

    HN

    O

    CO2H

    NH2

    O

    N

    HN

    O

    CO2H

    NH2

    O

    N

    ONH

    O

    CO2H

    NH2

    O

    N

    ONH

    10:1 trans/cis 46:1 trans/cis 71:1 trans/cis

    H

    OEt Ph

    NO2

    0.05 mol% NMM, 9:1CHCl3/iPrOH, 20 °C, 3 d

    H

    O

    Et

    PhNO2

    Lowest catalyst loading of a secondary amine organocatalyst reported to date.

    95%, 60.1 d.r., 99% ee

    O

    CO2H

    NH2

    O

    N

    ONH 0.05 mol%

  • Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem. Soc. 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem.

    Soc. 2006, 128, 16454.

    Remote Desymmetrization by Chiral Peptides

    tBu

    OAcHO

    tBu

    OHHO

    tBu

    OAcAcO

    key intermediateat Merck (Rahway)

    functional groups remotefrom stereocenter

    5.8 Å

    9.8 Å

    Can this molecule be accessedby a desymmetrization?

    enzymatichydrolysis

    55% ee at lowconversion

    peptide-catalyzedacylation

  • Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem. Soc. 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem.

    Soc. 2006, 128, 16454.

    Remote Desymmetrization by Chiral Peptides

    tBu

    OHHO

    Design of the initial library

    BocHNHN

    ONH

    OHN

    O

    NN

    Me

    NH

    OHN

    O

    CO2Me

    active moietypreviously identified

    model: hexapeptide

    i i+1 i+2 i+3 i+4 i+5aromatic aliphatic aromatic

  • Lewis, C. A.; Gustafson, J. L.; Chiu, A.; Balsells, J.; Pollard, D.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem. Soc. 2008, 130, 16358. Lewis, C. A.; Chiu, A.; Kubryk, M.; Balsells, J.; Pollard, D.; Esser, C. K.; Murry, J.; Reamer, R. A.; Hansen, K. B.; Miller, S. J., T. J. Am. Chem.

    Soc. 2006, 128, 16454.

    Case Study 2: Remote Desymmetrization by Chiral peptides

    Optimization workflow

    42 peptides& reactionconditions

    27%, 40% ee

    1st generation

    24 peptides,i+2 & i+3

    varied

    25%, 49% ee

    2nd generation

    24 peptides,i+1 varied – deleterious

    25%, 49% ee

    3rd generation

    72%, 79% ee

    4th generation

    i+3–5 &lower

    temperature

    78%, 80% ee

    5th generation

    i+4,5 varied –

    no influence

    truncation totetrapeptide

    BocHNHN

    ONH

    OHN

    O

    NN

    Me

    NH

    O

    O

    NHTrt

    MeMe

    OtBuvariation ofC-terminus

    Ph

    NHTs

    Ph

    tBu

    OAcHO

    80%, 95% ee

  • Müller, C. E.; Zell, D.; Hrdina, R.; Wende, R. C.; Wanka, L. Schuler, S. M. M.; Schreiner, P. R. J. Org. Chem. 2013, 78, 8465.Müller, C. E.; Wanka, L.; Jewell, K.; Schreiner, P. R. Angew. Chem., Int. Ed. 2008, 47, 6180.

    Schreiner’s Lipophilic Oligopeptide Catalyst

    HN

    ONH

    O

    NH

    OMeO2C

    Ph

    HN OtBu

    OMeN

    N

    OH

    OH

    trans, racemic

    OH

    OH

    90% ee

    chiralpeptide OH

    OActoluene

    rigid flexibleflexible

    no secondary structure - centraladamantyl group separates both ends

    adamantyl group holds the 3 stereocentersthat determine stereochemistry in place

    H-bonding to second hydroxyl group

    Dispersion interaction between hydrop-hobic substituents and substrate

    Mechanistic information

    second OH required – orthogonal to Miller’s previous system

  • Zhao, Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006, 443, 67.Müller, C. E.; Hrdina, R.; Wende, R. C.; Schreiner, P. R. Chem. Eur. J. 2011, 17, 6309.

    Desymmetrization of cis-Diols

    HN

    ONH

    O

    NH

    O

    O

    HN OtBu

    OMeN

    N

    OH

    OH

    cis, meso

    OAc

    OH

    acyl group migration

    acylation OAc

    O

    Ph

    HN

    N

    Me Me

    MeMe

    O

    two catalyticallyactive species ona single peptide

    oxidation

    70%, 76% ee

    Silyl protection

    OH

    OHn

    OH

    n

    OH

    N

    MeN N

    H

    tBuHN

    O

    Me

    tBu20–30 mol%

    2 equiv. TBSCl, 1.3 equiv.DIPEA, 0.5–1 M in THF

    OTBS

    OHn

    OTBS

    n

    OH10 examples, 87–96% ee

  • Diener, M. E.; Metrano, A. J.; Kusano, S.; Miller, S. J. J. Am. Chem. Soc. 2015, 137, 12369. Barrett, K. T.; Miller, S. J. J. Am. Chem. Soc. 2013, 135, 2963. Garand, E.; Kamrath, M. Z.; Jordan, P. A.; Wolk, A. B.; Leavitt, C. M.; McCoy, A. B.; Miller, S. J.; Johnson, M. A. Science 2012, 335, 694.

    Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.

    Atroposelective Bromination

    CO2H

    OH

    CO2H

    OH

    Br Br

    Br10 mol%

    NO

    BocHNNMe2

    O

    HNiPr

    NMe2O

    3 equiv. PhthNBr, 0.01 M in 97:3CHCl3/acetone, 25 °C, 18 h

    ΔG‡(rac) = 7 kcal

    N

    BocHNN H

    Me Me

    O NH

    H iPr

    O

    NMe2

    Br

    H

    O

    OH

    O

    O

    ΔG‡(rac) = >30 kcal10 examples, 70–94% ee

    N

    OR

    RBr

    Br

    Br

    HO

    11 examples, up to 92% ee

    N

    N

    O

    Me

    BrBr

    BrOMe

    14 examples, up to 98% ee

    reoptimized peptide backbones used

    Related projects

  • Crawford, J. M.; Stone, E. A.; Mertrano, A. J.; Miller, S. J.; Sigman, M. S. J. Am. Chem. Soc. 2018, 140, 868. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurtley, A. E.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 491. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.;

    Miller, S. J. Chem. Commun. 2016, 52, 4816.

    Atroposelective Bromination

    N

    O

    HN

    NO

    NMe2O

    iPrO

    NHBoc

    Me2N

    3 different confomers observedby x-ray crystallography

    35 distinct peptide –53 crystal structures

    N

    O

    HNR3

    R2

    HNO

    R3

    XO

    O

    NHBoc

    R1 τH

    wider τ-angle more flexible & more selective

    type II’ β-turns type I’ β-turns

  • Crawford, J. M.; Stone, E. A.; Mertrano, A. J.; Miller, S. J.; Sigman, M. S. J. Am. Chem. Soc. 2018, 140, 868. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.; Hurtley, A. E.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 491. Mertrano, A. J.; Abascal, N. C.; Mercado, B. Q.; Paulson, E. K.;

    Miller, S. J. Chem. Commun. 2016, 52, 4816.

    Atroposelective Bromination

    N

    O

    HN

    NO

    NMe2O

    iPrO

    NHBoc

    Me2N

    3 different confomers observedby x-ray crystallography

    35 distinct peptide –53 crystal structures

    N

    O

    HNR3

    R2

    HNO

    R3

    XO

    O

    NHBoc

    R1 τH

    wider τ-angle more flexible & more selective

    type II’ β-turns type I’ β-turns

    Multiple confomers contribute to a transition state ensemble.

  • Yan, X. C.; Metrano, A. J.; Robertson, M. J.; Abascal, N. C.; Tirado-Rives, J.; Miller, S. J.; Jorgensen, W. L. ACS Catal. 2018, 8, 9968.

    Atroposelective Bromination

    5% vs 75%

    NMe

    Me

    N

    ON

    ON

    HNMe2

    O

    HONMe

    Me

    H NH

    O

    OtBu

    H

    iPr

    type I’ β-turn

    type II’ β-turn

    only peptide –ground state

    with

    N

    N

    O

    OH

    Me

    with

    N

    N

    O

    OH

    CF3

    94% ee 26% ee

    75% vs 19% 51% vs 34%

    opposite enantiomer opposite enantiomer

    27% vs 43% 41% vs 36%

  • Yan, X. C.; Metrano, A. J.; Robertson, M. J.; Abascal, N. C.; Tirado-Rives, J.; Miller, S. J.; Jorgensen, W. L. ACS Catal. 2018, 8, 9968.

    Atroposelective Bromination

    5% vs 75%

    NMe

    Me

    N

    ON

    ON

    HNMe2

    O

    HONMe

    Me

    H NH

    O

    OtBu

    H

    iPr

    type I’ β-turn

    type II’ β-turn

    only peptide –ground state

    with

    N

    N

    O

    OH

    Me

    with

    N

    N

    O

    OH

    CF3

    94% ee 26% ee

    75% vs 19% 51% vs 34%

    opposite enantiomer opposite enantiomer

    27% vs 43% 41% vs 36%

    Substrate-association enforces a structural change of the peptide – induced fit.

  • Abascal, N. C.; Lichtor, P. A.; Giuliano, M. W.; Miller, S. J. Chem. Sci. 2014, 5, 4504. Lichtor, P. A.; Miller, S. J. J. Am. Chem. Soc. 2014, 136, 5301. Lichtor, P. A.; Miller, S. J. Nat. Chem. 2012, 4, 990.

    Site-Selective Polyene Oxidation

    One-bead-one-compound screening

    Me

    Me Me

    OH

    Me

    farnesol

    2,36,710,11

    N

    O

    NH

    HN

    O

    O

    NHO

    CO2MeTrtHNO

    Ph

    O

    NHTrt

    OBocHN

    CH2O2H

    Me

    Me Me

    OH

    Me

    >10011O

    Me

    Me Me

    OH

    Me

    18.61.1

    OptimizationOptimization

    N

    O

    NHBoc

    HO2C

    O NH

    O

    Me

    OBn

    NH

    NH

    O

    Ot-Bu

    CO2Me

    ONHTrt

    O

  • Small Peptides as Organocatalysts

    Introduction

    Catalytically relevant properties of small peptides

    Small peptides as organocatalyst

    Small peptides in Lewis acid and transition metal catalysis

    Small peptides in photoredox catalysis

    Summary

    This group meeting does not cover the available literature comprehensively. Instead, selected keystudies are discussed in order to explain the underlying concepts.

  • Key references: Deng, H.; Isler, M. P.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2002, 41, 1009. Degrado, S. J.; Mizutani, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 755. Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984. Luchaco-Cullis,

    C. A.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem., Int, Ed. 2001, 40, 1456. Krueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.; Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 4284.

    Pioneering Work on Peptides in Lewis Acid and Transition Metal Catalysis

    N

    tBuHN

    O

    Me

    O

    Snapper & Hoveyda: cyanation, alkylation

    N

    tBuHN

    O

    Me

    N

    N

    tBuHN

    O

    Me

    Hoveyda: copper-catalyzedallylic alkylation

    LA

    LA = Ti, Zr, Al

    Hoveyda: copper-catalyzedconjugate additions

    PPh2

    Role of the peptide

    creation of a chiralenvironment around

    the metal catalyst

  • Samasivan, R.; Ball, Z. T. Angew. Chem., Int. Ed. 2012, 51, 8568.Samasivan, R.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 9289.

    Helical Peptide-Ligated Rhodium-“Paddlewheel” Complexes

    Rh

    R CO2Me

    N2PhSiMe2SiH

    R CO2Me

    SiPhMe2

    Enantioselective insertion into Si–H bonds

    7 examples with>90% ee

    Ph CO2Me

    N2Rh CO2MePh

    Enantioselective cyclopropanation

    access to both enantiomersin >90% ee (7 examples)

    Role of the peptide

    creation of a chiralenvironment around

    the metal catalyst

    OO

    RhOO

    Rh

    COR

    AcHN ROC

    NHAc

    O

    O O

    O

  • OO

    Popp, B. V.; Ball, Z. T. J. Am. Chem. Soc. 2010, 132, 6660.

    Structure-Selective Protein Functionalization

    RhOO

    Rh

    COR

    AcHN ROC

    NHAc

    O

    O O

    O

    RO2C Ph

    FG

    FGOO

    RhOO

    Rh

    COR

    AcHN ROC

    NHAc

    O

    O O

    O

    helical peptide

    RO2C

    N2

    Ph

    E3/K3 coiled coil assembly places side chainin close proximity of the rhodium carbenoid

    close proximity

    NH

    > 1000 rate enhancementcompared to Rh2(OAc)4

    Although tryptophan is most reactive, selectivefunctionalization of E3-tyrosine or phenylalaninesoccurs even in presence of random tryptophane-

    containing peptides.

    K3

    E3

    Role of the peptide

    substrate recognitionby non-covalent

    interactions

  • Kim, B.; Chinn, A. J.; Fandrick, D. R.; Senayake, C. H.; Singer, R. A.; Miller, S. J. J. Am. Chem. Soc. 2016, 138, 7939.

    Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

    tBu

    Br BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    BrNH

    NH

    CF3

    O

    CF3

    O

    CO2EtEtO2C

    74%, 84% ee

    NNH

    OLiO2C

    MeMe

    OHN

    CO2

    Me2NNMe2

    identification of the substrate–peptide interaction

    meso

    tBu

    BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    Br BrNH

    CF3

    O

    tBu

    BrNH

    CF3

    O

    tBu

    BrNH

    CF3

    O Me

    tBu

    BrNH

    CF3

    O

    Cu Cs2CO3, DMF/toluene

    A high krel in the kinetic resolution of unsymmetrical substrates

    indicates a substrate–peptide interaction

    krel = 5.3 krel = 11.3

    krel = 10.3 krel = 1.6 krel = 1.2

  • Kim, B.; Chinn, A. J.; Fandrick, D. R.; Senayake, C. H.; Singer, R. A.; Miller, S. J. J. Am. Chem. Soc. 2016, 138, 7939.

    Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

    tBu

    Br BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    BrNH

    NH

    CF3

    O

    CF3

    O

    CO2EtEtO2C

    74%, 84% ee

    NNH

    OLiO2C

    MeMe

    OHN

    CO2

    Me2NNMe2

    identification of the substrate–peptide interaction

    meso

    tBu

    BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    Br BrNH

    CF3

    O

    tBu

    BrNH

    CF3

    O

    tBu

    BrNH

    CF3

    O Me

    tBu

    BrNH

    CF3

    O

    Cu Cs2CO3, DMF/toluene

    A high krel in the kinetic resolution of unsymmetrical substrates

    indicates a substrate–peptide interaction

    krel = 5.3 krel = 11.3

    krel = 10.3 krel = 1.6 krel = 1.2

  • Kim, B.; Chinn, A. J.; Fandrick, D. R.; Senayake, C. H.; Singer, R. A.; Miller, S. J. J. Am. Chem. Soc. 2016, 138, 7939.

    Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

    tBu

    Br BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    BrNH

    NH

    CF3

    O

    CF3

    O

    CO2EtEtO2C

    74%, 84% ee

    NNH

    OLiO2C

    MeMe

    OHN

    CO2

    Me2NNMe2

    identification of the substrate–peptide interaction

    meso

    Cu Cs2CO3, DMF/toluene

    tBu

    N Br N

    Br

    CF3

    OCs

    N NH

    OMe

    Me

    ON

    OCuO

    NMe2

    Me2N OO

    CsO CF3

    Proposed model

    cation-π-interaction between substrate and ligated cesium

    Role of the peptide

    substrate recognitionby non-covalent

    interaction

  • Kwon, Y.; Chinn, A. J.; Kim, B.; Miller, S. J. J. Am. Chem. Soc. 2018, 57, 6251.Chinn, A. J.; Kim, B.; Kwon, Y.; Miller, S. J. J. Am. Chem. Soc. 2017, 139, 18107.

    Copper-Peptide-Mediated Cross-Coupling of Diarylmethanes

    tBu

    Br BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    O BrNH

    NH

    CF3

    O

    CF3

    O

    14 alcohols, 84–99% ee

    Cu K3PO4, MeCN

    C–O coupling

    C–N coupling and catalyst-controlled cyclodehydration

    tBu

    Br BrNH

    NH

    CF3

    O

    CF3

    O

    tBu

    BrNH

    CF3

    O

    18 examples, 84–99% eeall 4 diastereomers are accessible

    Cu K3PO4, MeCN

    chiral peptide

    1) chiral peptide2) chiral phosphoric acid

    NN

    CF3

  • Small Peptides as Organocatalysts

    Introduction

    Catalytically relevant properties of small peptides

    Small peptides as organocatalyst

    Small peptides in Lewis acid and transition metal catalysis

    Small peptides in photoredox catalysis

    Summary

    This group meeting does not cover the available literature comprehensively. Instead, selected keystudies are discussed in order to explain the underlying concepts.

  • Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.

    Enantioselective [2+2] Photocycloaddition

    R1

    O

    R2

    O

    R3 EuIr

    OH

    N

    iPrN

    OO NHnBu

    R2

    R1

    O

    R2

    O

    OH

    NH

    iPrN

    OO NHnBu

    R2

    R1

    O

    R2

    O

    both diastereomers accessiblein high yields, d.r., and ee values

    R1

    O

    R2

    L*Eu Role of the peptide

    creation of a chiral environmentaround the metal catalyst

    via

  • two chiralco-catalysts

    Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.

    Light-Driven Deracemization

    IrNNR

    2

    O

    R1R3

    NNR2

    O

    R1R3

    racemic enantioenriched

    ET

    PT HAT

    PCET

    Photoredox strategy for an out-of-equilibrium deracemization

    ΔG > 0

    N

    O

    HN

    NO

    Ph

    NMe2O

    O

    BocN

    HS

    H

    H

    chiral peptide

    OP

    O

    OO

    NBu4

    chiral phosphate

    1-pyrene

    1-pyrene

    Role of the peptide

    chiral hydrogenatom donor

  • Shin, N. Y.; Ryss, J. M.; Zhang, X.; Miller, S. J.; Knowles, R. R. Science 2019, 366, 364.

    Light-Driven Deracemization

    NNR2 R3

    O

    R1

    NNR2 R3

    O

    R1

    NNR2 R3

    O

    R1

    NNR2 R3

    O

    R1

    IrII

    IrIII+

    IrIII+*NNR

    2 R3

    O

    R1

    fastchiral

    phosphate

    slowchiral

    phosphate

    achiral

    NNR2 R3

    O

    R1

    NNR2 R3

    O

    R1

    electron transfer enantioselectiveproton transfer(R) is depleted

    enantioselectivehydrogen atom transfer

    (S) is enriched

    chiralpeptide

    (R)

    (R)

    (S)

    (S)

  • Summary

    A diverse set of reactivity can be achieved using organocatalytic, organometallic, or merged activation modes.

    Peptides may control selectivity in catalytic transformations using non-covalent interactions.

    Control of the secondary structure is vital in order to place reactive groups in close proximity.

    A variety of screening technologies may assist in the discovery process.

    Thank you for your attention.Questions?