ce 530 molecular simulation - eng.buffalo.edukofke/ce530/lectures/lecture2.ppt.pdf• 53 bars . 7...

13
1 CE 530 Molecular Simulation Lecture 2 Physical quantities; Hard-sphere MD David A. Kofke Department of Chemical Engineering SUNY Buffalo [email protected]

Upload: others

Post on 27-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

1

CE 530 Molecular Simulation

Lecture 2 Physical quantities; Hard-sphere MD

David A. Kofke

Department of Chemical Engineering SUNY Buffalo

[email protected]

Page 2: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

2

Physical Quantities in Molecular Simulation ¡ State variables

•  each variable has an associated “conjugate” variable temperature, energy (kT,E) pressure, volume (P,V) chemical potential, number of molecules (µ,N)

•  specification of state requires fixing one of each pair •  the dependent variable can be measured by the simulation

¡ Configuration variables •  position, orientation, momentum of each atom or molecule •  energy, forces and torques •  time

¡ Properties •  transport coefficients, free energies, structural quantities, etc.

¡ Molecular model parameters •  characteristic energy, size, charge

Page 3: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

3

Dimensions and Units 1. Magnitudes

¡  Typical simulation size very small •  100 - 1000 atoms

¡  Important extensive quantities small in magnitude •  when expressed

in macroscopic units ¡  Small numbers are inconvenient ¡  Two ways to magnify them

•  work with atomic-scale units ps, amu, nm or Å

•  make dimensionless with characteristic values

model values of size, energy, mass

Page 4: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

4

Dimensions and Units 2. Scaling

¡  Scaling by model parameters •  Size σ •  Energy ε •  Mass m

¡  Choose values for one atom/molecule pair potential arbitrarily

¡  Other model parameters given in terms of reference values •  e.g., ε2/ε1 = 1.2

¡  Physical magnitudes less transparent

¡  Sometimes convenient to scale coordinates differently

Page 5: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

5

Dimensions and Units 3. Corresponding States

¡  Lennard-Jones potential in dimensionless form

¡  Parameter independent! ¡  Dimensionless properties must also be

parameter independent •  convenient to report properties in

this form, e.g. P*(ρ*,T*) •  select model values to get actual

values of properties •  Basis of corresponding states

¡  Equivalent to selecting unit value for parameters

u *(r*) = 4 1

r *⎛⎝⎜

⎞⎠⎟

12

− 1r *

⎛⎝⎜

⎞⎠⎟

6⎡

⎣⎢⎢

⎦⎥⎥

Page 6: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

6

Dimensions and Units 4. Corresponding States Example

¡ Want pressure for methane at 0.0183 mol/cm3 and 167 K ¡ LJ model parameters are σ = 0.3790 nm, ε/k = 142.1 K ¡ Dimensionless state parameters

•  ρ* = ρσ3 = (0.0183 mol/cm3)(3.790 × 10-8 cm)3(6.022 × 1023 molecules/mole) = 0.6

•  T* = T/(ε/k) = (167 K)/(142.1 K) = 1.174 ¡ From LJ equation of state

•  P* = Pσ3/ε= 0.146 ¡ Corresponding to a pressure

•  P = 0.146 (142.1 K)(13.8 MPa-Å3/molecule )/(3.790Å)3 = 5.3 MPa •  53 bars

Page 7: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

7

Dimensions and Units 5. Hard Potentials

¡ Special case •  u(r) = 0, r > d •  u(r) = ∞, r < d

¡ No characteristic energy! ¡ Temperature (kT) provide the only characteristic energy ¡ All dimensionless properties (e.g., Pd3/kT), independent of

temperature!

u(r)

r d

Page 8: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

8

Hard Sphere Molecular Dynamics

¡ Prototype of a molecular simulation •  basis for discussion

¡ Introduce features common to all simulations •  dimensions and units •  atom looping •  boundary conditions •  averaging and error estimation •  initialization

¡ For later consideration: •  integrators for soft potentials •  Monte Carlo methods

Page 9: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

9

Hard Sphere Dynamics ¡ Impulsive, pairwise collisions

•  infinite force exerted over an infinitesimal time impulse = force × time = finite change in momentum Δ p

•  force directed along line joining centers of atoms •  magnitude of impulse governed by conservation of energy

•  thus

consider glancing collision consider head-on collision

F1

F2

!p1new = !p1

old + Δ!p!p2

new = !p2old − Δ!p

⎫⎬⎪

⎭⎪conservation of momentum

1m1

!p1new 2

+ 1m2

!p2new 2

= 1m1

!p1old 2

+ 1m2

!p2old 2

conservation of energy

Δp[xy] = mR

!v12 ⋅!r12

σ 2 r12[xy]

!r12 ≡!r2 −!r1

!v12 ≡!v2 −!v1

1 21 2

2R

m mm m m= +reduced mass

Page 10: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

10

Hard Sphere Kinematics ¡ Free flight between collisions

•  ¡ Collision time for any pair solved analytically

•  Find Δt such that •  leads to quadratic equation

•  three cases

!r (t + Δt) = !r (t)+ !v(t)Δt

!r2(t + Δt)− !r1(t + Δt) 2 =σ 2

!v12

2 (Δt)2 + 2(!v12 ⋅!r12 )(Δt)+ (!r12

2 −σ 2 ) = 0

separating approaching, but miss approaching, and hit

!v12 ⋅!r12 > 0

!v12 ⋅!r12 < 0

!v12 ⋅!r12( )2 − !v12

2 (!r122 −σ 2 ) < 0

!v12 ⋅!r12 < 0

!v12 ⋅!r12( )2 − !v12

2 (!r122 −σ 2 ) > 0

Page 11: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

11

Integration Strategy ¡ Choose a time interval, Δt; do the following to advance the system

across this interval, bringing the system to time tn+1= tn +Δt •  Loop over all pairs ij, computing collision time tij •  Identify minimum tij

min as next colliding pair •  If tij

min < tn+1, advance all spheres to positions at tijmin

•  Perform collision dynamics on colliding pair •  Identify next colliding pair, repeat until tij

min < tn+1, then advance to tn+1. •  Accumulate averages, repeat for next time interval

¡ Click here for applet highlighting collision pairs

= collision time t1 t3 t4 t5 t6 t2

Δt

Page 12: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

12

Ordering the Atoms

¡ Atoms are placed in an arbitrary order ¡ Each atom links to the next one up and next one down the list

¡ Atom looks only up list to find collision partner •  collisions with down-list atoms monitored by down-list atoms

¡ Example •  atoms 3 and 5 next to collide

Up list 1 2 3 4 5 6

Down list

1 2 3 4 5 6 partner 3 4 5 5 6 nulltime 1.2 0.7 0.1 0.5 1.5 null

Page 13: CE 530 Molecular Simulation - eng.buffalo.edukofke/ce530/Lectures/Lecture2.ppt.pdf• 53 bars . 7 Dimensions and Units 5. Hard Potentials ! Special case ... Lecture2.ppt Author: David

13

Collision Update Requirements ¡ No need to re-identify all collisions with each step ¡ Upon collision, must update (check all atoms up-list of)

•  collider •  partner •  (downlist) atoms expecting to collide with collider or partner

¡ Also check if downlist atoms of collider or partner will now collide with either of them next

1 3 5 3 1

3 collides with 5...

…interrupting anticipated collision of 1 with 3

3 2

4

2 4

2 …causing 3 to intervene in anticipated collision between 2 and 4