cây sử lý nước thải

Upload: langquen999

Post on 07-Jul-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 cây sử lý nước thải

    1/10

    Multiphysics modelling 

    of   ow  dynamics,  biolm development  and

    wastewater 

    treatment in 

    a subsurface 

    vertical ow  constructedwetland

     

    mesocosm

    Amin Reza Rajabzadeh a, Raymond L. Leggea, Kela P. Weber b,*aDepartment of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, CanadabEnvironmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4, Canada,

    R  

    L  

    O

     Article  history:

    Received 

    April 

    2014

    Received   in  revised  form  17  September  2014

    Accepted  30  September  2014

    Available  online  xxx

    Keywords:

    Constructed  wetland

    Computational  uid   dynamics

    Biolm

    Microbial  communities

    Porosity

    Clogging

    Wetland 

    hydrology

    Wetland   modelling

    R  

    T

    A robust computationaluid dynamics (CFD) model accounting for both spatial and temporal dynamics

    of a subsurface vertical ow treatment wetland system was developed by combining uid transport,

    solute transport, biokinetics, biolm development, and biolm detachment/sloughing using COMSOL 

    MultiphysicsTM. 

    The local porosity of the porous media was calculated based on the estimated biolm

    development over time. The biolm development sub-model considered both organic pollutant

    metabolism/degradation as a mechanism for microbial growth and the effect of uid shear stress on the

    local biolmdetachment. Theinuence of biolm accumulationon thepermeabilityof theporousmedia

    wasconsideredusingthe Kozeney–Carmanrelation. Thepermeability of theporousmediawasestimated

    by calibrating the model against experimental tracer data that had been collected in a full water-

    recirculation batch operation. As the biolm developed from start-up, removal ef ciency of readily

    biodegradable organic matter improved during the rst 10 weeks of operation while no signicant

    change was predicted after 10 weeks. A dead-zone region was predicted near the bottom of the system

    opposite to theoutowport after 100 days of operationattributed to exponential biolm growthand low

    biolmdetachment rates.A decrease of95%in theadvective transportof organic matterin thedead-zone

    region occurred after 280 days of operation. No appreciable biolm accumulation was predicted in the

    region near the outlet due to the high uid shear stress acting on the biolm surface. The averaged

    porosity of the mesocosm decreased by 6.6% after 365 days of operation while the local porosity in the

    dead-zone region decreased by 71%. Good agreement was found between the averaged porosity of the

    entiresystem andexperimentaldata.This is therst modelto integratehydrodynamics, solutetransport,

    biokinetics relating to pollutant removal, biolm development, and biolm detachment into a

    comprehensive model. Although computationally intensive, this is therstmodel to predict bio-clogging

    processes in a spatial manner similar to what would be realistically expected.

    ã 2014 Elsevier B.V. All rights reserved.

    1. Introduction

    Constructed  wetlands   (CWs)  are  engineered  ecosystems

    comprised  of   vegetated  media  and  colonized  microorganisms   that

    employ  natural   processes  that  can  be  used  to  assist  in  treating

    wastewater  (Vymazal  and  Kröpfelová,  2008). Constructed  wet-

    lands   are  a  proven   and  effective  technology   to  remove   organic

    matter,  nutrients,  pathogens,   and  other  pollutants  from  wastewa-

    ter  (Garcia  et  al.,  2010).

    One  of   the  operational  problems   associated  with   CWs  is

    clogging   of   the  granular   media  (Caselle-Osorio  et  al.,  2007;

    Knowles   et  al.,  2011  Knowles   et  al.,  2011).  The  main  contributors

    to  clogging   are  accumulation   of   particulate  matter   and  biolm

    development,   with  biolm development  being  largely   the  result  of 

    microbial   attachment   and  growth   on  the  support  media  (Langer-

    graber   et  al.,  2003).  Clogging  has  various   effects  on  the

    hydrodynamic   characteristics   of   CWs  by  lowering   the  porosity

    and  permeability  in  specic areas  of   a  wetland   bed  (Kadlec  and

    Wallace,   2008;  Pedescoll  et  al.,  2009,  2011;   Sharp  et  al.,  1999;

    Weber  and  Legge   2011).  Changes   in  the  hydrodynamic   character

    results  in  preferential  water   ow  along  the  treatment  wetland   and

    dead-zone  regions  decreasing  overall  contact   time  and  thus

    treatment   ef ciency   (Garcia   et  al.,  2005;  Persson  et  al.,  1999;

    Platzer  and  Mauch,1997).  Previous  work  has  focused  on  theoretical

    models  that   take  into  account   the  effect  of   suspended  solids  on

    clogging   of   the  porous  media  without   consideration  of   the  effects*  Corresponding  author.

    E-mail  address:  [email protected]  (K.P.  Weber).

    http://dx.doi.org/10.1016/j.ecoleng.2014.09.122

    0925-8574/ã  2014  Elsevier  B.V.   All  rights  reserved.

    Ecological  Engineering  74  (2014)  107–116

    Contents 

    lists 

    available 

    at 

    ScienceDirect

    Ecological 

    Engineering

    journal   homepage:  www.else vie r .com/locate/e  coleng

    mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://www.sciencedirect.com/science/journal/09258574http://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.elsevier.com/locate/ecolenghttp://www.sciencedirect.com/science/journal/09258574http://dx.doi.org/10.1016/j.ecoleng.2014.09.122http://dx.doi.org/10.1016/j.ecoleng.2014.09.122mailto:[email protected]://crossmark.dyndns.org/dialog/?doi=10.1016/j.ecoleng.2014.09.122&domain=pdf

  • 8/18/2019 cây sử lý nước thải

    2/10

    of   biolm  development  (Blazejewski  and  Murat-Blazejewska,

    1997;  Kawanishi   et  al.,  1990;   Langergraber   et  al.,  2003). These

    models  result  in  the  overestimation   of   clogging   time   (Langergraber

    et  al.,  2003),  possibly  due  to  biolm  dynamics   being  ignored  in  said

    models.

    Good  engineering  design  of   CWs  requires  insight   into  the

    internal   chemical   and  biological   processes  as  well   as  an

    understanding  of   the  hydrological   characteristics   of   the  system.

    Tracer   experiments  have  been  used  to  study  the  effect  of   design

    parameters   on  the  hydrodynamic   behavour   of   CWs (Huang  et  al.,

    2005;  Molle  et  al.,  2006;  Suliman  et  al.,  2006,  2007).  Tracer

    experiment  methodologies  can  be  relatively   expensive  and  often

    impossible  to  perform  in  eld  situations;  therefore,  mathematical

    models  are  increasingly   sought   to  study  the  hydraulic   character-

    istics  of   many  subsurface  environments,   including  CWs.  A  variety

    of   analytical   and  numerical  models  are  available   to  predict  water

    and  solute  transport  processes  in  porous   media.  Analytical

    solutions  of   mass  transport  are  limited  to  simplied  transport

    systems   with   linear  reaction  rates  (Higashi  and  Pigford,   1980;   van

    Genuchten,   1985).  Since  a  large  number   of   physicochemical   and

    biological   processes  occur  simultaneously  in  CWs,  analytical

    models  provide   limited  insight  into   their  performance  aspects.

    As  a  result,  mechanistic  models  with   numerical  solutions  are

    required  to  capture   the  complexity   of   CWs  (Langergraber   andŠimùnek,  2005,  2012;   Llorens  et  al.,  2011;   Mburu  et  al.,  2012;

    Samsó  and  García,   2013)  rather  than   simple  rst  order  decay

    models  (Kadlec  and  Wallace,   2008;  Stein  et  al.,  2006;  Tomenko

    et  al.,  2007).  First  order  decay  models  are  site  specic and  neglect

    the  effect  of   important  factors  such  as  ow  behavior,  microbial

    growth/biolm  development,  and  solids  accumulation  on  the

    operation  of   CWs (Garcia   et  al.,  2010). The  majority   of   reported

    mechanistic  models  for  CWs  have  been  developed  based  on

    advanced  activated   sludge  biokinetic  models  (ASMs)  proposed  by

    Henze  et  al.  (2000)  to  predict  the  biochemical   transformation  and

    elimination  of   dissolved  organic  matter,  nitrogen   and  phospho-

    rous.  A  macroscale   biolm  sub-model  was  considered  in  the  bio-

    kinetic  model  of   Samsó  and  García   (2013)   to  simulate  the

    development  of   different  microbial   communities  in  CWs,  whichwas  not  considered  in  earlier  models  proposed  by  Langergraber

    and  Šimùnek   (2005,  2012),),Llorens  et  al.  (2011),  and  Mburu  et  al.

    (2012).  The  biolm sub-model  accounted   for  the  pore  volume

    reduction  that  results  from  biolm  growth  and  accumulation  of 

    inert  solids.  Although   biolm  development  has  been  reported  to

    signicantly   affect  the  hydrodynamic   characteristics  of   porous

    media,  constant   hydrodynamic   parameters  were  applied  in  their

    proposed  model.  The  work  resulted  in  a  proposed  cartridge  theory

    for  clogging   by  Samsó  and  García   (2014). The  model  accounted   for

    the  interaction   between  the  bacterial  community   and  the

    accumulation   of   inert  solids.  Two  linear  negative   feedback

    functions   were  introduced  to  the  bacteria  growth   rate  expression

    to  account   for  limitless  growth   of   bacteria  and  porosity  reduction

    as 

    result 

    of  

    solids 

    accumulation. 

    The 

    solids 

    accumulation 

    limitedavailable   space  and  substrates  for  bacterial  growth.  Results

    suggested  that  the  zone   containing   an  active   microbial  community

    moves  toward  the  outlet  of   the  subsurface  horizontal   ow  wetland

    as  a  result  of   progressive   clogging   with   inert  solids.  Although   the

    cartridge   model  did  not,   from  a  hydrodynamics   perspective,  give  a

    prediction  similar  to  what  is  seen  in  practice,  the  model

    represented  a  progression  towards  linking  biolm  and  solids

    accumulation   to  constructed  wetland   performance  and  function.

    The  effects  of   ow  behavior   and  local  shear  stress  on  biolm

    detachment,   which   are  governed   by  biolm  development  and  pore

    volume   reduction  rate,   were   neglected  in  the  model  proposed  by

    Samsó  and  García   (2014)  possibly  contributing   to  the  moving-

    cartridge   type   overestimation  of   clogging   in  their  model.

    The  overall  objective  of   this   work  was  to  explore  the  effect  of 

    biolm  development  on  the  wetland’s hydrodynamic  character-

    istics  to  ultimately   better  understand  water  treatment  variation

    and  dynamics   for  full  scale  CWs.  A  robust  computational  uid

    dynamics   (CFD)  model  was  developed  that   accounted   for  spatial

    and  temporal   dynamics   within   a  treatment  wetland  mesocosm  by

    combining   uid  transport,   solute  transport,  biokinetics,  biolm

    development,  and  biolm  detachment   sub-models  using

    COMSOL 1 Multiphysics.

    2. 

    Materials 

    and 

    methods

     2.1.   Experimental  set-up

    The  wetland  mesocosms   used  to  calibrate  and  validate the

    model  have  been   described  in detail by  Weber  and  Legge (2011).

    The  wetland  mesocosms   consisted  of   a  PVC  cylinder  (80  cm  tall;

    25  cm  diameter)   lled  with  pea  gravel   (average   equivalent

    diameter  of   1  cm,  80%  limestone)  and operated  to  70  cm  with

    water  (Fig.  1). Water  was  pumped  (a)  from  the  lower  portion   of 

    the  wetland  to  the  upper   region  (b),  ensuring continuous  cycling

    of   the  feed  as it  moved  downwards   (c). The wetland  was  tted

    with  an injection  (d) and  sample  (e) port  for sampling  or  tracer

    injections. The mesocosms  could  be  drained  using  the  bottomport  (f). Water  was fed to  the  top  of   the  system  10  cm  below  the

    surface  of   the  gravel   via  a  perforated  PVC  pipe. The top  10 cm  of 

    gravel   simply  covered  the  feed  inlet  pipe (no  water passed

    through  this  top  10  cm  region).  The  ow  regime  for modeling

    purposes in  these  systems  can therefore  be  described  as saturated

    (top  10cm ignored  as no ow  occurs here).  Oxygen  was

    constantly  supplied   to  these   systems  through  mixing and

    diffusion   at the  sampling port  during  water  cycling from  the

    bottom  to  the  top  of   the  system  and  wasconsistently  measured  as

    4–5  mg/L.  Each week  the  mesocosm  was lled with  fresh

    simulated  wastewater   and operated  under  constant  recycle  for

    1  week.   The  simulated  wastewater  consisted  of   1g/L   molasses,

    0.049  g/L   urea,  0.0185   g/L   NH4H2PO4,  yielding   a  COD  of   500   mg/L 

    and a  COD:N:P  ratio  of   100:5:1  (Weber  and  Legge,  2011). After1  week  the  mesocosm  was  drained  before   rell  and  the  porosity

    was  measured   (measured  as the  amount  of   water  required to  ll

    a

    d e

    b

    c

    7  0  c m

    25 cm

    Fig.  1.  Unplanted  wetland  mesocosm  schematic.  Water  was  circulated  via   a  small

    centrifugal  pump  (a)  to  the  mesocosm  (b)  and  allowed  to  percolate  through  the  pea

    gravel  bed  and  collected  at  the  bottom  (c).  An   atmosphere  exposed  port  served   as  an

    injection  (d)  and  sampling  (e)  point.  A  drainage  port  was  located  near  the  bottom  (f)

    for  mesocosm  drainage.

    108   A.R.  Rajabzadeh  et   al.  /   Ecological  Engineering   74  (2014)  107 –116

  • 8/18/2019 cây sử lý nước thải

    3/10

    the  systems  after  a  complete  drain).  For  calibration of   the

    hydrodynamic  characteristics  of   the  model, a  tracer  study  was

    performed   using  10  mL   of   a  200   g/L   sodium  bromide  solution.   The

    tracer  concentration  was  measured   based  on  the  conductivity  of 

    the  solution   passing  through  the  sampling port  over   time.  The

    removal  of   organics  from  the  simulated  wastewater   was

    evaluated using  chemical  oxygen   demand (COD)  according  to

    Standard  Method  5220D. Unplanted  wetland  mesocosms  were

    considered  for model calibration  to  identify the  porosity  change

    with  biolm  development  in  an environment  not  affected  by

    plant root  development,  root  exudates  or  root  degradation

    products.

     2.2. 

    Model 

    development 

     2.2.1. Governing   equations

    A  variety  of   analytical and  numerical  models are available  to

    predict  water  and  solute  transfer  processes  in  porous  media. The

    free  and  porous  media ow  interface  in  COMSOL   (COMSOL,  Inc.,

    USA)  was  used  to  estimate ow  behavior  in   a  saturated  porous

    media. This  interface  uses   the  Navier–Stokes  equations  for

    describing the 

    ow

     

    in 

    open regions, 

    and the 

    Brinkman 

    equationsfor the  ow  in  porous  regions.  Darcy’s  law  has  been   used   widely

    in  the  literature  to  describe  velocity  and pressure  proles of   ow

    in  porous  media (Liolios   et  al., 2012; Samsó and  García,  2013;

    Llorens  et al., 2011). One  of   the  main   driving  forces   for using  the

    Darcy  equation  is its  ease of    use   and lighter  computational

    requirements  in   numerical  models. In  the  present  study  the

    authors  opted  for a  more  computationally  demanding, yet  more

    physically  accurate  description   of   uid ow.  Darcy’s  law  provides

    a  linear relationship between  hydraulic  gradient  and  velocity  of 

    ow  in  porous  media by  ignoring  the  viscous  and inertia effects

    to  the  uid ow.  For  the  situation considered  here,  water  is

    owing  through  a  coarse  media (pea  gravel).  The  relationship

    between  velocity  and hydraulic  gradient  can be  non-linear for

    ow  through  coarse   sand and  gravel,  therefore  the  Darcy

    equation  was not  used  (Reddy  and  Rao, 2006;   Crites  et  al.,

    2014).  The  Brinkman  model extends  Darcy’s  law  to  include  the

    viscous  transport  and  inertia term  in   the  momentum  balance.

    The  dependent variables in  the  Brinkman equations  are the

    directional  velocities  and pressure.  The  ow  in  porous  media is

    governed  by  a  combination  of   the  continuity  equation  and

    momentum balance  equation,  which  together  form  the  Brink-

    man  equation:

    @

    @t   e pr 

    þ  r ruð  Þ   ¼  Q br    (1a)

    r

    e p

    @u

    @t  þ ðurÞ

    u

    e p

     

    ¼  r p

    þr  1

    e pm ruþ  ðruÞT 

    2

    3mðr  uÞI

     

      mk þ  Q br

      uþ  F   (1b)

    where   m denotes   the  dynamic  viscosity  of   the  uid  (kg/(m  s)),  u

    is  the  velocity  vector   (m/s),  r is  the  density  of   the  uid  (kg/m3),  p  is

    the  pressure  (Pa),   e p  is  the  porosity,   k is  the  permeability  of   the

    porous   media  (m2),  and  Q br   is  a  mass  source  or  mass  sink

    (kg/(m3 s)).   Inuence  of   gravity   and  other  volume   forces  was

    accounted   for  via  the  force  term  F   (kg/(m2 s2)).  A  single  phase  liquid

    ow  was  considered  in  the  model  because  the  mesocosms  were

    operated  in  a  saturated  vertical   ow  conguration.   The  reaction

    and  transport  of   chemical   species  by  diffusion  and  advection  were

    calculated   using  Eq.  (2).

    @c 

    @t þ 

    urc ¼ 

    r Drc ð Þ 

    þ 

    (2)

    where   c   is  the  concentration   of   the  species  (g/m3),  D  denotes   the

    isotropic  molecular  diffusivity  (m2/s),  R  is  a  reaction  rate

    expression  for  the  species  (g/(m3 s)),  and  u  is  the  velocity  vector

    (m/s)  from  the  solution  of   Eq.  (1).

    Non-uniform  triangular  mesh  elements  with  different  reso-

    lutions  were  adopted  with   the  mesh  density  being  larger  near  the

    edge  boundaries.  Dense  boundary  layer   mesh  elements  were

    created   in  the  normal   direction  of   the  boundaries  to  capture   the

    thin   mass  boundary  layers   close  to  wall  boundaries.  COMSOL 

    Multiphysics   applies  nite   element  principles  to  discretize  the

    partial  differential  equations  into  a  set  of   differential  algebraic

    equations.   The  direct  solver   MUMPS  (multifrontal  massively

    parallel  sparse  direct  solver)  was  used  to  solve   the  resulting  linear

    system.  MUMPS  solves   linear  systems  with   the  multi-frontal

    method   and  direct  LU  (lower-upper)   factorization  of   the  sparse

    matrix.  The  simulation  was  assumed  to  converge   when   the

    weighted   absolute  residual  norm  was  less  than   105.  The  model

    was  run  to  simulate  a  one  year  start-up  period.  Each   modelled

    week  took   approximately   30  min  in  real-time  on  a  6.00GB  RAM,

    CoreTM i5-2.5  GHz  laptop.

     Table  1

    Coef cients  of   biokinetic  model  (Langergraber  and  Šimùnek,  2005)  and  physical  properties  used  in  the  CFD  model.

    Name  Expression  (units)  Description

    mmax,H   6  (1/d)  Maximum  growth  rate

    K s   1000  (g/m3)  Half   maximum  rateY H   0.63   True  yields  (biomass  produced/substrate  consumed)

    D 1 104 (m2/d)  Substrate  diffusion  in   water

    S S0   300   (g/m3)  Initial  readily  biodegradable  organic  matter

    C S0   0  (g/m3)  Initial  slowly  biodegradable  organic  matter

    C I   175  (g/m3) Inert  chemical  oxygen   demand

     X H0   0.01  (g/m3)  Initial  heterotroph   concentration

    rw   997  (kg/m3)  Water  density

    mw   0.000843   (Pa   s)  Water  viscosity

    e0   0.365   (1)  Initial  void  fraction

    rbulk   80  (kg/m3)

     

    Biolm  density

    Dcol   0.25   (m) Mesocosm  diameter

    Lcol   0.7  (m)  Mesocosm  height

    dp  1  (cm)  Average  gravel  diameter

    M   404  (1/m)  Specic  surface  area

    K  4.5 109 (m2)  Intrinsic  permeability

    k  452  (m/d)  Hydraulic  conductivity

     A.R.  Rajabzadeh  et   al.  /  Ecological  Engineering   74  (2014)  107 –116  109

  • 8/18/2019 cây sử lý nước thải

    4/10

    Dispersion  in  porous   media  occurs   due  to  varying   pore  sizes,

    varying   ow  velocity   in  pore  spaces,  and  tortuous   ow  paths

    (Selker  et  al.,  1999). In  large  scale  (macroscopic)   models  average

    velocity   is  used  to  describe  advection,   while   dispersion  is

    accounted   for  using  a  correction  term  called  dispersivity.

    Dispersivity  is  unique   to  each   specic modelling  situation  and

    needs  to  be  t  (usually  through  tracer  studies  and  model

    calibration).  Because  the  present  study  used  a  computationally

    robust  and  heavily   discritized  geometry  actual   local  velocities  are

    calculated  (water  velocity   and  direction  is  calculated  in  each  of   the

    1906  elements),  therefore  no  bulk  correction/tting  factor,  such  as

    dispersivity,   is  required.  Dispersive  phenomena  is  well  described

    using  the  fundamental  approach   applied  here  as  shown   in  Fig.  2

    (tracer  test  tting).   For  a  fundamental  description  and  a  direct

    comparison  of   microscopic  (present  study)  and  macroscopic  (eld

    scale)  dispersive  ux  modeling  see  Selker  et  al.  (1999)   or  other

    similar  fundamental  porous  media  literature.

     2.2.2. 

    Chemical 

    and 

    biological 

    reactions 

    in 

    the 

    biokinetic  

    model

    The  processes  considered  in  the  biokinetic  model  were

    hydrolysis,   mineralization  of   organic  matter,  and  a  lysis  process

    for 

    microorganisms 

    (Langergraber 

    and  Š

    imùnek, 

    2005; 

    Henzeet  al.,  2000).  Heterotrophic  bacteria  ( X H)  consume  readily

    biodegradable  organic   matters   (S S)  and  oxygen  to  grow  aerobically.

    A  Monod  type  function  with   a  limiting  factor   of   organic  matter   was

    used  to  express  the  growth   of   the  heterotrophs.   Oxygen  was  in

    excess   throughout   the  mesocosms  studied  here  due  to  the  vertical

    recycle   operation,  and  water  mixing  at  the  sampling  port.  For

    systems   with   multiple  limiting  factors  such  as  oxygen,  organic

    matter,  and  other   substrates/nutrients,  Monod  dual-substrate

    limitation  kinetics  are  recommended  (Wynn   and  Liehr,  2001;

    Brovelli   et  al.,  2011).

    dX Hdt 

      ¼  mmax;HS s

    K s þ  S s X H   (3)

    where  mmax,H is   the  maximum  aerobic  growth   rate,   S s  is   readily

    biodegradable  organic  matter   concentration  (a  portion  of   the  total

    COD  present),  and  K s is  the  half   maximum  rate.   Table  1  summarizes

    the  coef cients  used  in  the  biokinetics  model.  Lysis  of   the

    heterotrophic   organisms  results  in  slowly   biodegradable  organic

    matter.  A  simple  linear  relation  was  dened  to  represent  this

    process.

    dX H  ¼   bina;H X H   (4)

    where  bina,H represents  the  lysis  rate  coef cient.

    Hydrolysis   of   slowly   biodegradable  organic  matters  (C s)  to

    readily  biodegradable  organic  matter   was  considered  in  the  model

    using  Eq.  (5).

    dSsdt

      ¼  khCs=XH

    kx þ  Cs=XHXH   (5)

    where  kh   and  kx   are  hydrolysis   rate   constant   and  saturation/

    inhibition  coef cient  for  hydrolysis,   respectively   which   are  listed

    in  Table  1. Readily  biodegradable  organic  matter  removal   was

    therefore  dened  as

    dS sdt   ¼ 

     1

    Y Hmmax;H

    S sK s þ  S s

     X H   (6)

    where  Y H  is   yield  coef cient  representing  the  stoichiometric  link

    between  biomass  growth  and  organic  matter  (OM)  consumption

    and  is  dened  as  biomass  production/OM   consumption  (Langer-

    graber   and  Šimùnek,  2005).

    Fig. 

    2. 

    Simulated 

    and 

    experimental 

    tracer 

    curves 

    (A) 

    and 

    spatial 

    distribution 

    (B) 

    for 

    tracer 

    concentration 

    (1 

    g/L  

    initial 

    concentration) 

    as 

    function 

    of  

    time.

    110  A.R.  Rajabzadeh  et   al.  /   Ecological  Engineering   74  (2014)  107 –116

  • 8/18/2019 cây sử lý nước thải

    5/10

    The  spatial  growth   of   microorganisms   in  the  mesocosm

    geometric  domain  was  dened  using  a  distributed  ODE  interface

    in  COMSOL.  The  interface  allowed  for  the  integration  of   the

    ordinary  differential  equations  of   3  and  4  for  microbial   growth   in

    any  region   of   the  mesocosm  as  a  separate  phase  (representing

    biolm/solid  media)  from  the  uid  phase  while   the  hydrolysis   of 

    slowly   biodegradable   organic  matters  and  the  removal  of   readily

    biodegradable  organic  matter   (Eqs.  (5)  and  (6)  were  dened  in  the

    uid  ow  phase  (Eq.  (2)).

     2.2.3.  Biomass  detachment   rate

    Rittmann  (1982)  proposed  that  biolm  detachment   (or  loss)  is

    governed   by  uid  shear  stress  acting   on  the  biolm  surface  and

    developed  an  experimentally  based  equation  to  calculate  biolm

    detachment.   According   to  this  equation,  an  increase  in  the  ow

    rate  causes  a  decrease  in  biolm  volume   surrounding  substrate

    media  and  thus   an  increase  in  local  pore  volume.  The  effect  of   ow

    behavior   on  the  biolm  detachment   rate  was  considered  in  the  bio-

    clogging   sub-model  via  Eq.  (7)  proposed  by  Rittmann   (1982).

    Fig.  3.  Velocity  transects  along  the   y-axis  (A)  and   x-axis  (B)  after  8  weeks.

     A.R.  Rajabzadeh  et   al.  /  Ecological  Engineering   74  (2014)  107 –116  111

  • 8/18/2019 cây sử lý nước thải

    6/10

    bdet;H  ¼   2:29    106   mu  1    eð  Þ

    3

    dp2e3M 

     

    !0:58(7)

    where   bdet,H is  the  biomass  detachment   rate   constant,   u  is  the  local

    velocity   (cm/d),e is  local  porosity,   dp  is  averaged  spherical  gravel

    diameter  (cm),   M   is  specic surface  area  of   the  porous  medium

    (1/cm)   andm is  viscosity  in  g/cm/d.  A  uniform  gravel  size  with   a

    spherical  shape  was  used  for  determining  M .

     2.3. 

    Hydrodynamic  

    characteristics 

    of  

    the 

    mesocosm

    Biolm  was  assumed  to  consist  of   bacteria  as  a  solid  biolm

    phase  growing   on  the  gravel  within   the  pores.  The  local  porosity   of 

    the  porous  media  was  calculated  at  each  time   interval   based  on  the

    estimated  biolm  concentration   ( X H )   using  Eq.  (8).  The  local

    volume   of   the  biolm  was  calculated  over  time   from  the  calculated

    biomass  concentration  (XH)  known  biolm  density  (rBiolm),  and

    initial  void  fraction  (e0)  (Eq.  (8)).  The  velocity  and  pressure  prole

    was  updated  over  time  by  solving  Eq.  (1)a  and  b.

    e x;  y; tð  Þ  ¼  e0   1   X H   x;y;  zð   Þ

    rBioflim

        (8)

    Finally,   the  inuence  of   biolm growth  on  the  permeability  of 

    the  mesocosm  which   resulted  in  reduced  porosity  was  considered

    using  the  Kozeney–Carman  relation  in  the  following  form

    (Blazejewski  and  Murat-Blazejewska,  1997):

     x; y; t ð  Þ  ¼  kt ¼0e x;  y; zð  Þ

    e t   ¼  0ð  Þ

     

    3 1    e x;  y; zð  Þ1    e t   ¼  0ð  Þ

     

    2(9)

    The  Kozeny–Carman  relation  is  the  most  widely   used  semi-

    analytical   equation  in  the  porous   media  literature  (developed  from

    capillary  models)  relating  the  permeability  of   a  media  to  its

    porosity,   pore  shape  factor,  and  kinematic  viscosity.   The  equation   is

    mainly   used  for  homogenous   granular   porous  media  at  interme-

    diate  porosities  (Carman,  1937)  and  proved  to  be  applicable  in  thecurrent  modelling  study.

    COMSOL   is  a  computationally  powerful   platform  and  was

    selected  due  to  its  ability  to  model  local  hydrodynamic   properties

    such   as  water  velocity.  Mass  balances  are  calculated   between  the

    1906  mesh  elements,  and  these  elements  are  spatially  distributed

    in  2  dimensions.  Using  this   format  water  velocity   could  be  related

    to  shear  stress  and  biolm  detachment/sloughing   in  each

    individual   element.  The  sloughing  of   biolm  then  feeds  back   into

    the  hydrodynamic   model  recalculating  water  velocity  based  on  the

    new  available   pore  space.  If   OM  is  then  able   to  move  again  to  this

    local  element,  biolm  growth  can  re-occur,  thus   decreasing  the

    pore  space  available.   It  is  through  these  interacting   models  for

    hydrodynamics,   solute  transport,   biokinetics,  biolm growth,  and

    biolm  sluoghing  that   the  multiphysics   model  is  able  to  spatially

    and  temporally   describe  the  bio-clogging   phenomena.

     2.4.  Boundary  conditions

    At  the  inlet  of   the  mesocosm,  the  ow  was  assumed  to  be  fully

    developed  and  a  parabolic  ow  was  specied.  The  maximum

    velocity  (vz,max)  of   the  inlet  parabolic  ow  was  computed  from  the

    feed  owrate   and  the  dimension  of   the  inlet  pipe.  At  the  mesocosm

    outlet  the  pressure  was  assumed  to  be  atmospheric  pressure  (P out),

    as  an  open  sampling  port  provided  atmospheric  exposure  and

    water  mixing.  A  periodic  boundary   condition  was  considered  for

    the  OM  at  the  inlet  and  outlet  to  ensure  mass   continuity.   A  no  slip

    boundary   condition  was  dened  at  the  mesocosm  wall.

    3. 

    Results 

    and 

    discussion

    The  permeability  of   the  gravel  media  was  estimated  by

    calibrating  the  model  against  experimental  tracer  data  (Fig.  2)

    with   readings   taken  at  the  sampling  port  while  the  system   is  run  in

    total  recirculation  mode.  Fig.  2(A)  shows  the  tracer   concentration-

    time   distribution  with  consecutive   peaks  detected   at  each  passage

    corresponding  to  the  circulation  time.  The  peaks  are  due  to  local

    tracer  concentration   peaks  which   occur  before  the  solute  is

    completely   mixed   within   the  mesocosm.  The  mean  retention  time

    and  standard   deviation  of   the  tracer  distribution  were   248  s  and

    88  s,  respectively.   The  spread  of   each   peak  with   a  standard

    deviation  about  the  mean  residence  time  reects  the  extent   to

    which   the  ow  deviates  from  theoretical  plug  ow.  Generally  a

    peak  with   a  large  standard   deviation  reects   the  presence  of 

    channeling   or  the  presence   of   a  re-circulating  zone   (Persson  et  al.,1999).  The  maximum  tracer  concentrations   for  the  rst  and  second

    peaks  were   observed  at  approximately   220  s  and  440  s,  respec-

    tively.  Tracer   concentration   leveled  off   after  700  s  representing  a

    completely   mixed  system.  Fig.   2(A)  shows  that   the  model

    described  the  experimental  tracer  data   with   an  acceptable   degree

    of   accuracy.  The  mean   squared  error  (MSE)  between  experimental

    Fig. 

    4. 

    Simulated 

    biolm

     

    concentration 

    (left) 

    and 

    bio

    lm 

    concentration 

    surface 

    plot 

    in 

    the 

    mesocosm 

    after 

    365 

    days 

    (right).

    112   A.R.  Rajabzadeh  et   al.  /   Ecological  Engineering   74  (2014)  107 –116

  • 8/18/2019 cây sử lý nước thải

    7/10

    and  estimated  tracer   data  and  R2 were  7.9  104 and  0.99,

    respectively.   Fig.  2(B)  shows  the  spatial  distribution  of   tracer   along

    the  mesocosm  in  response  to  a  tracer  input  and  steady  state   ow

    conditions,  it  can  be  noted  that  near  the  bottom   of   the  mesocosm

    system   water   ow  is  directed   towards  the  outlet,  leaving  the

    general   area  opposite  the  outlet  (left  hand  side  given  Fig.  2(B))

    untouched   by  the  tracer  path.   Fig.  3  outlines   x-axis  and   y-axis

    velocity   transects   at  an  arbitrary  time  of   8  weeks,  and  exemplies

    the  ability  for  this   model  to  calculate   local  (microscopic)  velocities

    in  each  mesh  element.

    Fig.  4  showsbiolm development  as  a  concentration   (mg/cm3)

    within   specic regions  of   the  mesocosm  over  time.  The  initial

    concentration   (at  time  zero)  of   the  biolm  was  set  to  a  value   close

    to  zero  (1 105mg/cm3).  Fig.  4  focuses  on  results  for  three  regionsin  the  mesocosm  with   the  trends  of   biolm  growth   compared  with

    the  spatially  averaged  values   ð1=x    y

    Z  X 0

    Z Y 0

    XHdxdy.  These  three

    regions  were   chosen  and  evaluated   based  on  the  expected

    difference  in  development  due  to  spatial  placement.  Region

    1  was  at  the  outlet  where   a  consistently   large  water  velocity

    was  expected.  Region   3  was  selected  based  on  its  placement  in  an

    area  expected  to  see  a  lower   water  velocity;   intuitively,   Region

    3  runs  the  risk  of   becoming   a  dead-zone  due  to  its  placement  with

    respect  to  the  outlet  region  (as  can  be  seen  in  Figs.  2  and  3B).

    Region   2  was  placed  in  the  middle  of   the  mesocosm  as  it  was

    predicted  to  be  more   indicative   of   an  averaged   mesocosm  region.

    The  spatially  averaged  biolm  concentration  (whole   systemaverage)  increased  linearly  up  to  150  days  and  leveled  off   after

    approximately   300  days.   Biolm  concentration  in  Region   3  grew

    exponentially   up  to  200  days,   and  then  leveled  off   after  280  days.

    The  biolm  concentration   at  Region   3  was  approximately   3  times

    greater   than   the  averaged   biolm  concentration   due  to  the  low

    shear  stress  and  therefore  limited  biolm detachment.  At  the

    outlet  (Region   2),  biolm  detachment   was  high   due  to  the  high

    uid  shear  stress  acting   on  the  biolm  surface.  Biolm  concen-

    trations   of   0.1  and  32.9  mg/cm3 gravel  were   observed  after

    365  days   at  Regions   1  and  3,  respectively.   This  represents

    approximately   a  330  times  greater  biolm accumulation  in  the

    “dead-zone”  region  (Region  3)  in  comparison  to  the  high   shear

    outlet  region   (Region   1).  The  biolm  concentration   value   at  Region

    2 was  close  to  the  averaged  value   (3.0   mg/cm3).  The  balance

    between  biolm  growth  and  detachment   forces  was  the  main

    factor   determining  the  biolm  distribution  in  the  mesocosm.  The

    velocities   were   2.3   102m/s,  5 103m/s,  and  4.5  104m/s  at

    regions   1–3, respectively  reecting  signicant  differences  in  the

    biolm  development  in  the  same  regions.  According   to  Eq.  (7),

    biolm  detachment   rate   was  proportional  to  the  local  ow  velocity

    to  the  power   of   0.58   (Rittmann,   1982).

    Local  porosity  of   the  media  was  calculated  based  on  the  local

    biolm  concentration   and  biolm  density  (Eq.  (8)).  A  biolm

    density  of   80  kgdrymass/m3was  selected  in  the  calibration  process  to

    best  t  the  experimental  porosity  data  of   Weber  and  Legge   (2011)

    which   is  within   the  range  of   values   reported  in  the  literature   of 

    8.8–107.8 kg/m3 (Zhang   and  Bishop,  1994), 10–140  kg/m3 (Bishopet  al.,  1995), 60  kg/m3  (Wichern  et  al.,  2008),  and  25–67  kg/m3

    (Kwok   et  al.,  1998). The  simulated  porosity  was  within   acceptable

    agreement   with   the  experimental  data  with   an  R2 and  MSE  of 

    0.89  and  7.8  106,  respectively.

    Fig.  5  summarizes  the  porosity  changes   over  time.  Trends   for

    the  spatially  averaged  (overall   mesocosm  porosity)  and  experi-

    mental   data   match  quite  closely  over  the  development  period.  A

    progressive   reduction  of   porosity   over  time   was  observed  due  to

    biolm  development  on  the  gravel  followed  by  a  leveling-off   after

    Fig.   5.  Simulated  and  experimental  porosity  (left)  and  porosity  surface  plot  in  the  mesocosm  after  365  days   (right).

    0

    0.0001

    0.0002

    0.0003

    0.0004

    0.0005

    0.0006

    0.0007

    0.0008

    0 100 200 300 400

       A    d   v   e   c      v   e   F    l   u   x    (   g    /   m   2    /   s    )

    Days

    Region 1

    Region 2

    Region 3

    Fig. 

    6. 

    Simulated 

    advective 

    ux 

    of  

    organic 

    matter.

     A.R.  Rajabzadeh  et   al.  /  Ecological  Engineering   74  (2014)  107 –116  113

  • 8/18/2019 cây sử lý nước thải

    8/10

    300  d  of   treatment.  The  averaged  porosity   decreased  by  6.6%  after

    365  d  of   operation.   Simulated  data   showed   that   pore  volume

    reduction  occurs   with   various   rates   in  different  regions  in  the

    mesocosm.  The  local  porosity  of   media  for  Region   3  decreased  by

    71%  from  the  initial  value   of   0.365–0.104 after  365  d  compared  to

    0.22%  decrease  for  Region   1  (i.e.,  close  to  no  change).   Good

    agreement  can  be  seen  between  experimental  and  modelled

    results  for  porosity.   Samsó  and  García   (2014)  predicted  a  moving

    section  of   clogged  pore  space.  Here  a  more   isolated  "dead-zone"  is

    predicted  which   is  in-line  with  expectations  and  observations.

    Large  decreases  in  porosity  were  observed  in  Region   3  between

    150  and  250  days.   This   was  attributed  to  the  combination  of 

    exponential 

    growth 

    of  

    heterotrophic 

    bacteria 

    in 

    the 

    biolm 

    (Fig. 

    4)and  a  lack   of   shear  stress  for  biolm  detachment.   The  exponential

    growth   of   biolm slowed  after  150  d  due  to  the  limitations  of   local

    OM  required  for  the  growth   of   heterotrophic   bacteria  (OM  ux  to

    the  region  was  limited).  The  growth  of   biolm  was  essentially

    governed   by  advective   transport  of   OM  to  the  local  area.  The

    diffusive  transport  of   OM  was  3–4  orders  of   magnitude   lower  in

    this   region  than   the  advective   transport   in  other  regions.  The

    advective   transport  of   OM  in  Region   3  (Fig.  6)   decreased  by  82%

    after  365  days  of   operation  from  1.5105g/(m2 s)  to  2.7    106g/

    (m2 s)  which   helped  decrease  biolm  growth   after  280  days.   The

    advective   ux  of   OM  depends  signicantly   on  the  ow  behavour

    and  local  permeability  of   the  media  (Fig.  7).  Region  3  in  the

    mesocosm  exhibited  a  signicant  decrease  in  permeability  during

    the 

    rst 

    200 

    due 

    to 

    local 

    biolm

     

    development. 

    The 

    effect 

    of biolm  growth   on  the  permeability  of   the  media  was  considered  in

    the  model  through   Eq.  (9).  Over  time   permeability  of   the

    mesocosm  in  Region   2  decreased  by  22%  while   the  permeability

    in  Region   1  remained  unchanged.

    Effect  of   biolm  development  on  the  removal   ef ciency   of 

    readily  biodegradable  organic   matter   (OM)  is  presented  in  Fig.  8. As

    described  in  the  methods  section,  the  mesocosm  was  drained,

    relled  with   fresh  simulated  wastewater,  and  operated  in  a  recycle

    mode   each  week.  Fig.   8  represents  the  OM  concentration   in  the

    ef uent  for  the  rst  6  h  of   each  1-week  treatment  for  different

    weeks.  Based  on  the  results,  the  time  required  for  removal  of   all  the

    OM  for  a  one  week  batch   period  depended  on  the  treatment  week.

    The  OM  was  removed  in  less  than   5  h  during   the  second  week,  with

    decreasing  time   requirements  as  the  mesocosms  developed.

    Limited  organic  matter  removal  data  is  available   over   the  same

    modelled  time  period.  Week  5  experimental  OM  data   is  included  in

    Fig.  8  for  comparison.  A  general  agreement  between  experimental

    and  modelled  data  can  be  seen  with   the  exception   of   the  1  h  data

    point.   With   limited  data   it  is  dif cult  to  speculate  as  to  the  reasons

    for  this   time  point  discrepancy,   however   the  general   time

    requirement  for  OM  removal   is  reasonably  calculated.  The  time

    required  to  remove   the  OM  during  the  tenth   treatment  week  was

    about  3  h  which   was  31%  faster  than   that   of   week  2.  No  signicant

    change   in  the  OM  removal   curves   was  observed  after  10  weeks  of 

    operation.  Slightly  different  behavior   was  estimated  for  the  rst

    week  of   operation  (data  not  shown),   the  OM  was  estimated  to  be

    consumed 

    after 

    30 

    of  

    operation 

    due 

    to 

    the 

    low 

    initial 

    heterotro-phic   bacteria  concentration   (0.01  g/m3)  in  the  mesocosm.

    The  model  developed  in  this   work  has  implications  for  large-

    scale  subsurface  treatment  wetlands   where   biolm  development

    could  lead  to  preferential  water  ow  or  clogged   regions   in  the

    wetland.   Preferential  water  ow  could  result  in  dead  zones  and

    short  circuiting   or  channelling   which   will  have  negative   effects  on

    the  treatment  ef ciency  of   the  system  as  a  whole.   Therefore,  it  is

    extremely   important  to  assess,  understand,  and  prevent  conditions

    which   lead  to  channeled   ow  in  CWs  and  to  consider  them  in  the

    development  of   models  for  full  scale  systems.

    Fig.  7.  Simulated  normalized  permeability  (left)  and  normalized  permeability  surface  plot  in  the  mesocosm   after  365  days   (right).

    0

    50

    100

    150

    200

    250

    300

    350

    0  1  2  3  4  5  6

       R   e   a    d   i    l   y    b   i   o    d   e   g   r   e    d   a    b    l   e   o   r   g   a   n   i   c   m   a      e

       r

        (   m   g    /   L    )

    Hours

    Week 2Week 3

    Week 5

    Week 10

    Week 20

    Week 5_Exp. data

    Fig. 

    8. 

    Effect 

    of  

    biolm

     

    development 

    on 

    the 

    OM 

    removal.

    114    A.R.  Rajabzadeh  et   al.  /   Ecological  Engineering   74  (2014)  107 –116

  • 8/18/2019 cây sử lý nước thải

    9/10

    For  simplicity,   and  the  objective   being  the  focus  of   connecting

    hydrological/biolm  interactions   and  both   spatial  and  temporal

    analysis,  the  biochemical  transformation  and  elimination  of 

    dissolved  nitrogen   and  phosphorous  were   not  considered   in  the

    current  model.  The  effect  of   temperature,  evapotranspiration,   and

    rainfall  on  the  ef uent  pollution  concentration   should  also  be

    considered  in  a  future  version  of   the  model,  as  they  play  an

    important  role  on  the  water  balance   of   CWs  (Galvão   et  al.,  2010;

    Langergraber,   2008).

    The  microbial  metabolic  activity   within   a  biolmand  the  rate   of 

    growth  therein  is  controlled  by  the  concentration   of   substrates  that

    are  available   in  the  biolm  (Picioreanu  et  al.,  2004). Substrates  are

    transported  by  diffusion  from  the  bulk  uid  to  the  biolm  and  are

    consumed   by  the  biomass.  Due  to  differences  in  transport  of 

    substrates  and  the  resulting  penetration  prole,  it  is  expected   that

    biolm  microorganisms  are  exposed  to  different  substrate  con-

    centrations,   depending  on  their  location  in  the  biolm  (Ebert,

    2006).  This   also  has  not  been  captured   in  the  subject  model,

    however   could  be  added  to  future  models  through   a  biolm  sub-

    model.  In  a  separate   study  by  Murphy  et  al.  (2014), the  authors

    successfully  captured  biolm  diffusion  dynamics   in  a  model

    developed  to  predict  ammonium  diffusion  into   biolm,  nitrica-

    tion  reaction  rates,  and  diffusion  of   nitrate   out  of   biolms.  Further

    investigation   and  development   of   a  biolm sub-model  still  needsto  occur  before  such  dynamics   can  be  accurately   added  to  the

    model  of   the  present  study.

    One  of   the  rate-limiting  components   that   could  control  biolm

    growth  is  oxygen   concentration.   Some  of   the  biological   degrada-

    tion  processes,  such  as  organic  matter   degradation  and  nitrica-

    tion,  require  aerobic  conditions   (Langergraber,   2007).  The  lack   of 

    oxygen  deeper  in  the  biolm  (Bishop  et  al.,  1995) may  produce  a

    stable  anaerobic  environment   (Picioreanu  et  al.,  2004;  Ebert,

    2006).  The  biolm  sub-model  developed  in  this   work   will  be

    modied  in  the  future  work  to  describe  some  of   the  heterogeneous

    characteristics   of   biolms  and  the  resulting  effect  on  the

    biokinetics.  Although   oxygen   was  in  excess   throughout   the

    mesocosm,  it  is  believed  that  oxygen  could  become   one  of   the

    limiting  components   in  some  regions  (i.e.,  dead   zones)  andtherefore  the  multiple-substrate  Monod  equation   (Wynn   and

    Liehr,  2001  Sun  et  al.,  1999;  Brovelli  et  al.,  2011)  is  suggested  as  a

    useful  approach.

    The  accumulation  of   particulate  matter   (PM)  in  the  media  was

    not  considered  in  the  current  model  because  there  was  no  PM  in

    the  feed  wastewater.  Although  biolm  detachment   contributes  PM

    to  interstitial  water,  the  mesocosms  were  completely  drained  each

    week,  and  therefore  the  effects  of   PM  was  assumed  to  be  negligible.

    The  experiments  were   specically  designed  to  allow  for  this

    quantication   of   the  inuence  of   biolm  development  on  porosity

    and  other  hydrological   characteristics.

    One  of   the  benets  of   the  model  was  its  ability  to  estimate

    pollutant  uxes in  different  areas  spatially  and  temporally.   With

    the 

    use 

    of  

    this 

    feature, 

    the 

    effect 

    of  

    emerging 

    contaminants 

    such 

    asantimicrobials   on  the  development,   function  and  stability  of 

    bacterial  communities  is  planned  by  estimating  the  contaminant

    contact   time  for  different  regions.   Exposure  to  antimicrobials   has

    adverse  effects  on  biolm development,  the  ability  for  the  bacteria

    to  attach   to  the  bed  media,  and  the  ability  for  standard   life-

    sustaining  metabolic  processes  (Weber  et  al.,  2011).  Future   work

    will   incorporate   available   lab  scale  antibiotic   exposure  data  into

    the  treatment  wetland   model  to  gain  an  understanding  of   the

    effect  and  fate  on  full  scale  operational  systems.

    Many  vertical   ow  constructed  wetland  systems  are  now

    operated   using  drain/ll cycles,  have  partially  saturated  conditions

    near   the  top  sections,  or  include  aeration  piping  for  improved

    treatment  performance  (Nivala  et  al.,  2013). This  model  considers

    saturated 

    ow

     

    only. 

    If  

    partially 

    saturated 

    ow

     

    regime 

    is

    encountered   in  the  top  sections  of   a  vertical   ow  system  the

    Richard’s  equation   can  easily  be  implemented  in  COMSOL   and

    connected   to  the  saturated  regime,  this   would  however,  require

    two  separate  model  geometries  to  be  connected  by  an  additional

    boundary.  Adding   plants  into   the  current  model  would  not  be  a

    simple  task.  Using  COMSOL   there  is  an  opportunity  to  physically

    add  roots   as  actual   geometries  within   the  model,   no  ow  boundary

    conditions   would  then   be  set  around  all  root  geometries.  The

    authors  have  not  attempted   to  add  such  a  complexity   to  the  current

    model,  however  extended   runtimes  would  be  anticipated.   Addi-

    tion  of   plants  experimentally  has  been  shown  to  increase

    dispersion  in  these  types  of   systems  (Weber  and  Legge,  2011);  it

    would  be  expected   for  the  same   to  occur   if   plant   geometries  were

    added  into   the  current  model  as  described.

    Again  it  is  only  through   the  calculation  of   these  local  (in  each

    element)  conditions   that  both   spatial  and  temporal   dynamics   of 

    biolm  growth   was  captured.   No  other  model  in  the  constructed

    wetland   literature  has  gone   to  such  an  extent   to  describe  these

    interacting   dynamics.   This   is  the  rst  model  to  predict  bio-clogging

    processes  in  a  spatial  manner   similar  to  what  would  be  realistically

    expected.   This   model  also  marks  the  initiation  of   a  method   to

    investigate   different  design  aspect  ratios,  and  how  this  may  affect

    hydrological   development  and  contaminant   transfer/treatment  in

    treatment   wetlands.

    4. 

    Conclusions

    In  this  study ow  dynamics, biokinetics, biolm  development,

    and  biolm  detachment was incorporated  into  a  CFD  model  to

    study  the  dynamic  effect  of   biolm  development  on  the

    hydrodynamic  characteristics  of   a  subsurface   vertical  ow

    constructed  wetland  mesocosm.  The biolm submodel

    accounted  for organic  matter  metabolism/degradation   as a

    mechanism for microbial growth  and  the  effect  of   local  uid

    shear  stress   on  biolm detachment. The effect of   media-related

    biolm  development  on   the  porosity  and  permeability  of   a

    vertical  ow  constructed  wetland  mesocosm  is   highlighted.

    Biolm  development  caused  a  preferential  ow  in   the  mesocosm

    and  decreased  the  local  porosity  in  a  dead-zone  region  by  71%

    after  365  days   of   operation  while  the  average  porosity  decreased

    by  only 6.6%.  The porosity  of   media in  the  region  near the  outlet

    remained  unchanged  after  365  days  of   treatment  due  to  the  high

    biolm  detachment rate.  The  local  development  of   biolm  in  the

    dead-zone  region  and  the  region  near outlet was  controlled  by

    the  concentration  of   OM  required for bacterial  growth  and uid

    shear  stress,   respectively.  The  consumption  rate  of   OM  in the

    mesocosm  was found  31%  faster  in  the  10th week  than  the

    second  week  of   operation  due  to  higher  biolm  development

    and  remained  approximately  unchanged  after  10 weeks.  The

    simulated  average   porosity  was in  agreement  with  the  experi-

    mental  data with  the  R 2 and  MSE  values  of   0.89  and  7.8    106,

    respectively.  Realistic bio-clogging  processes   where  predicted,however  the  model was the  most  computationally  heavy  to  be

    yet  reported  in   the  constructed  wetland  literature.  With  a  few

    modications,  the  model  has potential  for application to  large

    scale  treatment  wetlands  to  assess, understand,  and minimize

    bio-clogging.

     Acknowledgements

    Support  from  NSERC   in  the  form  of   a  Discovery   grants   to  RLL   and

    KPW  and  from  ORF  in  the  way  of   funding  from  the  Centre  for

    Control  of   Emerging   Contaminants   (CCEC)  to  RLL   is  gratefully

    acknowledged.   We  would  also  like  to  thank   Dr.  Michael  Hulley  for

    his 

    insight 

    during 

    manuscript 

    revisions.

     A.R.  Rajabzadeh  et   al.  /  Ecological  Engineering   74  (2014)  107 –116  115

  • 8/18/2019 cây sử lý nước thải

    10/10

    http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0245http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0245http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0240http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0240http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0235http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0235http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0235http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0235http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0230http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0230http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0230http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0225http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0225http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0225http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0220http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0220http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0215http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0215http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0210http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0210http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0205http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0205http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0205http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0205http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0200http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0200http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0200http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0195http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0195http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0195http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0190http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0190http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0185http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0185http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0185http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0180http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0180http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0180http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0175http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0175http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0175http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0170http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0170http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0165http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0165http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0160http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0160http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0155http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0155http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0150http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0150http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0145http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0145http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0145http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0140http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0140http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0140http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0140http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0135http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0135http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0135http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0135http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0125http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0125http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0125http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0120http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0120http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0120http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0120http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0115http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0115http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0115http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0110http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0110http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0110http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0105http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0105http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0100http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0100http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0100http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0095http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0095http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0090http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0090http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0090http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0085http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0085http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0085http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0080http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0080http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0080http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0075http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0075http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0070http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0070http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0070http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0065http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0065http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0060http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0060http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0060http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0055http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0055http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0050http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0050http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0050http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0045http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0045http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0045http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0040http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0035http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0030http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0025http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0020http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0015http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0010http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0005http://refhub.elsevier.com/S0925-8574(14)00536-9/sbref0005