cavitation hydrocarbon cracking

25
1 Investigation of CavitationInduced Hydrocarbon Cracking Max FomitchevZamilov 1,2 and Sergei Godin 1 1 Quantum Potential Corporation, State College, PA 16803 2 Pennsylvania State University, University Park, PA 16802 Abstract Ultrasonic treatment of hydrocarbon liquids such as crude oil, fuel oil, liquefied asphalt and bitumen is known to reduce their viscosity and to increase the yield of light fraction extractable via subsequent refining or catalytic cracking. This process is generally referred to as upgradation. The upgradation due to ultrasonic treatment becomes economically viable and commercially attractive if one is able to boost the efficiency of the process by pumping higher ultrasonic energy densities into the processed liquid and to prevent recombination of the radicalized molecules. This can be achieved by using ultrasonic / hydrodynamic activators of rotary type, which are known to generate energy densities far in excess of 1MW/m 2 . Although the technique of cavitationinduced oil cracking has been known in the Soviet Union since the early sixties the technology is virtually unknown in the west, and there are only a few small companies in Russia and Ukraine that develop, manufacture, and export the ultrasonic cavitation equipment mostly to customers in China, India, and Brazil. The U.S. petroleum industry and the American economy too stand to benefit from industrial applications of the cavitationbased hydrocarbon processing as it results in substantial energy savings, reduced fuel costs, and corresponds to a step towards greater energy independence (which is a matter of national security and national interests of the United States). Because of the potential importance of the cavitationbased hydrocarbon processing technology we propose to study the operation of an ultrasonic activator pump by Kladov/Selivanov, which is a representative member of the family of devices used for crude oil and fuel oil upgradation. The ultrasonic activator of Kladov/Selivanov is a perfect experimentation tool due to availability of the experimental data, the existence of the detailed design plans, relative ease of construction, and high density of ultrasonic energy that it generates (110 MW/m 2 ). The objectives of the investigation are to study the cavitationinduced hydrocarbon cracking, determine the range of potential applications in petroleum processing and bio fuel production, and verify their economic viability. The longterm goal is to achieve better understanding of the underlying sonochemical processes and to design new cavitationbased hydrocarbon processing equipment for U.S. petroleum industry.

Upload: victor-ramos

Post on 08-Mar-2015

170 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Cavitation Hydrocarbon Cracking

  1  

Investigation  of  Cavitation-­‐Induced  Hydrocarbon  Cracking  Max  Fomitchev-­‐Zamilov1,2  and  Sergei  Godin1  

1  Quantum  Potential  Corporation,  State  College,  PA  16803  2  Pennsylvania  State  University,  University  Park,  PA  16802  

Abstract  

Ultrasonic   treatment   of   hydrocarbon   liquids   such   as   crude   oil,   fuel   oil,   liquefied  asphalt  and  bitumen  is  known  to  reduce  their  viscosity  and  to  increase  the  yield  of  light  fraction   extractable   via   subsequent   refining   or   catalytic   cracking.   This   process   is  generally   referred   to   as   upgradation.   The   upgradation   due   to   ultrasonic   treatment  becomes   economically   viable   and   commercially   attractive   if   one   is   able   to   boost   the  efficiency   of   the   process   by   pumping   higher   ultrasonic   energy   densities   into   the  processed  liquid  and  to  prevent  recombination  of  the  radicalized  molecules.  This  can  be  achieved  by  using  ultrasonic  /  hydrodynamic  activators  of  rotary  type,  which  are  known  to  generate  energy  densities  far  in  excess  of  1MW/m2.  

Although   the   technique   of   cavitation-­‐induced   oil   cracking   has   been   known   in   the  Soviet  Union  since  the  early  sixties  the  technology  is  virtually  unknown  in  the  west,  and  there  are  only  a  few  small  companies  in  Russia  and  Ukraine  that  develop,  manufacture,  and  export  the  ultrasonic  cavitation  equipment  mostly  to  customers  in  China,  India,  and  Brazil.   The   U.S.   petroleum   industry   and   the   American   economy   too   stand   to   benefit  from  industrial  applications  of  the  cavitation-­‐based  hydrocarbon  processing  as  it  results  in   substantial   energy   savings,   reduced   fuel   costs,   and   corresponds   to   a   step   towards  greater   energy   independence   (which   is   a   matter   of   national   security   and   national  interests  of  the  United  States).  

Because  of  the  potential  importance  of  the  cavitation-­‐based  hydrocarbon  processing  technology   we   propose   to   study   the   operation   of   an   ultrasonic   activator   pump   by  Kladov/Selivanov,  which   is   a   representative  member  of   the   family  of  devices  used   for  crude   oil   and   fuel   oil   upgradation.   The   ultrasonic   activator   of   Kladov/Selivanov   is   a  perfect  experimentation  tool  due  to  availability  of  the  experimental  data,  the  existence  of  the  detailed  design  plans,  relative  ease  of  construction,  and  high  density  of  ultrasonic  energy  that  it  generates  (1-­‐10  MW/m2).  

The  objectives  of  the  investigation  are  to  study  the  cavitation-­‐induced  hydrocarbon  cracking,  determine  the  range  of  potential  applications  in  petroleum  processing  and  bio-­‐fuel   production,   and   verify   their   economic   viability.   The   long-­‐term   goal   is   to   achieve  better   understanding   of   the   underlying   sonochemical   processes   and   to   design   new  cavitation-­‐based  hydrocarbon  processing  equipment  for  U.S.  petroleum  industry.  

 

Page 2: Cavitation Hydrocarbon Cracking

  2  

Investigation  of  Cavitation-­‐Induced  Hydrocarbon  Cracking  Max  Fomitchev-­‐Zamilov1,2  and  Sergei  Godin1  

1  Quantum  Potential  Corporation,  State  College,  PA  16803  2  Pennsylvania  State  University,  University  Park,  PA  16802  

Project  Narrative  

Background  –  Crude  Oil  Refining  

Crude  oil  is  a  natural  mixture  of  a  wide  variety  of  light  and  heavy  hydrocarbons  from  paraffins  and  naphthenes   to  aromatics  and  asphaltics,  which  must  be   separated   (e.  g.  distilled)  from  the  crude.  

Distillation   oil   refining   to   this   day   remains   to   be   the   main   step   in   petroleum  processing  and  the  core  process  of  a  refinery  operation.  Distillation  amounts  to  heating  of   crude  with   subsequent   fraction   condensation   in   a   distillation   tower.   Light   fractions  from   gasoline   to   diesel   are   given   higher   priority   due   to   their   immense   economical  importance  since  they  form  the  basis  of  virtually  all  motor  fuels.  Unfortunately,  straight-­‐run  distillation  yields  only  25-­‐35%  gasoline  while  transportation  demands  alone  require  at  least  50%  yield  of  gasoline  from  crude  [1].  

To  recover  additional  gasoline  the  distilled  heavier   fractions  (heavy  oil   to  bitumen)  are  subjected  to  catalytic  cracking,  which  amounts  to  heating  of  heavy  hydrocarbons  to  450-­‐650°C  in  the  presence  of  catalyst  powder  (such  as  alumina)  with  subsequent  vapor  condensation   in   a   distillation   tower.   The   catalytic   cracking   (or   its   variations   such   as  hydrocracking   or   steam   cracking)   allows   boosting   gasoline   yield   to   50%   with   the  remaining  fractions  corresponding  to  kerosene  (~5%),  light  &  heavy  fuel  oil  (~34%),  and  ~10%  of  the  residuals  such  as  bitumen,  asphalt  and  coke  [2].  In  most  cases  the  catalytic  cracking   allows   recovering   all   but   5-­‐10%   of   useful   hydrocarbons   locked   in   crude   oil.  However,   not   all   refineries   are   equipped   with   the   state-­‐of-­‐the   art   catalytic   cracking  systems  as  companies  often  lack  capital  or  incentives  to  upgrade  to  the  latest  process.  For   instance,   in   Russia   only   43%   of   refineries   are   outfitted   with   the   latest   catalytic  cracking  technology  versus  58%  of  the  U.S.  and  76%  of  Japanese  refineries  [3].  Clearly,  large   capital   expenditures   required   for   catalytic   cracking   equipment   as   well   as  substantial   energy   requirements   for   powering   of   the   catalytic   cracking   process  negatively  impact  the  economics  of  the  light  fraction  recovery.  Moreover  the  worldwide  depletion  of  light  sweet  crude  reserves  forces  petroleum  companies  to  extract  more  and  more  of  heavier  crude,  which  in  turn  either  yields  less  light  fractions  during  the  refining  process   or   requires   larger   energy   input   or   more   expensive   refining   engineering   to  recover   the   same   amount   of   light   fractions   as   from   the   light   crude.   Clearly,   other  economically   viable   alternatives   for   boosting   the   light   fraction   yield   from   crude   and  maximizing   the   efficiency   of   the   refining   residue   processing   (such   as   heavy   fuel   oil,  bitumen   and   asphalt)  must   be   explored.  Ultrasonic   cavitation-­‐induced   cracking   is   one  such  alternative.  

 

Page 3: Cavitation Hydrocarbon Cracking

  3  

Cavitation  and  Sonochemistry  

Cavitation-­‐induced   chemical   processing   was   originally   developed   in   Russia   in   the  early   1960s   [4].   Cavitation   is   a   process   of   bubble   formation   in   liquids   subjected   to  variable   pressure.   Cavitation   occurs  when   pressure   of   the   liquid   falls   below   its   vapor  pressure   and   is   characterized   by   a   high   temperature   (104K   typical,   105K   and   higher  possible)   and   high   pressure   (10-­‐100MPa)   occurring   with   in   the   cavitation-­‐induced  collapsing  bubbles  [5,  6].  

Cavitation   forms   a   basis   of   sonoluminescence,   the   process   of   cavitation-­‐induced  bubbles  giving  off  visible  light,  and  sonochemistry,  the  discipline  for  studying  ultrasound  /  cavitation  induced  chemical  reactions  [7].  

The  physics  and  chemistry  of  ultrasound-­‐induced  inorganic  chemical  reactions  is  well  understood   and   amounts   to   reaction   activation   due   to   locally   increased   temperature  and  pressure  and  molecular  radicalization  due  to  bond  breaking  by  collapsing  bubbles.  While  sonochemistry  of  inorganic  liquids  is  well  studied  sonolysis  of  hydrocarbons  is  less  studied   and   the   sonochemistry   of   solutes   dissolved   in   organic   liquids   remains   largely  unexplored   [7].   Ironically,  because  of   the  rising  energy  needs  of   the  world   the  area  of  organic  liquids  –  crude  oil,  plant  oil,  and  plant  biomass  –  is  the  area  of  the  most  promise  and   importance  as   far   as   commercial   and   industrial   applications  of   sonochemistry  are  concerned.  

Regardless  of  the  type  of  the  processed  liquid  (or  a  mixture  of  liquids)  these  are  the  most  common  effects  of  cavitation  [4,  7,  8]:  

-­‐ Homogenization  of  liquids  (important  for  emulsion  preparation);  -­‐ Breakage  of  solid  particles  (important  for  suspension  preparation);  -­‐ Radicalization  of  molecules  (important  for  depolymerization,  lysis);  -­‐ Chemical   reaction   acceleration   (due   to   the   locally   increased   temperature   in  

collapsing  bubbles  and  the  availability  of  radicals).  

All   of   these   effects   have   a   numerous   commercial   application   from   wastewater  treatment   and   sterilization   to   cement   preparation   and   food   processing.   For   the  remainder   of   the   discussion   we   will   focus   on   petrochemical   and   hydrocarbon  applications  of  cavitation.  

 

Application  of  Cavitation  to  Hydrocarbons  –  Depolymerization  

As   far   as   the   established   petrochemical   and   the   emerging   bio-­‐fuel   industry  concerned  depolymerization  and  hydrocarbon  cracking  are  the  most   important  effects  that   follow   directly   from   the   process   of   cavitation.   Naturally   occurring   crude   oil   is  characterized  not  only  by   the  composition  of   the  compounding  hydrocarbons  but  also  by   the   van   der   Waals   interaction   between   the   molecules,   which   gives   oil   elastic  polymer-­‐like   structure   that   negatively   impacts   the   viscosity.   Thick   viscous   oil   requires  more  energy  for  transportation  and  processing  (e.g.  in  terms  of  pump  station  power  and  

Page 4: Cavitation Hydrocarbon Cracking

  4  

heating   necessary   to   prevent   oil   from   freezing   in   winter).   In   the   same   time   heavy  polymerized  fuels  burn  less  efficiently  and  produce  more  pollutants  [9].  

 Therefore  depolymerization  of  crude  or   the  resulting  petroleum  products   (such  as  diesel  and  fuel  oil)  due  to  the  breakage  of  van  der  Waals  forces  between  the  molecules  is  an  important  use  of  cavitation  –  Fig.  1.  

 

 

 Fig.  1.    Depolymerization  of  fuel  under  the  influence  of  ultrasonic  cavitation.  

According   to   Kavitus   [9]   the   diesel   /   fuel   oil   deploymerization   results   in   smoother  engine  operation,   fuel   economy  of   up   to   18%,   and   the   reduction  of   ash/soot   by  over  50%.  

 )))  

Page 5: Cavitation Hydrocarbon Cracking

  5  

The   cavitation-­‐induced   depolymerization   also   impacts   crude   oil   rheology.   E.g.   [10]  reports   5-­‐fold   reduction   of   viscosity   in   crude   oil   at   room   temperature   after   5-­‐hour  cavitation  processing  –  Fig.  2.  

 Fig.  2.    Reduction  of  the  viscosity  of  crude  oil  after  cavitation  treatment  in  an  ultrasonic  activator  [10].  

 

 EkoEnergoMash   reports   fuel   20-­‐30%   fuel   oil   viscosity   reduction   and   5-­‐10%   flash  point   temperature   increase   after   cavitational   treatment   [11]   –   Table   1.   Corroborating  the  claims  by  Kavitus  [9],  EkoEnergoMash  [11]  also  reports  3-­‐5%  reduction  in  soot  and  ash  emission  from  burning  of  the  cavitationally  processed  fuel  oil.  

Table  1.  Fuel  oil  viscosity  decrease  and  flash  point  temperature  increase  after  cavitation  treatment.  

 

Application  of  Cavitation  to  Hydrocarbons  –  Cracking  

The   possibility   of   hydrocarbon   break   up   by   ultrasonic   cavitation   has   been   well-­‐known   for   several   decades   [12].   The   only   contentions   point   is   the   efficiency   of   such  process:  since  sonochemical  reactions  are  enacted  by  collapsing  bubbles  the  efficiency  

Fuel  Oil  Parameters  

Viscosity  flow  equivalent,  s,  T=60°С   Flash  point,  °С   Density,  kg/m3  Fuel  Oil  Sample  

Start   Finish   Delta,  %   Start     Finish   Delta,  %   Start   Finish   Delta,  %  

Karabashsky   155   90   42   120   127   5   925   920   0,5  

Shukrovsky   38   23   39   105   115   9   915   915   0  

Nizhnekamsky   165   120   25   145   135   -­‐  7   920   920   0  

Page 6: Cavitation Hydrocarbon Cracking

  6  

of   the   process   is   directly   proportional   to   the   density   of   bubbles,   which   in   turn   is  proportional   to   the   density   of   the   ultrasonic   energy.   According   to   [13]   an   energy  approaching   1MW/m2  will   render   further   increase   of   ultrasonic   power   useless   due   to  vapor   /   bubble   formation   around   the   ultrasonic   transducer   in   contact  with   the   liquid  while  at  lower  energy  densities  the  efficiency  of  the  bond  cracking  process  is  minuscule  (in   part   due   to   radical   recombination)   and   economically   non-­‐viable.   The   objection,  however,  applies  only  to  conventional  ultrasonic  equipment  that  relies  on  piezoelectric  transducers   or   sonotorodes   for   liquid   excitation.   To   achieve   the   requisite   ultrasonic  energy  densities  on  the  order  of  1-­‐10  MW/m2  a  rotary  pulsation  apparata  [4,  8]  are  used  where   ultrasound   excitation   is   generated   by   means   of   a   rapidly   rotating   perforated  rotor.   Such   designs   allow   generating   very   high-­‐density   ultrasonic   pulses   over   a   wide  surface   area   (around   the   rotor)   thus   producing   much   larger   cavitation   volume   and  higher   energy   density   when   compared   to   the   traditional   piezoelectric   transducer   or  sonotrode-­‐based  devices.

Nesterenko   and   Berlizov   [14]   estimate   that   even   if   the   cavitation   bubbles   occupy  10%  of  the  volume  of  the  processed  liquid  then  360  liters  of  petroleum  products  will  be  necessary  to  pump  in  order  to  crack  one  mole  of  hydrocarbons  (µ =  100-­‐300)  equivalent  to   100-­‐300g.   Thus   highly   efficient   multiple-­‐stage   cavitation   processing   is   required   in  order  to  achieve  economically  attractive  cracking.  Fortunately,  according  to  [4,  8]  such  multi-­‐stage   processing   is   possible   with   the   help   of   loop-­‐back   rotary/pulse-­‐driven  devices.  

Another   approach   to   boosting   the   efficiency   of   cavitation   is   to   conduct   the  ultrasonic   excitation   in   the   presence   of   an   electric   field   [15].   Electrostatic   charge  generated  within  the  bubbles  assists  radical   formation  due  to  covalent  bond  breaking,  which   generate   chain   reactions   in   hydrocarbons   with   the   end-­‐result   being   low  molecular-­‐weight  compounds  and  aromatics  [15].  

More   recently   the   use   of   ultrasound   was   proposed   for   the   petroleum   residue  upgradation  [17],  including  asphalts  [18].  In  these  studies  study  ~20%  of  asphaltene  was  converted   into  smaller  molecules  after  60-­‐120  minute  exposure.  These  heavy  resinous  residues  are  a  byproduct  of  catalytic  cracking,  which  cannot  be  easily  decomposed  due  to   boiling   temperatures   far   in   excess   of   500-­‐600°C   used   in   catalytic   cracking.   While  ultrasonic   cracking   of   these   substances   is   possible   economic   viability   is   yet   to   be  demonstrated.  

Promtov  [16]  draws  attention  to  the  efficiency  of  the  pulsed  rotor  units  in  rupturing  C-­‐C  bonds  under  vigorous   long-­‐term  cavitation   conditions  and  gives   the   results  of   the  experimental   investigation  of  one  such  machine  at  Tambov  State  University.  The  study  found  that  ultrasonic  processing  of  a  mixture  of  a  heavy  fuel  oil  with  small  addition  of  kerosene  or   light  diesel   results   in  a  modest  decrease  of   the  kinematic  viscosity  by  1-­‐2  mm2/s  and  equally  small  decrease  in  the  flash  point  temperature  by  4-­‐6°C.  In  the  same  time  cavitation  cracking  of  crude  allows  reducing  atmospheric  distillation   temperature  of   crude   by   10°C,   while   reducing   the   50%   distillation   temperature   by   63°C,   a   huge  energy  saving  –  Table  2.  

Page 7: Cavitation Hydrocarbon Cracking

  7  

 Table   2.   The   reduction   of   distillation   temperatures   of   the   cavitationally   treated   crude   with   respect   to  untreated  one.  

Laboratory   findings   of   Promtov   lend   some   credence   to   claims   made   by   the  equipment   manufacturers.   E.g.   Ukrainian   company   Kavitus   [9]   advertises   50-­‐60%  coagulation   temperature   and   20-­‐25%   of   viscosity   reduction   of   ultrasonically   treated  diesel  fuels,  which  results  in  8.3%  fuel  economy  and  30%  reduction  in  harmful  emissions  for   their   MobiLine   Italian   customer   and   10.2%   fuel   economy   for   Zaporozhstal   diesel  locomotive  depot.  

Russian   company  New  Technologies  2000   [10]  publicizes   the   increased   light  diesel  yield  from  the  ultrasonically  activated  crude  –  Fig.  3.  

 Fig.   3.     The   increased   yield   of   light   diesel   after   the   installation  of   an  ultrasonic   activator   at   La   Libertad  refinery,  Ecuador  [10].   In  2006-­‐2007  trials  diesel  fraction  output  increases  from  26%  to  40%  or  by  1000-­‐1400  barrels  per  day.  The  increase  was  attained  solely  by  ultrasonic  excitation  of  crude  at  the  expense  of  37  kWh  of  continues  power  required  for  operation  of  the  ultrasonic  activator  pump.  

Similar   encouraging   results   were   obtained   by   Selivanov   [10]   when   cracking   heavy  sour   fuel   oil.   Fig.   4.   shows   that   after   the   ultrasonic   treatment   the   processed   fuel   oil  thermally  decomposes  into  lighter  fractions  at  markedly  reduced  temperatires,  e.g.  10%  yield  is  achieved  at  only  440°C  as  opposed  to  720°C  for  untreated  oil.  

These   intriguing   results  point   to  economic  viability  of  ultrasonically   /   cavitationally  assisted   hydrocarbon   cracking   and   clearly   warrant   further   study   combined   with   an  independent  laboratory  confirmation  of  the  reported  results.  

 

 

Page 8: Cavitation Hydrocarbon Cracking

  8  

 

T,°C  

 %  Vol  

Fig.  4.  The  results  of  thermal  cracking  of  the  ultrasonically  cracked  (red  line)  and  unprocessed  heavy  fuel  oil  (yellow  line).  The  ultrasonically  treated  compound  yields  6%  of  light  fractions  almost  with  no  heating  (100°C)  and  gives  off  19%  of  light  fractions  when  heated  to  440°C  (compare  to  over  700°C  required  by  the  untreated  oil).  Blue  line  is  a  mixture  of  virgin  and  processed  oil.  

 

The  Equipment  –  Ultrasonic  Activator  

Our  interest  in  cavitation-­‐based  devices  stems  from  the  work  by  Russian  inventor  A.  F.   Kladov   (1939-­‐2003)   on   a   device   he   dubbed   ‘ultrasonic   activator’   [19].   Kladov  graduated   from   Moscow   State   Aviation   Institute   (MAI)   majoring   in   nuclear   rocket  propulsion   systems   and  worked   at   Lavrentiev  Hydrodynamics   Institute   at  Novosibirsk.  The  focus  of  Kladov’s  work  was  ultrasonic  /  cavitation  cracking  of  hydrocarbons  and  his  patent  application  [20]  claims  the  ability  to  make  crude  yield  up  to  90%  of  light  fractions  by  repeated  pumping  of  crude  through  the  ultrasonic  activator  under  2-­‐5  MPa  pressure  and  with  addition  of  2-­‐3%  by  volume  of  dispersing  gas.  

The   key   feature   of   Kladov’s   apparatus   is   the   ability   to   generate   enormous   sonic  energy   densities   on   the   order   of   1-­‐10MW/m2   by   virtue   of   both   ultrasonically   and  hydrodynamically-­‐induced   cavitation   and   multi-­‐stage   design   that   allows   repeated  processing   of   the   liquid   to   maximize   the   cavitation   effect.   Another   clever   feature   of  Kladov’s  design   is   the  addition  of  dispersing  gas   (e.g.  hydrogen,  carbon  dioxide,  air,  or  methane)   that   facilitates  bubble   formation  and  participates   in  chemical   reactions  with  the  cracked  hydrocarbon  radicals  thus  preventing  them  from  recombining.  The  infusion  of   H2   or   CH4   effectively   enables   C-­‐H   bond   formation   in   place   of   ruptured   C-­‐C   bonds.  Another   key   feature   of   Kladov’s   design   is   the   claimed   ‘resonant’   mode   of   operation,  which  maximizes  the  conversion  of  the  mechanical  energy  of  rotors  mixing  the  fluid  into  the   ultrasonic   energy   of   cavitating   bubbles,   which   in   turn   results   in   cracking   of   C-­‐C  bonds.  

Page 9: Cavitation Hydrocarbon Cracking

  9  

From   the   design   point   of   view   Kladov’s   activator   is   essentially   a   centripetal   pump  where  the  processed   liquid   is  accelerated  by  a  rapidly  rotating  perforated  rotor  wheel  (9)  and   then   forced  by   the   impellor   (8)   through  slots   (12)   in   the  perforated  cylindrical  stator  (9)  –  Figures  5-­‐6.  

Fig.  5.  Kladov’s  ultrasonic  activator’s  rotor  and  stator  cross-­‐section  (left)  and  the  rotor’s  slots  (right).  The  impeller  (8)  forces  the  liquid  through  the  slots  (10)   in  the  rotor  (9);  the  accelerated  liquid  flows  through  slots  (12)  in  the  perforated  stator  (12).  

 Fig.  6.  Kladov’s  four-­‐stage  activator  housing  a  shaft  with  the  attached  four  perforated  rotors,  each  within  its   own   stator.   En   electric   AC   motor   drives   the   shaft   (not   shown).   Four   impellers   (8)   drive   the   liquid  through  rotors’  slots  and  then  through  stators’  slots.  The  rotor  and  the  stator  slots  are  of  the  same  size;  the  width  of  blanks  between  the  slots  is  the  same  as  the  width  of  the  slots.  Circulation  line  (13)  with  valve  (17)  can  be  used  to  send  a  portion  of  the  pumped  liquid  into  repeated  processing  through  the  activator.  

 

Page 10: Cavitation Hydrocarbon Cracking

  10  

 

In   addition   to   four-­‐stage   activator   a   single-­‐stage   apparatus   is   also   possible.   In   the  case   of   a   single-­‐stage   design   sufficient   rate   of   cavitation   processing   is   achieved   by  looping  back  portion  of  the  processed  fluid  back  into  the  activator  (e.g.  via  the  loopback  line   (13)  on  Figure  6).   In  all   cases  30-­‐300  kW   (depending  on   the  number  of   stages)  3-­‐phase  electric  AC  motor  drives  the  shaft  housing  the  rotor(s)  and  the  impeller(s).  

Kladov’s  design  is  representative  of  a  wide  variety  of  rotary  /  pulse-­‐based  cavitation  machines   employed   in   Russia   and   Ukraine,   and   their   hydrodynamic   and   ultrasonic  characteristics   are   described   in   depth   in   [4]   and   [8].   These   rotary   devices   feature  perforated   rotors   and   cylindrical   or   conical   stators   and   are   capable   of   generating   of  massive  amounts  of  cavitation  far  in  excess  (>100  times)  of  the  amounts  accessible  via  conventional  ultrasonic  excitation  via  a  piezoelectric  transducer  or  sonotrode.  Hence  if  cavitation   hydrocarbon   cracking   is   to   be   economically   viable   a   rotor   /   pulse-­‐based  cavitation  machine  has  to  be  used.  

 

Technical  Description  

The  extremely  interesting  results  of  cavitation-­‐induced  hydrocarbon  cracking  and  oil  upgrading   listed   in   the   previous   sections   of   this   proposal   merit   an   independent  laboratory   confirmation   of   the   results   reported   by   the   manufacturers.   Positive  confirmation  will   justify   the  adoption  of   the  cavitation-­‐induced  oil  cracking  technology  in   the   U.S.   with   the   economic   advantages   amounting   to   the   reduced   power  requirements  for  catalytic  cracking  and  the  increased  yield  of  light  fractions  (e.g.  due  to  heavy  crude  /  heavy  fuel  oil  upgradation).  

 Fig.  7.  Selivanov’s  variant  of  Kladov’s  activator  (far  left),  electric  motor  (right)  and  bearing  unit  (middle)  is  also   shown.   In   Selivanov’s   version   of   the   activator   the   stator   is   not   perforated   and   corresponds   to   an  entirely   smooth   cylinder   enclosing   the   perforated   rotor.   The   replacement   of   perforated   stator   with   a  smooth  one  is  the  only  principle  modification  from  Kladov’s  original  design.  

Page 11: Cavitation Hydrocarbon Cracking

  11  

To  conduct  the  study  we  propose  to  build  an  ultrasonic  activator,  which  corresponds  to  Selivanov’s  modification  of  the  original  Kladov’s  design  [24]  –  Figure  7.  

The  choice  of  Selivanov’s  design  was  dictated  by  the  following  key  factors:  

-­‐ Availability  of  detailed  construction  plans  with  exact  measurements  [24];  -­‐ Relative  ease  of  construction:  to  recreate  the  design  one  can  simply  retrofit  an  

existing  centripetal  pump;  -­‐ Consultation  and  availability  of  the  inventor  (Selivanov);  -­‐ Familiarity   of   our   company   with   this   particular   design   due   to   our   prior  

involvement  with  Selivanov’s  activator  and  cavitation  technology;  -­‐ Availability  of  proprietary  data  indicative  of  the  successful  activator  applications  

for  oil  cracking  /  upgradation  projects  in  Russia,  Ecuador  and  India  [10];  -­‐ The  industrial  deployment  of  the  Selivanov’s  activator  technology  in  India  backed  

by  Swiss-­‐Indian  financiers  indicates  real  savings  and  clear  economical  viability  of  the   cavitation-­‐induced   upgradation   (economic   effect   from   a   single   refinery   is  estimated  to  exceed  $150,000/day  [27]).  

The   only   principal   difference   between   a   single-­‐stage   Kladov’s   and   Selivanov’s  activator  is  in  the  replacement  of  the  perforated  stator  with  a  smooth  cylindrical  one  in  Selivanov’s   version.   From  our   extensive  operational   experience   this  modification  does  not  affect  the  activator’s  primary  function:  for  many  years  Selivanov  has  been  building  the   activators,  which   differ   only   by   their   resonant   properties   as   defined   by   rotor   and  stator  measurements  and  have  successfully  applied  the  technology  for  crude  oil  cracking  and  petroleum  processing  in  Russia,  Ecuador,  and  India  [10].  Overall  view  of  Selivanov’s  activator   in   industrial   setting   is   shown   on   Figure   8,   and   a   close   up   of   another  model  highlighting   the   perforated   rotor   design   is   shown   on   Figure   9.   In   a   typical  implementation  the  rotor  is  driven  at  3,000  RPM  by  a  30kW  3-­‐phase  electric  AC  motor.  According  to  Kladov  and  Selivanov’s  own  work  [24]  only  rotor  and  stator  configuration  and  rotor  revolution  speed  is  critical  to  activator’s  operation.  

 Fig.  8.  Slivanov’s  activator  in  industrial  setting  at  a  refinery  in  Ecuador.  

Page 12: Cavitation Hydrocarbon Cracking

  12  

 Fig.  9.  Close-­‐up  of  Selivanov’s  activator  demonstrating  perforated  rotor  (top  left)  and  mysterious  marks  on  internal  stator  surface  (top  tight)  probably  caused  by  the  standing  ultrasonic  waves.  

 

Our   initial   investigation  of  Selivanov’s  activator  revealed  a  surprisingly   large  excess  heat.   The   evidence  of   extreme  heating  was  present   even  on   the  outer   surface  of   the  activator:   the   stator   developed   thermal   oxidization   spots   evenly   distributed   along   the  stator’s  outer  surface  –  Figure  10.  While  these  marks  can  probably  be  attributed  to  the  cavitation-­‐induced   heating   no   such   marks   were   present   on   the   inside   surface   of   the  stator  or  rotor.  On  the  other  hand  the  rotor  was  also  perfectly  intact.  

 Fig.  10.  Thermal  oxidization  marks  evenly  distributed  on  the  outer  surface  of  the  activator’s  stator.  Inner  stator  surface  was  free  of  thermal  oxidization  films,  which  could  have  been  chemically  removed.  Both  the  stator  and  the  rotor  are  made  of  the  same  brand  of  stainless  steal  equivalent  to  U.S.  type  420.  

Other  unusual  phenomena  recorded  in  our  initial  trials  of  the  activator  included:  

-­‐ The   presence   of   substantial   magnetic   field   (10-­‐50   mT)   around   the   operating  activator  –  Figure  11  –  indicative  of  charged  plasma  (charged  chemical  radicals?)  circulating  within   the  activator.  We  suspect   the   formation  of   the  Ranque-­‐Hisch  vortex  tube;  

Page 13: Cavitation Hydrocarbon Cracking

  13  

-­‐ Occasional  unexpected  excess  pressure  build  up  within  the  activator  resulting  in  damage  (i.e.  cracking)  of  the  activator’s  rotor  and  stator;  

-­‐ Odd  coloration  marks  on  the  internal  surface  of  the  stator.  The  coloration  marks  correspond  to  images  of  rotor  slots  and  are  somehow  synchronized  to  activator’s  ground   position   and   orientation   and   cannot   be   disturbed   even   by   a   groove  machined   in   the  stator’s   surface   in  attempt   to  disrupt   the  pattern  –  Figure  12.  The  pattern,  however,  did  shift  when  the  activator  was  moved  to  a  new  location.  Our   conclusion   is   that   the   marks   are   indicative   of   a   standing   acoustic   wave  possibly   locked   onto   a   resonant   Ranque-­‐Hisch   vortex   tube,   which   is   ‘pinned  down’  by  magnetic  field  of  the  Earth  or  laboratory.  

 Fig.  11.  Magnetic  field  generated  by  the  operational  activator.  

 

 

Fig.   12.  Mysterious   coloration  marks   on   the   internal   surface  of   the   stator   corresponding   to   rotor   slots.  Note  that  the  marks  are  simply  changes  in  color  and  not  indentations.  The  dark  groove  in  the  middle  of  the  picture  was  machined  in  attempt  to  influence  the  pattern.  However,  the  coloration  pattern  did  not    

 

The  Working  Hypothesis  

Kladov’s/Selivanov’s  activator  generates  acoustic  waves  when  the  fluid  exits  through  the  rotor’s  slots  –  Fig.  13.  In  such  configuration  each  slot  can  be  viewed  as  a  Helmholtz  resonator   forming   a   chain   capable   of   accumulating   large   ultrasonic   energy.   The   so-­‐

Page 14: Cavitation Hydrocarbon Cracking

  14  

trapped  ultrasonic   energy   stimulates   powerful   cavitation   that   in   turn   causes   chemical  disassociation   /   radicalization   of   molecules,   which   is   evident   from   the   creation   of   a  stationary  magnetic   field  around   the  operating  activator  –   Fig.   11.  While   ionization  of  vapors   (e.g.   the   creation   of   plasma   [26])   inside   collapsing   bubbles   will   create   a  momentary   magnetic   field   one   can   reasonably   expect   no   net   effect   due   to   random  orientation   of   the   transient   magnetic   fields   caused   by   the   multitude   of   bubbles.  However,  the  actual  distribution  of  bubbles  may  not  be  random  due  to  stable  vortices  pinned   in   the   rotor’s   slots.   Due   to   cavitation   these   vortices   will   be   full   of   streaming  bubbles.  If  we  view  each  individual  bubble  as  a  microscopic  capacitor  where  the  charged  ‘plates’  are  formed  by  ionized  gasses,  the  bubble  vortex  becomes  analogous  to  a  multi-­‐stage  Marx   generator  where   the  breakdown  of   dielectric   in   between   the  bubbles  will  result  in  massive  discharges  with  voltages  easily  reaching  into  MV  range  [27].  Assuming  modest   polarization   energy   of   1   eV   (which   is   consistent  with   our   estimate   of   bubble  charge  based  off  oscilloscopic  measurement  of  cavitation-­‐induced  discharges  in  mineral  oil   –  Fig.  14),  Rodionov  estimates   that   the  bubble  growth  during   the  expansion  phase  will  result  in  voltage  build-­‐up  up  to  10kV  per  bubble  [27].  Consequently  it  takes  only  100  closely  packed  bubbles  forming  a  multi-­‐stage  Marx  generator-­‐like  discharge  to  reach  the  voltages  on  the  order  of  1MV,  which  no  doubt  assists  molecular  ionization/radicalization  and   contributes   to   the   increased   efficiency   of   the   activator   when   compared   to  conventional  sonotrode-­‐based  ultrasonic  activators.  

In  our  own  work  with  cavitation  in  mineral  oil  we  were  able  to  verify  experimentally  that   Radionov’s   estimate   was   not   far   off-­‐the   mark:   we   have   observed   40kV/cm  discharges  between  the  glowing  stream  of  cavitation-­‐induced  bubbles  and  the  grounded  brass  nozzle  by  pumping  mineral  oil  through  the  narrow  opening  in  the  nozzle  at  50  m/s  –  Fig.  14.  The  presence  of  the  bubble  discharge  currents  is  the  most  likely  cause  of  the  magnetic  field  detected  around  the  activator.  

 Fig.  13.  Liquid   flow  through  activator’s  slots.  The   liquid  existing  the  slots   forms  resonant  vortices.  Rotor  motion  direction  is  given  by  V.  

   

Rotor  

Stator  

The  flow  directing  from  the  rotor’s  

center  

Page 15: Cavitation Hydrocarbon Cracking

  15  

Fig.   14.   40   kV/cm   discharge   (short   and   thin   zigzagging   line)   between   the   charged   luminous   cavitation-­‐induced  bubbles  (long  blue  streak)  and  the  grounded  nozzle  (cone  on  the  right)  emitting  a  50  m/s  flow  of  mineral  oil.  

Conclusion  

The   ultrasonic   activator   of   Kladov/Selivanov   is   capable   of   highly   efficient  transformation  of  mechanical  energy  into  ultrasonic  energy  with  density  on  the  order  of  1-­‐10  MW/m2.  This  colossal  energy  stimulates  profuse  cavitation,  confined  to  slots  of  the  rotor.   The   massive   sonic   energy   forms   plasma   within   the   bubbles,   the   bubbles   form  Marx  generator-­‐like  discharges,  which  further  contribute  to  molecular  radicalization  and  hydrocarbon  breaking.  To  prevent  recombination  of  radicals  and  reduce  the  formation  of  aromatics  the  addition  of  hydrogen  or  methane  is  required  to  the  processed  mixture.  Fortunately,   the   addition   of   gasses   also   stimulates   cavitation   thus   further   intensifying  the  process.  Therefore,  the  combination  of  all  these  factors  makes  efficient  cavitation-­‐induced   hydrocarbon   cracking   feasible   (at   least   in   principle)   and   thus   potentially  economically  important.  

 

Experimental  Setup  and  Objectives  of  the  Research  

We   propose   to   build   a   replica   of   the   ultrasonic   activator   according   to   Kladov   /  Selivanov   and   study   cavitation-­‐induced   hydrocarbon   cracking   in   lab   conditions.   The  main  objective  of  the  study  is  to  determine  the  amount  of  hydrocarbon  cracking  (e.g.  via  gas  chromatography),  measure  the  viscocity  and  density  changes,  measure  the  energy  requirements  and  estimate  the  economical  viability  of  the  application  of  the  method  at  refineries  for  crude  upgradation  or  as  a  step  for  post-­‐catalytic  upgradation  of  distillation  residue.  

The  proposed  experimental  setup  is  shown  on  Fig.  15.  The  activator  is  connected  to  a   hermetically   sealed   and   well-­‐insulated   plastic   barrel   forming   a   closed-­‐loop   circuit.  Valves  on  input  and  output  pipes  control  the  pressure  gradient  within  the  activator.  We  will  monitor  the  flow  rate  and  the  pressure  using  the  appropriate  pipe-­‐mounted  gauges.  The   activator   is   powered   by   a   50HP   3-­‐phase   120V   AC  motor   rated   at   3,600RPM.   To  

Page 16: Cavitation Hydrocarbon Cracking

  16  

detect  the  resonance  mode  of  operation  we  will  control  the  activator’s  driving  motor’s  frequency   via   a   60HP   Varispeed   unit   (controllable   by   computer   via   RS-­‐232   serial  interface).   The   resonant  mode  of  operation   is   characterized  by  a   spike   in   the  motor’s  power  consumption  and  the  reduced  throughput  of  the  pumped  liquid.  

 Fig.  15.  Experimental  setup.  

 

We  will  install  a  high-­‐accuracy  Fluke  power  meter  with  USB  logging  capability  on  the  power  line  leading  to  the  activator’s  AC  motor.  

To   measure   the   thermal   output   of   the   activator   we   will   install   1-­‐2   dual-­‐digital  thermometers  with  USB  logging  capability  in  the  barrel  to  collect  temperature  data  from  various   locations   in   the   barrel   (sufficiently   fast   liquid   pumping   rate   should   achieve  adequate  mixing  minimizing  errors  in  temperature  readings).  

The  feed  rate  of  gases  (CO2,  H2,  air,  and  CH4)  will  be  controlled  by  the  input  line  valve  cut  into  the  activator  input  line  and  connected  to  a  gas  tank.  

We   will   use   Hall-­‐effect   probe   to   measure   the   configuration   and   strength   of   the  activator’s  magnetic  field.  

RS-­‐232  

Varispeed  

3  phase  AC  120V  /  X  Hz  

 Plastic  Barrel  

AC  power  meter  

Closed  loop  circulation  

 Activator  

3  phase  AC  120V  /  60Hz  

Dual-­‐Digital  Thermometer  

Flow    meter  

Pressure    meter  

Flow  control  valves  

Computer  

USB  USB  

Gas  tank  Hall  Effect  Meter  

Page 17: Cavitation Hydrocarbon Cracking

  17  

We  will  experiment  with  a  broad  range  of  hydrocarbons,   including  various  types  of  heavy  crude  and  heavy  fuel  oil.  

During  Phase  I  funding  of  the  project  we  plan  to  achieve  the  following:  

1) Build   a   replica   of   the   ultrasonic   activator   according   to   Selivanov   using   the  construction  plans  in  our  possession  and  the  inventor’s  consultation;  

2) Detect   the  necessary   resonant  modes  of  operation  and  attune   the  activator   to  them  my  varying  rotational  frequency  of  the  motor;  

3) Measure  electromagnetic  fields  generated  by  the  operating  activator;  4) Vary  pressure  within  the  activator;  5) Vary  gas  feed  rate  and  the  dispersing  gas  composition;  6) Determine   viscosity   and   gravity   changes   in   the   processed   liquid   depending   on  

the  processing  time;  7) Determine   hydrocarbon   content   in   the   processed   liquids   (via   gas  

chromatography)  depending  on  the  processing  time;  8) Measure  electric  power  consumption  and  calculate  the  fluid  processing  rate;  9) Repeat  measurements  4-­‐7  for  various  types  of  hydrocarbons  including  common  

grades  of  heavy  crude  and  heavy  fuel  oil.  10) Perform  distillation  analysis  of  the  processed  samples.  

At  the  end  of  Phase  I  of  the  project  we  plan  to  obtain  conclusive  data  with  regard  to  economical  viability  of  the  crude  and  heavy  fuel  oil  upgradation.  

During   Phase   II   of   the   project   we   plan   to   launch   an   expanded   inquiry   into   the  application   of   the   cavitation   processing   to   bio-­‐diesel   production   and   engage   the   U.S.  petroleum  industry  (via  our  university  contacts)  in  field  trials  of  the  activator  in  order  to  demonstrate  economic  viability  of  the  technology  in  industrial  setting.  The  objective  of  the   Phase   II   of   the   project   is   to   develop   commercially   viable   activator   prototypes   for  useful  for  U.S.  petroleum  industry.  

 

Potential  Post-­‐Applications  

The   confirmation   of   economical   viability   of   ultrasonic   /   cavitation   treatments   of  hydrocarbons  will  correspond  to  a  significant  step  towards  the  increased  fuel  economy,  the  increased  light  fraction  yield,  and  the  reduced  energy  requirements  of  the  refining  process,  thus  giving  the  U.S.  petroleum  industry  and  the  American  nation  an  economic  advantage   over   the   global   competition   via   more   efficient   utilization   of   hydrocarbon  resources  while  enabling  the  reduced  carbon  footprint.

 

 

 

 

Page 18: Cavitation Hydrocarbon Cracking

  18  

Work  Schedule:  6  months  

As  a  part  of  Phase  I  funding  we  plan  to  do  the  following:  

Phase  I  funding  received,  project  begins  (week  1)    

1) Comprehensive  review  of  project  documentation,  equipment  acquisition  a. 20  hours  of  PI  time  b. 40  hours  of  engineer  time  

2) Materials  and  equipment  ordered,  prototype  construction  begins  a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  c. 320  hours  of  machine  shop  time  

 Milestone  1:  Activator  built,  equipment  received,  trials  begin  (week  6)    

3) Construction,  testing  and  refining  of  the  experimental  setup  a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  

 Milestone  2:  Experimental  setup  complete,  resonance  search  begins  (week  8)    

4) Resonant  mode  of  operation  search  begins.  Motor  speed  is  varied,  power  consumption  is  measured  until  a  spike  in  power  consumption  is  detected  and  liquid  throughout  drops  

a. 40  hours  of  PI  time  b. 80  hours  of  co-­‐investigator  time  

 Milestone  3:  Resonant  mode  of  operation  identified  (week  10)    

5) Various  hydrocarbon  liquids  are  pumped  through  the  activator,  pressure  within  the  activator  and  the  gas  feed  rate  varied,  power  input,  viscosity  and  chromatography  changes  measured,  magnetic  field  monitored;  samples  distilled  

a. 100  hours  of  PI  time  b. 600  hours  of  co-­‐investigator  time  

 Milestone  4:  Experiment  concludes  (week  25)    

6) Final  report  preparation  a. 40  hours  of  PI  time  b. 40  hours  of  co-­‐investigator  time  

 Milestone  5:  Project  concludes,  nuclear  fusion  confirmed  (week  26)  

 

Page 19: Cavitation Hydrocarbon Cracking

  19  

References  

[1]   Ophardt,   C.E.,   Virtual   Chembook,   Distillation   oil   refining,   Elmhurst   College,   2003,  http://www.elmhurst.edu/~chm/vchembook/513refining.html    

[2]   Izatt,   J.,   Asphalt,   in   Encyclopedia   of   Chemical   Processing   and   Design,  McKett,   J.J.,  editor,  New  York,  1986,  vol.  3,  p.421  

[3]  Kovin  et  al.,  Catalytic  Cracking  Development  and  Its  Role  in  Modern  Russian  Refinery,  Ufa  State  Petroleum  Technological  University,  UDK  665.773.5,  2009  

[4]   Promptov,  M.A.,   Pulsation  Apparata   of   Rotor   Type:   Theory   and   Practice,  Moscow,  Mashinostroyeniye,  2001  

[5]  Flannigan,  D.J.,  Suslick,  K.S.,  Plasma  formation  and  temperature  measurement  during  single-­‐bubble  cavitation,  Nature,  434,  7029,  p.  52–55,  2006    

[6]  Chen  et  al.,  Time-­‐resolved  spectra  of  single-­‐bubble  sonoluminescence  in  sulfuric  acid  with  a  streak  camera,  Phys.  Rev.  E  78,  035301(R),  2008  

[7]  Suslick,  K.S.,  Sonoluminescence  and  Sonochemistry,   in   the  Encyclopedia  of  Physical  Science  and  Technology,  3rd  Edition,  Myers,  R.A.  (editor),  Academic  Press,  2001  

[8]   Chervyakov,   V.M.,   Yudayev,   V.F.,   Hydrodynamic   and   cavitation   processes   in   rotor  apparata,  Moscow,  Mashinostroyeniye,  2007  

[9]  Zhuk,  V.,  The  Cavitational  Fuel  Depolymerization,  CT  Kavitus,  2008  

[10]   Selivanov,   N.I.,   Change   of   Viscosity   of   Oil,   New   Technologies   2000,   2002,  http://www.newtech2000.ru/new_tech_eng1.php    

[11]  EkoEnergoMash,  Cavitation  Technologies,  Kazan,  Russia,  2009,  http://www.eemkzn.ru/product/kavitac/    

[12]  Suslick  et  al.,  Alkane  Sonochemistry,  J.  Phys.  Chem.,  87,  p.  2299-­‐2301,  1983  

[13]  Suslick,  private  communication  

[14]  Nesterenko,  A.I.,  Berlizov,  Yu.S.,  The  Possibility  of  Cracking  Hydrocarbons  with  Cavitation,  Chemistry  and  Technology  of  Fuels  and  Oils,  43,  6,  2007  

[15]  Besov  et  al.,  Degradation  of  Hydrocarbons  in  the  Cavitation  Region  Activated  by  Aqueous  Electrolyte  Solutions  in  the  Presence  of  Electric  Field,  Technical  Physics  Letters,  29.  3.  P.  207-­‐209,  2003  

[16]  Promtov,  M.A.,  Cavitation  Technologies  for  Quality  Improvement  of  Hydrocarbon  Fuels,  Chemical  and  Petroleum  Engineering,  44,  1-­‐2,  2008  

[17]  Sawarkar  et  al.,  Use  of  Ultrasound  in  Petroleum  Residue  Upgradation,  The  Canadian  Journal  of  Chemical  Engineering,  87,  3,  pp.  329-­‐342,  2009  

[18]  Lin,  J.R.,  Yen,  T.F.,  An  Upgrading  Process  through  Cavitation  and  Surfactant,  Energy  and  Fuels,  7,  pp.  111-­‐118,  1993  

[19]  Kladov,  A.F.,  Ultrasonic  Activator,  WO/1994/0009894,  1994  

Page 20: Cavitation Hydrocarbon Cracking

  20  

[20]  Kladov,  A.F.,  Process  For  Cracking  Crude  Oil  And  Petroleum  Products  And  A  Device  For  Carrying  Out  The  Same,  WO/1994/01026,  1994  

[24]   Selivanov,   N.I.,   Method   and   Device   for   Conditioning   Hydrocarbon   Liquid,  WO/2003/093398,  2003  

[25]  Selivanov,  N.I.,  Private  communication,  2010  

[26]   Flannigan,   D.J.,   Suslick,   K.S.,   Internally   confined   plasma   in   an   imploding   bubble,  Nature  Phyrics  Letters,  6,  2010,  DOI:10.1038/NPHYS1701  

[27]  Rodionov,  B.U.,  Acceleration  of  ions  and  nuclear  reactions  in  cavitating  liquids,  in  proceedings  of  the  3rd  All-­‐Russian  Conference  on  Science  and  Technology,  p.  125-­‐127,  2002,  http://library.mephi.ru/data/scientific-­‐sessions/2002/3_Konf/1132.html  

Page 21: Cavitation Hydrocarbon Cracking

  21  

Facilities  

Quantum  potential  has  necessary   facilities   to  conduct   the  project  work  outlined   in  this  proposal,  except  for  the  metal  hanger  that  must  be  rented  for  the  purpose  of  this  project.  The  hanger  must  be  rented  for  safety  reasons  and  because  the  industrial  100kW  3-­‐phase  220V  power  required  to  drive  the  equipment.  

 

Equipment  

Quantum  potential  has  necessary  tools  and  equipment  to  conduct  the  project  work  outlined   in   this  proposal.  We  propose   to  purchase  an  aftermarket  gas   chromatograph  (e.g.  Varian  CP-­‐3800)  since  it  will  be  more  economical  in  the  long  run  than  the  3rd  party  chromatography   fees   (e.g.   available   via   Penn   State   Energy   Institute   public   laboratory  services).  

 

Budget  Justification  

1. Gas  chromatograph  (e.g.  Varian  CP-­‐3800):  $10,000  2. Centripetal  pump  for  retrofitting,  used:  $1,280  3. Varispeed  3-­‐phase  frequency  control  unit,  used:  $900  4. Miscellaneous  parts:  pipes,  fittings,  flow  detectors,  pressure  gauges:  $5,000  5. High-­‐Accuracy  temperature  acquisition  system  with  USB  data  logging  capability:  

$2,500  6. Machine  shop  fees:  $9,800  7. Stainless  steel  slabs  for  machining:  $1,500  8. Hanger  rental  with  3-­‐phase  100kW  commercial  power,  6  months:  $9,000  9. Third-­‐party  consultation  fees:  $10,000  10. Crude  /  oil  sample  freight  and  costs:  $4,000  11. Travel  (estimate):  $10,000  12. Publication:  $500  13. Lab-­‐assistant  compensation,  6  months:  $18,000  14. Co-­‐investigator  compensation,  6  months:  $36,000  15. PI  compensation:  $18,000  

TOTAL:  $145,310  

 

Page 22: Cavitation Hydrocarbon Cracking

  22  

Max  Fomitchev-­‐Zamilov,  Ph.D.  

Director,  Quantum  Potential  Corporation  

861  Willard  St,  State  College,  PA  16803,  814-­‐235-­‐9785,  max@quantum-­‐potential.com  (preferred)  

Assistant  Professor  of  CS&E,  Pennsylvania  State  University  

111J  IST,  University  Park,  PA  16802,  814-­‐863-­‐1469,  [email protected]    

Biographical  Sketch  

Dr.   Fomitchev-­‐Zamilov   is   the   director   of   and   the   vision   behind   the   Quantum  Potential   corporation.   The   mission   of   the   company   is   identification,   analysis   and  exploration   of   promising   yet   neglected   lines   of   research   with   the   focus   on   high-­‐risk/high-­‐payoff   projects   (very   much   inline   with   the   recent   SBIR   and   DoE   initiative).  During   the   past   decade  Quantum   Potential   has   amassed   a   vast   portfolio   of   research,  sponsored   and   launched   a   number   of   research   project   and   obtained   patent-­‐pending  commercializable  results.  Currently  Quantum  Potential  is  actively  pursuing  cooperation  with  NASA,  NIH  and  DoE.  

Dr.   Fomitchev-­‐Zamilov’s   role   is   that   of   a   physicist,   engineer,   and   administrator.  Having  cultivated  broad  encyclopedic  knowledge  from  various  disciplines  in  science  Dr.  Fomitchev-­‐Zamilov   is   working   on   pursuing   collaboration   between   like-­‐minded  individuals   and   organizations   in   order   to   facilitate   the   nucleation   of   the   next  technological  breakthrough.  

Under   Dr.   Fomitchev-­‐Zamilov’s   guidance   Quantum   Potential   has   established  strategic   partnerships   and   collaborations   with   Superconductive   Microelectronics  Laboratory   (SCME)   at   Moscow   Institute   of   Electronic   Engineering   (MIEE),   Central  Scientific  Research  Institute  at  the  Smolensk  State  Medical  Academy  (SGMA),  EarthTech  corporation  operated  by  renown  physicist  Harold  Puthoff  and  others.  

With   several   new   projects   scheduled   to   launch   in   2011   Quantum   Potential   is  expanding  and  moving  closer  towards  accepting  private  investments  and  spinning  off  of  the  developed  projects.  

Education  

2000-­‐2001,  Moscow  Institute  of  Electronic  Engineering,  Ph.D.,  Computer  Engineering  

1997-­‐1998,  The  University  of  Tulsa,  Ph.D.  Candidate,  Computer  Science  

1992-­‐1997,  Moscow  Institute  of  Electronic  Engineering,  M.S.,  Computer  Technology  

Positions  

2006-­‐present,  Pennsylvania  State  University,  Assistant  Professor  of  Computer  Science  

2002-­‐present,  Quantum  Potential  Corporation,  Director  

Patents  &  Publications  

Dr.  Fomitchev-­‐Zamilov  has  authored  two  books  and  dozens  of  papers  and  articles  in  the  field  of  computer  science,  engineering  and  physics;  he  also  holds  two  patents.  

Page 23: Cavitation Hydrocarbon Cracking

  23  

 

 

Relevant  Publications  

Fomitchev,  M.I.,   US6167758,   Ultrasound   Imaging   Device   that   Uses   Optimal   Lag   Pulse  Shaping  Filters,  issued  01/02/2001.  

Fomitchev  et  al.,  Ultrasonic  Pulse  Shaping  with  Optimal  Lag  Filters,  International  Journal  of  Imaging  Systems  and  Technology,  10,  5,  pp.  397-­‐403,  1999  

Grigorashvily,   Y.E.,   Fomitchev,   M.I.,   Ultrasound   System   with   Pulse-­‐Shape   Control,  Izvestia  vuzov,  Electronika,  2,  pp.  70-­‐74,  2000  

Fomitchev,  M.I.,  Introduction  into  Wavelets,  Matematicheskaya  Morfologiya,  Smolensk,  3,  1,  1998  

Fomitchev   et   al.,   Cost-­‐Effective   Ultrasound   Imaging   Apparatus   that   Uses   Optimal-­‐Lag  Pulse  Shaping  Filters,  1999  IEEE  International  Ultrasonics  Symposium  Proceedings,  1,  pp.  691-­‐694,  1999  

Grigorashvily,   Y.E.,   Fomitchev,   M.I.,   Ultrasound   System   with   Pulse-­‐Shape   Control,   In  Proceedings  of  International  Conference  “Sensor-­‐2000”,  Sudak,  pp.  112,  2000  

Fomitchev,   M.I.,   Dark   Matter   and   Dark   Energy   as   Effects   of   Quantum   Gravity,  http://arxiv.org/abs/1009.1369,  2010  

Page 24: Cavitation Hydrocarbon Cracking

  24  

Sergei  Godin  R&D  Director  (Quantum  Fusion  &  Quantum  Vortex),  Quantum  Potential  

861  Willard  St,  State  College,  PA  16803,  814-­‐235-­‐9785,  sergei@quantum-­‐potential.com    

Biographical  Sketch  

Mr.  Godin   is  an  experienced  practitioner  and  an  exceptional  experimentalist.  He   is  an   expert   in   electrical   engineering,   digital   /   analog   electronics,  measurement   devices  and   experimental   setup   design.   Prior   to   joining   Quantum   Potential   Mr.   Godin   has  worked  as  an  engineer  at  the  Central  Research  Institute  for  Communications  (Moscow),  then   as   a   research   associate   at   IMASH   (Moscow)   and   for   the   following   12   years   as   a  research  associate  at  the  Institute  for  High  Temperatures  (IHT)  of  the  Russian  Academy  of  Sciences.  During  his   tenure  at   IHT  Mr.  Godin  was  a  key   investigator   in  a  number  of  research   projects   focused   on   sonoluminescence,   cavitation,   plasma   discharges,   and  nuclear  fusion.  

Because   of   his   prior   experience   with   hydrodynamic   cavitation   and   oil   cracking  pumps   (especially   those   of   Kladov/Selivanov   design)   and   his   personal   friendship   with  Mr.  Selivanov  ,  Mr.  Godin  is  a  necessary  co-­‐investigator  for  the  project  described  in  this  proposal.    

Mr.  Godin  has  a  valuable  experience  of  research  commercialization  and  has  a  knack  for   discovering   multiple   practical   applications   of   scientific   ideas.   He   leads   a   diverse  group   of   cross-­‐disciplinary   researchers.   Besides   his   duties   at   Quantum   Potential   Mr.  Godin  servers  as  a  consultant  on  a  oil   cracking   research  project   for  a   large  Russian  oil  and  gas  company.  

Mr.   Godin   has   co-­‐authored   a   book   on   fundamental   physics,   numerous   research  papers  and  holds  several  patents.  

 

Education  

1988-­‐1989,  Moscow  State  University,  MechMat,  Ph.D.  Candidate  

1982-­‐1983,   Moscow   Institute   of   Radio-­‐engineering   and   Automation,   Certificate   of  Accomplishment  in  Signal  Processing  

1976-­‐1981,   Moscow   Institute   of   Communications   and   Informatics,   M.S.,   Electrical  Engineering  

 

Positions  

1996-­‐2008,  Institute  for  High  Temperatures  of  Russian  Acad.  of  Sci.,  Research  Associate  

2010-­‐present,  Quantum  Potential  Corporation,  Research  Associate  

Page 25: Cavitation Hydrocarbon Cracking

  25  

Relevant  Publications  

1. Karimov,   A.R.,   Godin,   S.M.,   Coupled   radial–azimuthal   oscillations   in   twirling  cylindrical  plasmas,  Physica  Scripta,  80,  3,  2009  

2. Godin,  S.M.,  Botvinsly,  V.  V.,  Measurements  of  displacement  current  with  fammeter,    Radiotechnology  &  Electronics,  54,  9,  2009,  1049-­‐1152  

3. Godin,  S.M.,  Rodionov,  B.U.,  Savvatimova,  I.B.,  Inspection  method  to  check  quality  of  nuclear   transmutation   media,   The   13th   International   Conference   on   Condensed  Matter  Nuclear  Science,  2007,  Dagomys,  Russia  

4. Roschin,   V.V.,   Godin,   S.M.,     Orbiting   Multi-­‐Rotor   Homopolar   System,   US   Patent  #6,822,361,  2004  

5. Klimov  et  al.,  On  the  possibility  of  electrostatic  relativistic  dimano,  Radiotechnology  and  Electronics,  49,  11,  2004,  1237-­‐1243  

6. Klimov   et   al.,   The   use   of   the   relativistic   effect   for   obtaining   negative   permittivity,  International  Conference  on  Antenna  Theory  and  Techniques,  Sevastopol,  Ukraine,  vol.  1,  2003,  171  –  172  

7. Klimov   et   al.,   The   model   of   creation   of   rotating   stationary   electromagnetic  formations  in  vacuum,  International  Conference  on  Antenna  Theory  and  Techniques,  Sevastopol,  Ukraine,  vol.  1,  2003,  173  –  177    

8. Zolotarev,   V.F.,   Roschin,   V.V.,   Godin,   S.M.,   On   the   Structure   of   Space-­‐Time   and  Certain  Fundamental  Interactions,  Moscow,  2000,  ISBN  5862030875