ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

22
Ce doped lanthanum tri- bromide crystal: recent advances in scintillation imaging Roberto Pani On behalf of SCINTIRAD Collaboration INFN and Sapienza-University of Rome Italy

Upload: belva

Post on 14-Jan-2016

96 views

Category:

Documents


1 download

DESCRIPTION

Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging. Roberto Pani On behalf of SCINTIRAD Collaboration INFN and Sapienza-University of Rome Italy. LaBr 3 :Ce/PMT Pulse height non linearity. Co 60 gamma ray pulse height spectra measured with LaBr 3 :Ce - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Ce doped lanthanum tri-bromide crystal: recent advances in

scintillation imaging

Roberto Pani

On behalf of SCINTIRAD CollaborationINFN and Sapienza-University of Rome Italy

Page 2: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

LaBr3:Ce/PMT Pulse height non linearity

Gamma Ray Spectroscopy With a Ø 19 x19 mm3 LaBr3 : 0:5% Ce3+ ScintillatorP. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, Member, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 3, JUNE 2004

Co60 gamma ray pulse height spectra measured with LaBr3:Ceat cathode voltages a) HV = -500 V and b) HV = -700 V.

Page 3: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Scintillation crystals

• Planar LaBr3:Ce 49494 mm3 + 3 mm glass window

• Planar NaI(Tl) 49494 mm3 + 3 mm glass window

• LaBr3:Ce cylinder ½” Ø ½” thickness (gold standard)

Page 4: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

R6231 Hamamatsu:optimized PMT for LaBr3:Ce crystal

• QE typ. = 30 % @ 420 nm

• Number of dinode = 8

• Gain= 2.7 E+05 @ HV= -1000 V

• Voltage Divider modified by Saint Gobain

Page 5: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Pulse height linearity vs photon energy

0

400

800

1200

1600

2000

0 200 400 600Energy (keV)

Ch

an

ne

l

planar LaBr

best fit LaBr

cylinder LaBr

best fit cyl. LaBr

HamamatsuR6231

HV=-1000V

Page 6: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Energy resolution FWHM R6231 Hamamatsu PMT @ HV=-1000 V

Planar LaBr3:Ce 49x 49 x 4 mm3 + 3 mm windowPlanar NaI(Tl) 49x 49 x 4 mm3 + 3 mm windowCylinder LaBr3:Ce ½” Ø x ½ “ thickness

Page 7: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Overall Energy Resolution: Theory

1

56.522

NRER s

•Rs= intrinsic resolution of scintillator crystal•N = mean value of photon= 0.3 , =0.98, ~4.8 (PMT R6231 Hamamatsu @ HV=-1000 V)•Photon Energy 122 keV

Crystal Intrinsic

Energy

Resolution

@122 keVa

Energy

Resolution

(theor.)

Energy

Resolution

(exp.)

Nphe

(theor.)

Nphe

(exp.)

LaBr3:Ce

Planar

4.6% 7.1 %(70000 ph/MeV)

6.9% 2475 2478

NaI(Tl)

Planar

6.6% 9.55%(38000 ph/MeV)

9.50% 1344 1369

a:Comparative study of scintillators for PET/CT detectorsNassalski, A.; Kapusta, M.; Batsch, T.; Wolski, D.; Mockel, D.; Enghardt, W.; Moszynski, M.;Nuclear Science Symposium Conference Record, 2005 IEEE, Volume 5,  23-29 Oct. 2005 Page(s):2823 – 2829

Page 8: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

LaBr3:Ce - Energy Resolution Summary

Energy (keV)

Hamamatsu R6231 +

Planar LaBr

(49x49x4 mm3) (2006)

Hamamatsu

R6231 +

LaBr Cylinder

(1/2”Øx1/2”thick) b

(2005)

Photonis XP20Y0QDA +

LaBr

(10x10x5 mm3)a

(2004)

60 9.8% 10.6% 13.0%

81 8.6% 9.3% 10.0%

122 6.8% 6.9% 8.0%

356 4.0% 4.3% -

511 3.3% 3.1% 4.0%a:Comparative study of scintillators for PET/CT detectorsNassalski, A.; Kapusta, M.; Batsch, T.; Wolski, D.; Mockel, D.; Enghardt, W.; Moszynski, M.;Nuclear Science Symposium Conference Record, 2005 IEEE, Volume 5,  23-29 Oct. 2005 Page(s):2823 – 2829

bX-ray and gamma-ray response of a 2”x2” LaBr3:Ce scintillation detector F. Quarati, A.J.J. Bos, S. Brandenburg, C. Dathy, P. Dorenbos, S. Kraft,R.W. Ostendorf, V. Ouspenski, Alan Owens, Nuclear Instruments and Methods in Physics Research A 574 (2007) 115–120

Page 9: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

H8500 Hamamatsu FP :

• Metal channel dynode

• QE typ. = 24 % @ 420 nm

• Number of dinode = 12

• Gain= 1.5 E+06 typ.

• Number of anodes = 8 x 8 array

(6.08 mm pitch)

Energy resolution analysis The output signal was obtained from the

short circuit of all anodic signals

15 mm 50 mm

Page 10: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Pulse height linearity vs photon energy

LaBr3:Cecontinuous crystal

+ HamamatsuH8500 FP(sc anode) HV=-1000V

0

500

1000

1500

2000

0 100 200 300 400 500 600Energy (keV)

Cha

nnel

-25%-20%-15%-10%

-5%0%5%

10%

0 100 200 300 400 500 600

Energy (keV)

De

via

tion

%

Page 11: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Energy resolution H8500 Hamamatsu F.P. (sc anode) @ HV= -1000V

Planar LaBr3:Ce 49 x 49 x 4 mm3 + 3 mm glass window

Page 12: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

QE max. = 41.6 % @ 380 nm Number of dinode = 10 Gain= 2.0 E+06 @ HV=-800 V

R7600-200 Hamamatsu PMT

LaBr3:Ce Cylinder (½”Ø ½” thickness)

1%

10%

100%

10 100 1000

Energy (keV)

R7600-200 (QE = 41%)

R6231 standard PMT (QE = 30%)

H8500 MA-PMT (QE = 22%)

1%

10%

100%

10 100 1000

Ene

rgy

Res

olut

ion

Page 13: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

R7600-200 Hamamatsu LaBr3:Ce Cylinder (½” Ø x ½ “ thickness)

Ba133 source HV=-700V

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

channel

Co

un

ts

32 keV81 keV

274 keV302 keV

356 keV

380 keV

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400

channel

coun

ts

274/302 keV356/380 keV

NaI(Tl) planar + R6231

Page 14: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Scintillation

event

PSF Image

Light PSF

phe

PSF

imm

n

0

10

20

30

40

50

0 10 20 30 40 50mechanical position (mm)

mea

sure

d po

sitio

n (m

m)

0

1250

2500

3750

5000

0 100 200 300

Pulse height (a.u.)

coun

ts (

a.u.

)

phenE

1R

Co57 pulse height analisys

PSF image

Position linearity

lPSFSR immSpatial Resolution

mech

channel

dx

dXl

Page 15: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Centroid Algorithm for small FoV gamma camera

jj

jjj

c n

xn

X'

'

k

kjj tnn

2'

jj

jjj

cn

xn

X

Standard algorithm:

k

kjj nn

New algorithm:

1 2 3 4 5 6 7 8

S1

S3

S5

S7

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

S1

S3

S5

S7

0

5

10

15

20

25

30

35

40

After procedure

t = threshold (0÷1)

LaBr3:CeCharge spread

HV=-825V

Page 16: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Performances Analysis:

LaBr3(Ce)49 49 4 mm3 + 3 mm glass window

• Coupled to the MA-PMT H8500 tube

• 0.4 mm Øcollimated Tc99m source (140 keV photon energy) 1.5 mm step scanning

• Image analysis with and without new

algorithm

Page 17: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

LaBr3(Ce): Overall Spatial Resolution@140 keV

SR = 1.67 mm

SR = 1.90 mm

HV=-800V

0

100

200

300

400

500

600

150 200 250 300 350 400

image pixel

co

un

ts

HV=-750V

0

100

200

300

400

500

600

700

150 200 250 300 350 400

image pixel

coun

ts

HV=-750V

0

100

200

300

400

500

600

150 200 250 300 350 400

image pixel

counts

SR=1.36 mm

SR=1.28 mm

HV=-800V

0

100

200

300

400

500

600

150 200 250 300 350 400

image pixel

co

un

ts

HV = - 800V

HV = - 750V

Standard algorithm New algorithm

Page 18: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

0

0.2

0.40.6

0.8

1

1.2

0 20 40Mechanical Position (mm)

Pu

lse

He

igh

t Ce

ntr

oid

(%

)

LaBr3(Ce)

MC simulation

Experimental data vs Monte Carlo simulation GEANT4:

Pulse Height Centroid @ 140 keV

Page 19: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30Mechanical Position (mm)

Sp

rea

d (S

igm

a -m

m)

MC Simul.LaBr HV=-775V

1 23

45

67

8

S1

S2

S3

S4

S5S6

S7S8

0.00

0.50

1.00

1.50

2.00

2.50

3.00

1 2 3 4 5 67

8

S1

S2

S3

S4S5

S6S7

S8

0

20

40

60

80

100

120

Experimental data vs Monte Carlo simulation: Charge distribution spread @ 140 keV

Monte Carlo Simulation

LaBr3:Ce49x49x4 mm3

continuous crystal + H8500 MA-PMT

Page 20: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Experimental measurement:•0.4 mm Ø point source Tc99m

•1.5 mm step

Monte Carlo simulation:•140 keV photon energy•6 mm step

LaBr3:Ce49x49x4 mm3 + 3mm glass window

continuous crystal +

8x8 anode array

Experimental data vs Monte Carlo simulation:

Spatial resolution & position linearity without new centroid algorithm

Page 21: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

0

50

100

150

200

250

300

-30 -20 -10 0 10 20 30

Mechanical position (mm)

Ima

ge

Po

sitio

n (

pix

el) Experimental data

Monte Carlo data

Theoretical linearity

Experimental data vs Monte Carlo simulation:

Spatial resolution & position linearity with new centroid algorithm

00,20,40,60,8

11,21,41,61,8

2

0 10 20 30 40 50

Mechanical position (mm)

Sp

atia

l res

olu

tio

n (

mm

)

Monte Carlo Data

Experimental data

Experimental measurement:•0.4 mm Ø point source Tc99m

•1.5 mm step

Monte Carlo simulation:•140 keV photon energy•6 mm step

LaBr3:Ce49x49x4 mm3 + 3mm glass window

continuous crystal +

8x8 anode array

Page 22: Ce doped lanthanum tri-bromide crystal: recent advances in scintillation imaging

Conclusions

• LaBr3:Ce seems a very attractive scintillation crystal for SPET application (140 keV)

• At 140 keV photon energy, continuous crystal can allow the highest values of spatial resolution, energy resolution and detection efficiency

• Hamamatsu MAPMT photodetector are limiting energy resolution and spatial resolution response

• Probably the new ultra high Q.E. MAPMT could solve such limitations