第四章致密星 - lamost · 球状星团m4 中的白矮星 2 ... type ia supernova 1994d in ngc...

114
第四章 致密星 §4.1 白矮星 §4.2 中子星 §4.3 黑洞

Upload: others

Post on 03-Feb-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • 第四章 致密星

    §4.1 白矮星§4.2 中子星§4.3 黑洞

  • What Are Compact Objects?Compact objects — white dwarf, neutron stars, and black holes — are “born” when normal stars “die”, that is, when most of their nuclear fuel has been consumed.Since they do not burn nuclear fuel, the cannot support themselves against gravitational collapse by generating thermal pressure.The characteristic distinguishing compact objects from normal stars is their exceedingly small size.

  • §4.1 白矮星 (White Dwarfs)(20.3, 21.1, 21.3)

    1. 发现天狼星(Sirius)双星,Porb= 50 yr 天狼A:mv =-1.45m,Mv = 1.4m天狼B:mv = 8.68m,Mv = 11.6m

    Sirius in optical and X-ray

    ρ = 3.8×106 gcm-3

    轨道运动

    → M = 1.05 M⊙

    Teff = 2.6×104 K

    → R≈5×108 cm

  • Formation of white dwarfsA white dwarf is the product of a star with initial mass

  • 球状星团M4中的白矮星

    2. 白矮星基本特征

    在H-R图上白矮星位于主序带的左下方

  • 光度与光谱:

    绝对星等Mv ~ 8m-16m

    有效温度Teff ~ 5×103- 4×104 K

    光谱分类DC, DO, DB, DA, DF, DG, DM.

  • Cooling of White Dwarfs

    There is no energy source in terms of fusion nor gravitational contraction, yet they shine. WD stars just continue to become cooler and cooler. So they live at constant radius with ever diminishing T and L.

  • 结构:

    质量M ~ 0.2-1.1 M⊙(平均 ~ 0.6 M⊙)

    半径R ~ 5×108-109 cm

    密度ρ~105-107 gcm-3

    自转周期 P≥10 sec

  • 3. 简并电子气与Chandrasekhar极限(1) 简并电子气

    高温→原子电离→自由电子

    高密→电子简并→简并电子压力(Pauli不相容原理)

    Pe = nvp

    由测不准原理,电子的动量p ~△p ~ h/△x ~ h/(V/N)1/3 ~ ρ1/3

    非相对论性情形:

    Pe ~ np2 ~ρ5/3

    相对论性情形:

    Pe ~ ncp ~ρ4/3

  • 3/1−∝ MR

    质量越大,半径越小 !

    压力dP/dR ~ P/R ~ρ5/3/R ~ M5/3/R6

    引力g~ρM/R2~ M2/R5

    (2) 质量—半径关系(Mass-Radius Relation)

  • 随着白矮星质量增大,简并电子气运动变成相对论性的。

    →当质量增大,引力比压力增大得更快

    →白矮星质量上限(Chandrasekhar极限质量)

    对He白矮星,Mch≈1.44 M⊙对CO白矮星,Mch≈1.4 M⊙

    dP/dR ~ρ4/3/R ~ M4/3/R6 g~ρM/R2~ M2/R5

    (3) Chandrasekhar极限

  • Why stars with masses < ~8M⊙ form white dwarfs?

  • 4. 新星与Ia型超新星4.1 激变变星 (Cataclysmic Variables )

    白矮星与红矮星构成的半相接双星。

    白矮星通过吸积伴星的物质产生紫外和X射线辐射。

    轨道周期分布在几十分钟至数天,在2至3小时间有一个明显的间隙。

    在密近双星中伴星充满Roche瓣进行物质交流

  • 分类

    (1) Non-Magnetic white dwarf binaries(B < 0.1-1 MG)新星 (novae)

    再发新星 (recurrent novae)

    类新星变星 (nova-like variables)

    矮新星 (dwarf novae)

    (2) Magnetic white dwarf binaries (B >1 MG)Intermediate Polars (DQ Her stars) B ~ 1-10 MG

    Polars (AM Her stars) B ~ 10-100 MG

  • • 辐射主要在光学和紫外波段• 爆发时的能量释放率 ~ 1045-1046 ergs-1• 抛射约10-5-10-3 M⊙的物质,抛射物质速度~100-5000 kms-1

    4.2 新星(1) 观测特征

    在几天到几星期内亮度增加7-16星等,然后缓慢下降,经几个月或几年回复

    到原先的状态。

    光变曲线

  • Example INova Herculis 1934

    (a) 爆发时星等为3m;

    (b) 两个月后星等为12m;

    (c) 40年后向外抛射的物质半径达0.05 ly

  • Example IINova Cygni 1975

    (a) 爆发时星等为2m;

    (b) 爆发后降为15m

  • (2) 物理解释—吸积白矮星表面的失控热核反应(Runaway thermonuclear reaction)

    White dwarf accretes matter from companion star via an accretion disk. Gravity pulls matter in toward surface of white

    dwarf.

  • An "ocean" of hydrogen forms on the white dwarf's surface. Intense pressure and heat build at the bottom of the hydrogen ocean, eventually leading to a massive explosion, which blows off the outer layers of hydrogen.

  • The nova outbursts lasts for tens to hundreds of days. The ejected envelope is visible as a limb-brightened shell expanding away from the binary at speeds of a

    few hundred to a few 103 km/s.

    Nova Cygni1992

  • T Pyxidis 爆发间隔约20年

    knots

    (3) 再发新星观测到不止一次类似新星爆发的激变变星。

    典型的爆发间隔约10-100年。

  • Gaseous "knots" observed may form from shock waves that occur when matter ejected during the most recent (1966) explosion collides with slow-moving material from the previous (1944) outburst.

  • Cycles of nova shell collisions create concentric circles of gaseous knots.

  • Summary: Formation and Evolution of CVs4 M⊙ and 1 M⊙ Main-sequence stars in binary.The 4 M⊙ star evolves to swell, spilling gas onto its companion.Formation of a planetary nebula.As the lower mass star evolves to fill its Roche lobe, accretion occurs again.The end point of the system is two white dwarfs circling each other.

  • 4.3 Ia型超新星 (Type Ia Supernovae)

    Type Ia Supernova 1994D in NGC 4526

  • SNe Ia as Standard Candles

    Type Ia SNe all seem to be of nearly uniform intrinsic maximum luminosity (MV ∼−19.5m ), They can therefore be detected at high redshifts (z∼1), allowing in principle a good handle on cosmological effects.

  • 理论模型当吸积白矮星的质量达到Chandrasekha极限,白矮星内部C和O的爆燃产生Ni-56。整个星体被炸光,释放巨大能量,其残骸以~104 kms-1的速度向外膨胀。超新星爆发的极大光度达~3×109L⊙。由于Ia型超新星非常明亮且极大光度值稳定,它们通常用来作为测量遥远天体的标准烛光源。

  • Progenitors of Type Ia Supernovae

  • Light curvethe supernova brightens to maximum luminosity about 20 days later after the explosion. Then it fades, rapidly for the first month or so (at the rate at which Ni-56 decays), then more slowly (at the rate at which Co-56 decays).

  • ExampleType Ia Supernova Remnant DEM L71

    Chandra X-ray Observatory image (left panel) of the supernova remnant DEM L71 reveals a hot inner cloud (aqua) of glowing iron and silicon surrounded by an outer blast wave. This outer blast wave is also visible at optical wavelengths (right panel).

  • §4.2 中子星 (Neutron Stars)(22.1-22.3)

    1. 中子星研究简史1054年中国北宋天文学家发现金牛座客星(超新星)。

  • 1932年L. D. Landau预言简并中子流体的存在。

    1934年W. Baade和F. Zwicky预言超新星爆发产生中子星 (?)

    Walter Baade

    (1893-1960)

    Fritz Zwicky

    (1898-1974)

    Lev D. Landau

    (1908-1968)

    “…supernovae represent the transitions from ordinary stars into neutron stars, which in their final stages consist of extremely closely packed neutrons.”PHYSICAL REVIEW, VOL. 4, JANUARY 15, 1934

  • Neutron Star in the SNR 3C 58

  • 中子星研究简史

    1939年J. R. Oppenheimer计算出第一个中子星理论模型。

    1967年J. Bell发现第一颗射电脉冲星 PSR 1919+21.1968年T. Gold提出旋转中子星的脉冲星模型。1968年探测到船帆座超新星遗迹和蟹状星云中的脉冲辐射。

    1971年Uhuru卫星探测到第一颗X射线脉冲星Cen X–3.1974年R. Hulse和 J. Taylor发现双中子星射电脉冲星PSR 1913+161982年D. Backer等人首次发现毫秒射电脉冲星 。

  • 2. 中子星的形成

    高质量(>8-10 M⊙ )恒星内部的核反应过程在恒星中心形成Fe核。

    Fe核坍缩形成中子星,超新星爆发

  • 中子的形成—URCA过程(逆β衰变)

    逆反应

    当电子处于简并态时,第二步反应受到Pauli不相容原理的抑制,于是核反应进一步进行为

    电子数减少 → 电子简并压降低 → 加速核心坍缩

    中子数增加 → 原子核结合能降低

    当ρn= 4×1011 gcm-3, 中子从原子核中滴出当ρn= 1014 gcm-3, 原子核瓦解,形成中子海洋

    eA)1,(ZeA)(Z, ν+−→+−

    eeA)(Z,A)1,(Z ν++→−−

    enep ν+→+−

  • 3. 中子星的结构特征质量M ~ 1.4 M⊙, 半径R ~ 10 km

    由外向内依次为:

    106 gcm-3 4×1011gcm-3 2 × 1014gcm- 31015gcm-3

    表层大气 ~ cm

    外壳~ 0.3 km, 固态金属(Fe, e-)

    内壳~ 0.6 km, 原子核、游离中子、电子。

    内部:超流中子和超导质子

    核心:超子/奇异物质?

  • 中子星可以看成一个巨原子核,由~1057 个核子构成。中子处于简并状态。

    在中子星内部支撑星体与引力抗衡的是中子简并压力。

    与一般恒星相比中子星的温度很高,但相对于中子星物质的高密,它可以非常好的用零温近似来描述。

  • 4. 中子星的质量上限

    质量-半径关系:中子星的质量越大,半径越小。

    Oppenheimer极限质量:~2−3 M⊙

  • 5. 射电脉冲星(Radio Pulsars)

    (1) 发现

    1967年剑桥大学穆拉德射电天文台研究生Jocelyn Bell 利用A. Hewish领导研制的射电望远镜发现了第一颗射电脉冲星PSR 1919+21.

    脉冲周期P=1.3373 sec.

  • 1968年发现位于船帆座超新星遗迹(Vela Nebula)中的脉冲星PSR 0833-45和蟹状星云(Crab Nebula)中的脉冲星PSR 0531+21,脉冲周期分别为89 ms和33 ms.

    Crab pulsar off and on

    Vela pulsar

  • Pulse Profiles at Different Wavelength

  • (2) 射电脉冲星的主要观测特征

    数目超过1500颗,集中分布在银道面附近。脉冲周期 P ~1 ms −10 s, 随时间缓慢增长(周期导数 dP/dt ~ 10-21−10-12 ss-1)。

  • 周期突变(Glitch) 中子星结构大部分为单星,约60颗位于双星系统中 中子星质量

    Vela pulsar

    (Thorsett & Chakrabarty 1998)

  • (3) 物理模型—倾斜自转磁中子星确定致密天体性质

    脉冲持续时间≤100 ms

    →辐射源大小≤ c×t ≈3×1010×0.1≈3×109 cm

    →白矮星或中子星

    脉冲的规则性

    →恒星整体运动

  • Ppulse≥1 msP≥1 s转动(Ppulse=Pspin)

    Ppulse ~1-10 msP≥10 s脉动(Ppulse=Ppulsat)

    引力辐射→Ppulse↓

    a < R双星轨道运动(Ppulse=Porb)

    中子星白矮星周期性

    致密天体的周期运动与脉冲辐射

  • 2

    21

    Ω= IW

    ΩΩ= &Idt

    dW

    ~dt

    dW

    脉冲星 自转磁中子星

    脉冲周期 = 自转周期

    辐射能源:中子星转动能

    能损率

    蟹状星云脉冲星 4.7×1038 ergs-1

    ≥蟹状星云辐射功率~1×1038 ergs-1

  • 辐射机制

    磁偶极辐射→磁场强度 ~ 108-1013 G

    快速自转 + 强磁场

    →强电场

    →加速带电粒子

    (沿磁力线向外运动)

    →曲率辐射

    →高能光子

    →e±的产生和湮灭

    →次级光子

    →次级e±的产生和湮灭

    →…→射电辐射

  • 灯塔效应 (lighthouse effect)

    强磁场→辐射呈束状

    倾斜转子→ 辐射周期性扫过观测者产生脉冲图

  • Why neutron stars are rapidly rotating and strongly magnetized?

    Conservation of angular momentum and magnetic fluxAmplification of magnetic fields

    Why are neutron stars oblique rotators?

  • (4) 研究进展广义相对论验证

    双中子星射电脉冲星

    PSR B 1913+16的轨道周期变化dPorb/dt = -7.6 × 10-5 syr-1

  • Ring and jet from the Crab pulsar

    X-ray light by Chandra Optical light by Hubble

  • 脉冲星和行星系统

    1992年A. Wolszczan和D. A. Frail发现PSR B1257+12的行星:

    M1 = 2.8 M⊕, Porb= 98.2 d

    M2 = 3.4 M⊕, Porb= 66.5 d

    M3 = 0.015 M⊕, Porb= 25.3 d

  • 超磁星 (Magnetars)——软γ射线复现源和反常X射线脉冲星

    SGR 1900+14

  • 5. X射线双星 (X-ray Binaries) 由致密星(中子星或黑洞)与正常恒星组成的双星系统。

    致密星通过吸积伴星物质产生X射线辐射。

  • A Brief History of X-ray Astronomy (I)

    On June 18 1962, the Aerobee sounding rocket began to sweep the sky, looking at our Moon. The Moon shines by reflected light of the Sun,

    The Moon in visible light (left) and in X-ray (right) Riccardo Giacconi

  • A Brief History of X-ray Astronomy (II)

    An enormous spike appeared on the chart recorder!The spike, seen over and over again, came from a cosmic source (Sco X-1) about 25 degrees away from the Moon.

  • Sco X-1, the first cosmic X-ray source

    A Brief History of X-ray Astronomy (III)

  • Detection of 1.24 s pulsations from Her X-1 pulsating X-ray binaries as accreting rotating

    neutron stars (Tananbaum et al. 1972).

    A Brief History of X-ray Astronomy (IV)

  • Important X-ray Missions

    Uhuru Einstein ROSAT ASCA

    RXTE BeppoSAX Chandra XMM-Newton

  • The HEAO 1 X-ray Sky

  • The Chandra X-ray Sky Map

  • 2/ cMRMGMLx && η==

    2RcGM

    5.1 X射线辐射

    (1) 能源

    吸积物质引力势能→动能→热能→X射线辐射

    其中 为吸积率,R为引力半径

    (2) 产能率

    能量转换效率 (仅与天体的致密程度有关)

    M&

    ~0.7%~6% -42%~10%~0.01%产能率η

    核反应

    (H燃烧)黑洞中子星白矮星吸积天体

  • 5.2 分类和观测特征

    高质量X射线双星(High-mass X-ray binaries)

    低质量X射线双星(Low-mass X-ray binaries)

  • 分类和观测特征

    HMXBsYoung stellar population, Age < 107 yr.Neutron stars have strong magnetic fields.LMXBsOld stellar population, Age (5-15) ×109 yr.Neutron stars have low magnetic fields.

  • High-Mass X-ray Binaries

    Donor stars are early spectral type (O, B), massive (M > 10M⊙ ) stars

  • HMXBs are usually X-ray pulsars

  • 辐射机制:

    强磁场→吸积流内区截断→吸积柱(磁极)→

    束状辐射

  • Low-Mass X-ray Binaries

    Donor stars are late spectral type (A and later), low-mass (M ≤1M⊙ ) stars

  • LMXBs are usually X-ray bursters.

    • Rising times ~

  • X-ray Bursts

    爆发机制:

    吸积中子星表面H, He壳层的失控热核反应.爆发能

  • X-ray Bursts

    Peak flux and total fluenceof bursts are correlated with waiting time.Explanation: Accretion of H

    H burns quietly into He thermonuclear flash

    with critical mass is reached.

  • The Evolution of the Accretion Disk around 4U 1820-30 during a Superburst

    Iron fluorescence from illuminated accretion disk shows the evolution of the inner region of the disk.

    Progress

  • Millisecond Oscillations (I)Kilo-Hertz Quasi-Periodic Oscillations

    Hz 1180)(21)( 2/315

    2/14.1

    2/13K

    −≈= RMR

    GMRπ

    ν

    Progress

  • Millisecond Oscillations (II)Millisecond Pulsations

    Source Ps Porb

    SAX J1808.4-3658 2.5 ms 2 hr

    XTE J1751-305 2.3 ms 42.4 min

    XTE J0929-314 5.4 ms 43.6 min

    XTE J1807-294 5.25 ms

    Progress

  • Magnetic Fields

    Pulse Periods

    Pulsars

    Millisecond Pulsars

    Spin-up line

    Recycling

    The Recycled Model

    Evolutionary link between LMXBs and millisecond pulsars.

    Progress

  • §4.3 黑洞 (Black Holes)(22.4-22.7)

    1. 历史回顾18世纪末,英国地理学家John Michell 和法国数学家、物理学家Pierre Simon Laplace把光速有限的认识与牛顿的逃逸速度的概念结合起来,从而发现引力的最富魅力的结果:黑洞。

    cR

    GMv == 2/1esc )2(

    ≈= 2g2

    cGMR 2.96×105 cm (M/M⊙)

  • 1915年11月, A. Einstein 发表广义相对论方程。这一理论建立在等效原理和时空弯曲的基础上。

    1915年12月, 德国物理学家Karl Schwarzschild 求解了Einstein引力场方程,给出静态球对称引力场的外部解。

    Karl Schwarzschild(1873-1916)

    Albert Einstein(1879-1955)

  • 1963年, R. Kerr 给出旋转的球对称引力场的外部解,这便是著名的 Kerr 度规。1967年12月29日J. Wheeler 在纽约的一次讲演中首次使用 “black hole”一词。

    Roy Kerr (1934 - )

    John Archibald Wheeler (1911 - )

  • 2. 广义相对论和时空弯曲

    1915年,Einstein发表广义相对论 (General Relativity) 物质 引力源 时空弯曲 (Curved Space)引力场强弱 时空弯曲程度

    例如:地球绕太阳运转可以认为是它沿着太阳周围四

    维时空中的测地线运动。

  • 黑洞周围的时空弯曲程度最大

  • Too Close to a Black Hole

    Normal star field containing the constellation Orion.

    The same star field but with a black hole superposed in the center of the frame.

  • Photon orbits around a black hole

  • 110-110-410-5.4Rs/R

    黑洞中子星白矮星太阳天体

    引力半径(Gravitational Radius)在引力半径Rg 内的光子无法逃逸。对Schwarzschild黑洞(不转黑洞),Rg = Rs(Schwarzschild半径)Rs=2GM /c2

    天体的致密程度可以用Rs /R表示。

  • 在理论上黑洞并不一定必须是极高密度的天体,而只是必须致密到足以束缚住光。

    在越致密的天体附近,光线弯曲的程度越大。

    Collapse of a normal star to a black hole

  • Black Holes are not cosmic vacuum cleanersObjects would be captured only if they are enough close to the black hole.Black Holes are cosmic heatersThe accreting material is heated and becomes very hot when it moves onto the black hole.

  • 3. Schwarzschild黑洞的基本性质结构

    中心奇点 (Singularity)

    视界 (Event Horizon)

    半径为Rs的球面,

    在视界内的任何信息无法向外传递。

    光层 (Photonsphere)

    半径为1.5 Rs的球面,

    在光层各向同性辐射光子中的一半可以逃逸。

  • 视界的性质

    黑洞的形成使时空分成被视界隔离的两个部分,物质和辐射能由视界以外进入其内,但不能反过来,这就是黑洞名称的由来。

    黑洞的视界是绝对的。它是时空中的分界,与观测者无关,它将所有的事件分成两类。在视界以外,可以由光信号在相互联系,而在视界之内,光线都朝中心集聚。

    地球上的视界是相对的,它是一个以观测者为中心的圆,并随观测者运动。

  • RGMmhchc ph−=

    0λλ

    20

    2

    /c

    hccEmph

    λ==

    引力红移 (Gravitational Redshift)λ/λ0=(1-Rs /R)-1/2

    当R=Rg,λ→∞,视界是无限红移面

    当R>>Rs,λ0 /λ≈1-GM/c2R

    其中“光子质量”

  • 时间延迟 (Time Dilation)对遥远的观测者来说在黑洞

    附近的时钟比远处的时钟走得更慢。

    在视界处的时钟看上去完全

    停止。

    2/1S0 )/1(

    −∞ −∆=∆ RRtt

  • From Jack's point of view:

    Sees the ship getting further away.

    Flashes the laser every second by his watch.

    Sees a blue beam leave the laser.

    From Jill's point of view:

    Each flash takes longer to arrive, and is redder and fainter than the one before it.

    A Thought Experiment

  • Jack Sees:

    Laser flashes blue every second by his watch

    The outside world looks distorted

    Jill Sees:

    Laser flashes come ~1 hour apart

    Flashes are shifted to radio wavelengths and are getting fainter with each flash.

    Jill:

    Sees one last laser flash after a long delay; flash is faint and at long radio wavelengths

    Never sees the next flash…

    Jack:

    Universe vanishes as he crosses the horizon

    Gets shredded by strong tides near the singularity and crushed to infinite density.

    Near the Event Horizon...

    Down the hole...

  • Evidence of an Event Horizon around a Black Hole

    Pulses of ultraviolet light from clumps of hot gas fade and then disappear as they swirled around the black hole candidateCygnus X-1.

    Example

  • 4. Kerr黑洞

    极端快速旋转的黑洞,a = IΩ/Mc ~ 1Kerr黑洞并不是在固定的外部空间中转动的陀螺,而是拖曳着整个时空同它一起转动(Lense-Thirring effect)。靠近黑洞处的时空被不可抗拒地扭曲成旋涡状。

  • StructureErgosphere: Objects in this region must move in the same direction that the black hole rotates, can still exit back through the static limit (the outer boundary of the ergosphere). Event Horizon: The point of no return. RS/2

  • Black Hole Spin from Iron Line

  • 提取转动黑洞的能源

    Blandford-Znajek Effect

    Penrose’s Game

  • 5. 黑洞无毛发定理黑洞几乎不保持形成它的物质所具有的任何复杂性质,它保持的物理参数只有质量、角动量和电荷。

    黑洞的分类

    只由质量来表征的球对称、静态的Schwarzschild 黑洞球对称、静态的、带电的Reissner-Nordström黑洞转动而显电中性的Kerr黑洞转动且带电的Kerr-Newman黑洞

  • 6. 黑洞热力学 (Thermodynamics of black holes)

    第零定律:平衡态黑洞视界面上所有的点都具有相同的表面引力。

    第一定律:平衡态黑洞的总质能守恒,总动量、角动量以及电荷也守恒。

    第二定律(面积不减定律):黑洞的表面积不会随时间减小*。黑洞只能合并,不能分解

    第三定律:不可能通过有限次数的操作将黑洞的表面引力缩减为零(成为极端Kerr黑洞)。

  • 黑洞的蒸发

    真空中的能量涨落导致基本粒子生成

    真空 正负(虚)粒子对

    Heisenberg测不准原理∆x∆p > h, or ∆E∆t > h虚粒子对寿命

    ∆t > h/∆E

    Stephen Hawking

  • 真空极化

    量子真空被黑洞周围的强引力场极化,虚粒子对会分离一段很短的时间成为实粒子。

    负粒子被吸收→ 黑洞质量减小

    正粒子逃逸→带走能量

  • 黑洞的蒸发具有黑体辐射的所有特征。

    黑洞视界面的温度

    黑洞能损率→黑洞寿命

    当M = 1 M⊙, t=1067 yr;

    当M = 1015 g, t=1010 yr (小黑洞已经蒸发)

    GMhc

    cGMhchckT

    2/2

    3

    2 ≈≈= λ

    342

    2

    4M

    TRMc

    LEt

    S

    ∝==σπ

  • 7. 黑洞的观测证据

    恒星级黑洞

    途径:搜寻质量超过中子星质量上限(~2-3 M⊙)的致密星。

    确定致密天体性质:X射线辐射、时变

    确定致密天体质量:双星轨道运动

    X射线双星

  • 黑洞候选天体Cygnus X-1

    强X射线源X射线辐射光变时标~1 ms →辐射天体尺度

  • 光学观测

    光学伴星HDE226868O9.7Iab型超巨星→轨道周期5.6天,光谱Doppler位移

    →视向速度曲线

    →质量函数

    光谱拟合

    →MOpt =17.8M⊙, MBH =10.1M⊙→Cygnus X-1是黑洞!

    2

    33

    )1(sin)(

    2 qiMMf

    GKP X

    Xoptorb

    +==

    π = 0.25M⊙

  • Black Hole Candidates

  • Black Hole Accretion and MicroquasarsProgress

  • Gamma-ray Bursts (GRBs)

    Discovered by the Vela satellite in 2 July 1970.Consist of bright, irregular flashes of gamma rays typically lasting only a few seconds to several minutes.Isotropic distribution - cosmological origin

    Progress

  • Gamma-ray Bursts: Optical CounterpartsSpectral analyses of the optical counterparts show that GRBs are situated at extremely large distances. So they are extremely energetic events.

    Progress

  • Engine of Gamma-ray Bursts

    The millisecond flickering and giant energy output imply that GRBs are powered by rapidly rotating, accreting black holes, which are produced by

    HypernovaeMerger of compact stars

    Progress

  • Supernovae and GRBs

    Progress

  • 星系级黑洞——活动星系核M ~106- 109 M⊙通常位于星系核心

  • Intermediate-Mass Black Holes?

    Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several galaxies.

    Progress

  • Detection of Gravitational Wave

    Gravitational waves are ripples in the fabric of space and time produced by violent events in the universe, for example by the collision of two black holes or by supernova explosions.

    Progress

    LIGO