전자제품에적용되는부품의고장분석사례cbucc.com/pds_file/2002070155042.pdf · page...

Download 전자제품에적용되는부품의고장분석사례cbucc.com/pds_file/2002070155042.pdf · Page 1 전자제품에적용되는부품의고장분석사례 대우전자㈜ 품질신뢰성연구소

If you can't read please download the document

Upload: doanhuong

Post on 06-Feb-2018

238 views

Category:

Documents


13 download

TRANSCRIPT

  • Page 1

    [email protected]

    www.qreltech.com

    21

  • Page 2

  • Page 3

    To buildTo build--in reliability, electronics in reliability, electronics

    manufacturers need to know as much manufacturers need to know as much

    about about how things failhow things fail, as they know , as they know

    how things workhow things work..

  • Page 4

    Stress Damage Model[ N = f(m,g,p,e,d) ]

    Monte Carlo Simulation

    Lifetime Analysis

    Assessment

    Reliable Component

    =

    CD

    hTL

    N

    1

    42

    1

    Yes No

    Failure MechanismModel(Stress Model)

    =

    CN )2(2

    Test Method Environmental Condition Product & Component

    Material

    Triangular distribution

    ( LD, , h )

    Target

    SensitivityAnalysis

    DesignRevision

    Test MatrixDevelopment

    Failure Analysis

    Accelerated Testing

    Failure MechanismDetermination

    [ Damage Model

    ]

    Life Cycle Loads Structure

    MaterialStress

    Parameter

    Variables

    Reliability Assessment Process

  • Page 5

    Why failure analysis?

    To identify failure modes the way the product failed

    To identify failure sites where in the product failure occurred

    To identify failure mechanisms the physical phenomena involved in the failure

    To determine the root cause of the failure the design, defect, or loads which led to failure

    To correlate failure in test to failure in the field

    To aid in failure prediction and prevention

  • Page 6

    Failure Analysis Procedures

    A key to understanding the results of accelerated testingA key to understanding the results of accelerated testing

    Accelerated TestingAccelerated Testing

    Visual InspectionVisual Inspection

    Electrical TestingElectrical Testing

    NonNon--Destructive EvaluationDestructive Evaluation

    Destructive EvaluationDestructive Evaluation

    Failure Mechanism Failure Mechanism ModelModel

    Systematic Failure AnalysisSystematic Failure Analysis

    Failure DistributionFailure Distribution

    Reliability Growth MethodologyReliability Growth Methodology

    Acceleration FactorAcceleration Factor

  • Page 7

    OBSERVED

    PROBLEM

    How to solve the problem?

    Failure

    Mechanism

    Failure

    Root-Cause

    Failure

    Mode

    Failure Stresses

    Load (Internal/External Stress)

    Materials

  • Page 8

    (Lifetime Analysis)

    (MIL-HDBK-217F )

    - , ,

    -

    Arrhenius

    Stress

    , ,

    (Physics-of-Failure)

    Move to Science-Based Reliability

    Failure Analysis ,

    What is physics of failure?

  • Page 9

    , ,

    : , , 100

    University of Maryland, CALCE EPSC

    Georgia Institute of Technology, Arizona University, NASA

    Wyle Laboratory, SRI(Standford Research Institute) International

    : , , 50

    TRC (Toray Research Center)

    Matsushita Techno Research Center

    National Research Institute of Technology

    University of Tokyo, Fracture Mechanics Lab.

    : Fraunhofer IZM in Berlin

    : ALSTOM Co. (railway test center)

  • Page 10

    Project

    $4.5M

    (65,000$/) 30 ~ 40 Projects

    , , ( )

    :

    $1.4M

    Electronic Products and Systems Course (1999 ISO9001 )

    ( )

    : 12 42, 31 (2001 ) ; 73

    : M. Pecht (Director, Center Chief) A. Dasgupta (Qualification and Testing)

    S. Azarm (Decision Support) B. Han (Experimental Method)

    R. Mroczkowski (Connectors) D. Barker (Stress Management)

    Y. Joshi (Thermal Management) O. Ramahi (EMI and EMC)

    D. Bigio (Polymers) E. Magrab (Manufacturing)

    P. Sandborn (Cost Analysis, MEMS) P. McCluskey (Power Electronics)

    CALCE EPSC (University of Maryland)

  • Page 11

    (( : : Compressor)Compressor)

    :

    : 10% 90% 95%

    : Pd/Ps = 25/1 500hrs 2000hrs .

    : ( )

    :

    : , Leak

    : ( Stress History , )

    :

    ?

  • Page 12

    1.

    PAS(Photo Angle Sensor) IC Field

    :

    (1) : DPXXXXX

    (2) : On Semiconductor Co., Ltd

    (3) : XX PAS(Photo Angle Sensor)

    (4) : open

    (5) : 10EA

    Photo Angle Sensor HIC

  • Page 13

    N o n - d e s t r u c t i v e A n a l y s i sN o n - d e s t r u c t i v e A n a l y s i s D e s t r u c t i v e A n a l y s i sD e s t r u c t i v e A n a l y s i s

    Corrosion of Leads

    Package Cracks

    Shorts

    Opens

    ParametricShifts

    ContactResistance

    PackageDelamination

    PackageCracking

    Wire SweepBroken Wire

    Wire Fatigue

    Die Cracking

    Corrosion

    SDDV &Electromigration

    Bond Crackingor Bond Lift

    EOS / ESD

    IntermetallicGrowth

    KirkendallVoiding

    Delamination& Cracking

    Visual & LightMicroscopeExamination

    Electrical Testing ofComponent

    & Connector

    X-ray Radiography

    & SAM

    Decapsulationthen Optical

    and SEMVC & EBIC

    DestructiveCross-sectionSEM & EDS

    MechanicalTesting ofInternal

    Components

    Wire Pull

    Bond Shear

    Die Shear

    Step 1Step 1 Step 2Step 2 Step 3Step 3 Step 4Step 4 Step 5Step 5 Step 6Step 6

    2.

  • Page 14

    Electrical test (by curve tracer): Electrical open of Pin # 4 ( Reference photodiode input, 9/10 EA) Non-Destructive Inspection by Scanning Acoustic Microscope & X-Ray radiography

    - SAM : Delamination on the Die paddle(top, bottom), leadframe (10/10EA)- X-ray radiography : Package crack ( 7/10 EA)

    Microscopic analysis ( by SEM): Wedge bond breakage(open) of Pin # 4

    [X-ray image : Package crack] [ SEM Image :Wedge bond breakage and shift of pin #4 ]

    [ Electrical test : GND-Pin#4 Open ]

    SPL1 SPL2 SPL3 SPL4 SPL5

    SPL6 SPL7 SPL8 SPL9 SPL10

    SPL1 SPL2 SPL3 SPL4 SPL5

    SPL6 SPL7 SPL8 SPL9 SPL10

    SAM

    IMAGE

    [TOP]

    SAM

    IMAGE

    [BOTTOM]

    [ SAM IMAGE : Die paddle(top, bottom), Leadframe Delamination]

    curve

    open

    3.

  • Page 15

    Bonding wire breakage/open due to delamination or Popcorning crack

    Package delamination / Popcorning crack can (1) result in sheared or cratered ball bonds, causing electrical failures(2) lead to a long-term reliability problem, since the cracks can be a path for ionic

    contamination, causing corrosion-induced failures.

    Moisture IngressMoisture Absorption

    During Storage

    Moisture Vaporization

    During Reflow Soldering

    Plastic Stress Fracture/

    Bonding wire open

    Bonding WireOpen due to delamination

    Crack

    Pressure dome

    Delamination/ Void

    4. Failure Mechanism

  • Page 16

    When surface mount device is mounted, because the whole package is exposed to

    high temperature, there are problems such as delamination of resin from frame

    materials, or absorbed moisture inside package vapor blasts, resulting in

    package deformation or popcorning crack.

    Stress Concentration Site

    Interface Delamination Site

    Leadframe

    Bonding WireEMC

    Bonding WireBreakage/Open

  • Page 17

    Moisture Related Reliability Concerns

    Bond PadCorrosion

    Die MetallizationCorrosion

    Cracking

    Popcorning

    Delamination

    Tg Reduction

  • Page 18

    Field Magnetron LC Filter Feed Through

    Short

    Field Sample (Failure Analysis)

    (Failure Mechanism)

    Load-Strength Interference Model

    (Accelerated Life Testing)

  • Page 19

    Review Failure HistoryReview Failure History

    Failure Mechanism Failure Mechanism

    Visual Inspection(Naked eye, OM)

    - Mold Crack orDeformation

    Non-destructive Test(X-ray)

    - Epoxy Void- Crack- Terminal

    - Capacitance- Dissipation Factor- Insulation Resistance- ESR

    Destructive Mechanical Analysis

    - Crack- Delamination

    : Capacitor

    Acceleration Test

    Electrical Test

    : Wearout : Adhesive(, Tracking)Overstress : Partial Discharge, Avalanche

    Breakdown

    (B10 )

    : 80C ( )

    Non-Destructive Test

    Epoxy- (TMA)- , Tg (DSC)- (Shore-D)- Filler (TGA)- (FT-IR)

    Ceramic- (TMA)- (Porosity)- (Permittivity)- Micro-Morphology- Roughness

    Wearout Wearout Failure MechanismFailure Mechanism

    Overstress Failure MechanismOverstress Failure Mechanism

    Partial Discharge(Large Pore)

    Physical Analysis

    Load-Strength Interference Model( )

    Determination

    of Root-Cause

  • Page 20

    Adhesion depends on surface contact and surface condition

    Two failure modes:

    Adhesive Failure()

    Cohesive Failure()

    Substrate

    Adhesive

    BondingSurface

    Substrate

    Adhesive

    Adhesive Failure Modes

    Failure Mode

  • Page 21

    :(1) : (BaTiO3, Dielectric Type : Y5U)

    (2) : C , S (), T ()

    (3) :

    (4) : Short

    (5) : 9EA

    Terminal (SPCC)

    GND(SPCC)

    Cover (PBT)

    Epoxy

    Epoxy

    Silicone Tube

    Case(PBT)

    Ceramic Capacitor

    [ ] [ ]

  • Page 22

    1. Visual Inspection (Hi-scope Image)

    C

    [ ]

    2. (X-ray Radiography)

    [ ]

    Capacitor

    ()

    GND

    Capacitor

    Capacitor

    Terminal

    Terminal

    Capacitor

    GND

    Cap. Short

    Cap. Short

    X-ray 2/2EA CERAMIC 7/9EA

    [ : C ] [ : T]

    T

  • Page 23

    Capacitance, tan & Insulation resistance

    - Capacitance, tan(DF) : 10.5volts(rms), 1kHz (LCR Meter, )

    - Capacitance [Spec.500pF35%.(325~675).] : (7/9EA)- tan [Spec. Max. 1%] : (7/9EA)- [Spec. Min.104M] : Short(7/9EA)

    3.

    (ESR : Equivalent Series Resistance) : Impedance/Gain-Phase Analyzer

    T

    100KHz

    ESR

    Capacitance

    C

    100KHz

    ESR

    Capacitance

    100KHz ESR C 31, T 21. C ESR Loss T

  • Page 24

    Cross-section analysis

    4.

    Spark

    Hi-scopeImage(C)

    Cap. Epoxy

    Cap. Short

    Capacitor

    Epoxy

    Epoxy

    Cap. ShortSPL2

    Cap. Short

    Capacitor

    Epoxy

    GND

    Terminal

    Capacitor

    Hi-scopeImage(T)

    - C Short , Epoxy

    -T

  • Page 25

    Failure Mechanism

    Tracking

    , ,

    Tracking

    Scintillation

    Spark (Arc)

    Carbonization

    Recrystallization(Graphitization)

    Joule Heating ( +)

    Capacitor Epoxy ( , Tracking )

    Ceramic Epoxy Resin Ceramic-Epoxy (Ceramic : 10kV/mm, Epoxy : 16 ~ 20kV/mm)

  • Page 26

    Root-cause Analysis

    RootCause

    Epoxy Prepolymer Epoxide Group

    Epoxy

    Epoxy-Ceramic

    Thermal Residual Stress

    Interfacial Delamination

    Ceramic : Surface Morphology,Roughness, Porosity

    Epoxy : , Filler ,

    Applied Electric Field

    Failure

    [ Pyrolysis Gas Chromatography ]

    Prepolymer Bisphenol A Diglycidyl ether Monoglycidyl ether

  • Page 27

    3. TGA ( Thermogravimetry Analysis) : (thermal stability)

    1) : R.T. ~800 , 20 /min scan

    1. DSC (Differential Scanning Chalorimetry) : ()

    1) :- 20 ~220 , 10 /min scan

    2. TMA ( Thermomechanical Analysis) :

    1) :- 20 ~220 , 10 /min scan, Transition

    Epoxy I Epoxy II Ceramic Epoxy I Epoxy II Ceramic Epoxy I Epoxy II Ceramic53[50] 42[38] N.A. 50 45 N.A. 51 39 N.A.

    Tg 41[45] 65[55] 8.6 44 43 8.8 47.8 65 8~10Tg 170[128] 158[132] 160 194 148 160

    (/m)

    C CapacitorS Capacitor T Capacitor

    (Tg,)

    Epoxy I Epoxy II Epoxy I Epoxy II Epoxy I Epoxy II 257 327 194 229 257 316

    T Capacitor C CapacitorS Capacitor

    ()

    [ ], Spec. ,N.A=not available

  • Page 28

    Micro-MorphologyMicro-Morphology

    TS()

    SEM image

    ()

    SEM image

    ()

    C S

    C

    C

    [ : 5000 ]

    [ : 5000 ]

    [ : 1000 ]

    [ : 2500 ]

    [ : 2500 ]

    [ Ceramic Dielectric : Y5U ]

  • Page 29

    DSC ( Differential scanning calorimeter ) :

    - Epoxy , Enthalpy

    Enthalpy

    : ( 10 /min, Room Temp~ 160), 50 10 24

    : 4 ( No.10)

    Tg Epoxide Group

    DSC : Epoxy I DSC : Epoxy II

    [ (1/10EA) ] [ Tg ]

    Epoxy I

    Epoxy II

    Tg (by DSC) Tg (by DSC)

    Sample no.10

  • Page 30

    Wavenumber(cm-1)T

    rans

    mitt

    ance

    (%)

    Epoxy II

    Epoxy II

    (by FT-IR) (by FT-IR)

    Epoxy 5.80u(1740cm-1) Carbonyl

    Carbonyl .

    ,

  • Page 31

    (1)

    Conventional Approach - Mechanical Parts : Deterministic Safety Factor ( Field )- Electrical Parts : Derating ( ) Load Strength ( )

    Alternative Approach- Probabilistic Model : Load Strength Load-Strength Interference Model ( )

    Load Strength Random Variable

    FailureMechanism

    Load, Strength

    ReliabilityModeling

    Components

    Electrical Overstress

    PhV

    D +=

    +

    =

    22LS

    LSR

    Overstress Failure & Load-Strength Interference ModelOverstress Failure & Load-Strength Interference Model

  • Page 32

    Overstress Failure Mechanism

    Limitation of Manufacturing

    Large Pore Size(Agglomerate)

    Partial Discharge

    Gas Breakdown(Ionization)

    Weak-Bond Ion

    Tensile Force

    Micro-Crack

    Conduction Tunnel

    Electrical Breakdown

    Gas : ,

    Sintering Temperature & Time

    Paschens Law

    Depolarization Field Permittivity

    Dielectric Loss

    Avalanche Breakdown

    Electric Field(AC, dc)

    Spark(V)

    p*d[ Paschen ]

    Vsmin

    [ ]

    A B C

    Spark

    Crack

  • Page 33

    Reliability Model

    dSdLfSf

    dLdSfLf

    LSPLSPR

    S

    LS

    LSL

    =

    =

    >=>=

    00

    0

    )(

    )(

    )0()(L S

    L )(SfS)(LfL

    Interference Area

    Load & Strength(Common Units)

    StrengthofpdfLoadofpdf

    VariableRandomLSy ,=

    dLdyLfLyf

    yPR

    S )()(

    )0(

    0 0

    +=

    >=

    :

    S

  • Page 34

    Normality Test

    [ Load ][ S Strength ]

    [ C Strength ]

    0.843S

    P Value

    0.050.0780.188C

    LoadStrength

    [ Normality Test : Anderson-Darling ]

    Load Strength

  • Page 35

    33.9 2 239(2 )

    26.5 38.5(t )

    71.7432.09n = 10

    (C )Strength

    0.018 2 0.12(2 )

    5.5 5.8(t )

    0.0385.66n = 10Load

    1.6 2 11(2 )

    18.6 21.3(t )

    3.3019.93n = 10

    (S )

    (2) ()(S2)(X)

    [ 95% Confidence Level , ] S C Partial Discharge Inception Voltage

    : Sintering

    +

    ==

    22][

    LS

    LSSMR

    9.389.38S

    0.999023.12C

    R(Reliability)SM(Safety Margin)

    [ : kV ]

  • Page 36

    (2)

    Power Law Model

    Stress Power Law Model .

    bfa CNS =

    aS = Alternating stress

    fN = Cycles to Failure

    C, b = ()

    b , Low Cycle Fatigue b High Cycle Fatigue b

    [ b(low cycle) b(high cycle) ].

    b

    testa

    fielda

    testb

    a

    fieldb

    a

    testf

    fieldf

    S

    S

    CS

    CS

    N

    NAF

    /1

    )(

    )(

    )(/1

    )(/1

    )(

    )(

    =

    ==

    B

    use

    test

    ft

    fu

    T

    T

    N

    NAF

    ==

    )(

    )(aSbfCNT =

  • Page 37

    Data : Field Data(1)

    =

    599.1

    97exp1)(

    ttF

    =

    557.1

    2028exp1)(

    ttF

    63.2% Characteristic Life : 97hrs

    Shape Parameter () : 1.599

    63.2% Characteristic Life : 2028hrs

    Shape Parameter (): 1.557

    HrsMTTF 871

    =

    +=

    HrsMTTF 18221

    =

    +=

  • Page 38

    2187

    1822===

    ft

    fu

    N

    NAF

    B

    u

    t

    TT

    AF

    =B

    CC

    =

    o

    o

    50160

    21

    : -40C ~ +120C (Dwell Time 30min.)

    B = 2.6 (Epoxy Ceramic )

    Field Data ()

  • Page 39

    Field Mechanism(

    ) Mechanism

    [ Field ][ Field ]

    [ ] [ ] [ ]

  • Page 40

    Epoxy Ceramic Epoxy Prepolymer Epoxide Group Ceramic Epoxy ( 15)

    Epoxy

    Ceramic Pore Roughness Epoxy

    Field Field Field

    Interfacial Fracture Mechanics Approach Adhesive Failure Mechanism Time-to-failure Model , Simulation

  • Page 41

    , ,

    Know-How /

    , (multidisciplinary) Integration

    , /