ccnet lec 06 data encoding

33
Lecture 06 Data Communication & Networks Data Encoding Techniques Muhammad Yousaf 

Upload: suleman-jamil

Post on 08-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 1/33

Lecture

06Data Communication & Networks

Data Encoding Techniques

Muhammad Yousaf 

Page 2: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 2/33

[email protected] 2

Some Useful Terms:

Signal element:Individual bits converted into signal (voltage pulse)

Unipolar signal:All signal elements having same polarity

All positives or all negatives

Polar signal:Some elements having +ve polarity & some having -ve

Data rate:Bits per second

Modulation rate (Baud rate):Signal elements per second

Differential Encoding:Rather than sending actual data values, sending the changes inconsecutive data values

Page 3: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 3/33

[email protected] 3

Encoding Techniques:

Digital Transmission

Analog Transmission

Digital Data

Analog Data

Page 4: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 4/33

[email protected] 4

Digital-to-Digital Encoding:

Mapping of data bits onto the voltage levelsMany schemes for encoding digital data into digitalsignal:

NRZ-L

NRZ-I

Bipolar-AMI

Pseudoternary

ManchesterDifferential Manchester

Page 5: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 5/33

Page 6: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 6/33

[email protected] 6

NRZ-I:

Nonreturn to zero-invert on oneData is represented as transition on start of bit

Binary 0 = no transition

Binary 1 = transition (low to high / high to low)

Voltage remains constant for the duration of bitlength

It is an example of differential encoding schemes

Page 7: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 7/33

[email protected] 7

NRZ:

Page 8: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 8/33

[email protected] 8

Bipolar-AMI & Pseudoternary:

Bipolar-Alternate Mark Inversion:Use more than two levels (+A, -A, 0)

Binary 0 = zero voltage level

Binary 1 = alternatively +A & -A

Pseudoternary:Just opposite to Bipolar-AMI

Binary 0 = alternatively +A & -A

Binary 1 = zero voltage level

Page 9: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 9/33

[email protected] 9

Bipolar-AMI & Pseudoternary:

Page 10: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 10/33

[email protected] 10

Manchester & Differential Manchester:

Widely used in LANsOne bit is represented with two signal elements

Voltage doesn’t remain constant for the duration of bit length

Transition is must in the middle-of-bit

Manchester:Binary 0 = transition from high to low level

Binary 1 = transition from low to high level

Used by IEEE 802.3 (Ethernet)

Differential Manchester:Binary 0 = transition at start-of-bit

Binary 1 = no transition at start-of-bit

Used by IEEE 802.5 (Token ring)

Page 11: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 11/33

[email protected] 11

Manchester & Differential Manchester:

Page 12: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 12/33

[email protected] 12

Modulation Rate:

Manchester, Differential Manchester: 

2 Signal Elements per bit Modulation Rate = 2 x Bit Rate 

NRZ, NRZ-I: 

1 Signal Elements per bit Modulation Rate = Bit Rate 

Number of signal elements per unit time

Page 13: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 13/33

[email protected] 13

Digital-to-Analog:

Modem is used for this conversionModulation/Demodulation

Have a re-look at the simple sinusoid:

S(t) = A Cos(2 π f t + φ)

t is independent variable 

 A, f, φ can be varied 

Amplitude shift keying (ASK)

Frequency shift keying (FSK)Phase shift keying (PSK)

Quadrature PSK (QPSK)

Page 14: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 14/33

[email protected] 14

ASK, FSK, PSK:

Page 15: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 15/33

[email protected] 15

Amplitude Shift Keying:

Information is mapped into the signal with changesin the amplitude levels

Two binary values are represented by two differentamplitude levels e.g. (A1, A2)

Binary 0 = A1 Cos(2 π f t + φ)

Binary 1 = A2 Cos(2 π f t + φ)

If one of the amplitudes is zero:

Binary 0 = Amplitude 0-voltsBinary 1 = Amplitude 10-volts

This is also called On-Off Keying

Page 16: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 16/33

[email protected] 16

Frequency Shift Keying:

Information is mapped into the signal with changesin the frequency

Two binary values are represented by two differentfrequencies e.g. (f 1 =10KHz, f 2 =12KHz )

Binary 0 = A Cos(2 π f 1 t + φ)

Binary 1 = A Cos(2 π f 2 t + φ)

Page 17: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 17/33

[email protected] 17

Phase Shift Keying:

Information is mapped into the signal with changesin the Phase

Two binary values are represented by two differentphases e.g. (φ1=0, φ2 = π )

Binary 0 = A Cos(2 π f t + φ1 )

Binary 1 = A Cos(2 π f t + φ2 )

Page 18: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 18/33

[email protected] 18

Quadrature PSK:

More efficient form of PSK

One signal element can represent information of more thanone bits

e.g. using four phase values can represent 2-bits

(φ1=0o, φ

2=90o, φ

3=180o, φ

4=270o)

Binary 11 = A Cos(2 π f t + φ1 )

Binary 10 = A Cos(2 π f t + φ2 )

Binary 00 = A Cos(2 π f t + φ3 )

Binary 01 = A Cos(2 π f t + φ4 )

Some implementations use 8 phase angles and also twoamplitude levels

So each signal element can represent information of four bits

Page 19: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 19/33

[email protected] 19

Analog-to-Analog:

Why modulate analog signals?For transmission shift towards the higher frequencies

Higher bandwidth is available

Antenna size is inversely proportional to the frequency

Transmission in higher frequency requires smallerantenna

Provides basis for Frequency Division Multiplexing

Page 20: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 20/33

[email protected] 20

Modulation:

•X(t)•User information signal•Analog / Digital signal•Low frequency signal•Baseband signal

•Modulating signal•F(t) = A cos(2 π fc t)•Carrier signal•Analog signal•Higher frequency signal

•m(t)=X(t)*A cos(2 π fc t)•Transmitted signal•Analog signal•Higher frequency signal•Passband signal

•Modulated signal

Page 21: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 21/33

[email protected] 21

Types of modulation:

m(t)=X(t)*A cos(2 π f c  t + φ )

Amplitude modulation (AM)

Angle modulation

Frequency modulation (FM)

Phase modulation (PM)

Page 22: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 22/33

[email protected] 22

Amplitude Modulation:

Page 23: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 23/33

[email protected] 23

Frequency Modulation:

Page 24: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 24/33

[email protected] 24

Phase Modulation:

Page 25: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 25/33

[email protected] 25

Analog-to-Digital:

DigitizationConvert analog data into digital data

Then use digital encoding to form digital signal

Pulse code modulation (PCM)

Delta modulation (DM)

Page 26: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 26/33

[email protected] 26

Pulse Code Modulation:

Consists of two steps:Sampling

Discretize along horizontal axis

Sampling Theorem:

Number of samples per second should be greater than or equal to twicethe highest frequency component of the analog signal

fs >= 2 * fmax

Quantization

Discretize along vertical axis

Page 27: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 27/33

[email protected] 27

Sampling:

Time (sec)

f max = 4000 Hz

Sampling rate (f s) = 8000 samples/sec

Sampling period (Ts) = 1/8000 sec

1/8000 second

Page 28: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 28/33

[email protected] 28

Quantization: 1bit/sample

+2.5 v = 1

-2.5 v = 0

Mapping to bits: 1 1 1 1 1 1 0 0 0 0 1 1 1

Page 29: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 29/33

[email protected] 29

Quantization: 2bits/sample

+3.75 v = 11

+1.25 v = 10

-1.25 v = 01

-3.75 v = 00

Mapping to bits: 11 11 10 11 11 11 01 01 01 01 10 10 11

Page 30: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 30/33

[email protected] 30

PCM: cont…

Greater the number of samples, better will be thequality

Telephony quality = 8000 samples/sec

CD quality = 44100 samples/sec

Greater the number of quantization levels, betterwill be the quality

128 quantization levels = 7-bits/sample = 56Kbps

256 quantization levels = 8-bits/sample = 64Kbps

Better quality demands more storage, processingpower, data rate, bandwidth

Page 31: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 31/33

[email protected] 31

Delta Modulation:

Analog input is approximated by a staircasefunction

Move up or down one level () at each sampleinterval

Binary behaviorFunction moves up or down at each sample interval

Requires 1-bit/sample

Data rate for DM = 8KbpsData rate for 128-PCM = 56Kbps

Page 32: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 32/33

[email protected] 32

Delta Modulation: cont…

Page 33: Ccnet Lec 06 Data Encoding

8/6/2019 Ccnet Lec 06 Data Encoding

http://slidepdf.com/reader/full/ccnet-lec-06-data-encoding 33/33

myousaf@ymail com 33

Questions ???