cec6-1

Upload: safdar-ali

Post on 08-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 CEC6-1

    1/52

    DEEP DYNAMIC COMPACTIONDEEP DYNAMIC COMPACTION

    Engr Sarfraz AliEngr Sarfraz Ali

    [email protected]@yahoo.com

  • 8/7/2019 CEC6-1

    2/52

    IN THE NAME OF ALLAH, THE MOST BENEFICENT,

    THE MOST MERCIFUL

  • 8/7/2019 CEC6-1

    3/52

  • 8/7/2019 CEC6-1

    4/52

    Methods for Soil ImprovementMethods for Soil ImprovementGround

    Reinforcement

    Ground

    Improvement

    Ground

    Treatment

    Stone Columns Soil Nails Deep Soil Nailing

    Micropiles (Mini-piles) Jet Grouting Ground Anchors Geosynthetics

    Fiber Reinforcement Lime Columns Vibro-Concrete

    Column Mechanically

    Stabilized Earth Biotechnical

    Deep DynamicCompaction

    Drainage/Surcharge

    Electro-osmosis Compaction

    grouting Blasting Surface

    Compaction

    Soil Cement Lime Admixtures Flyash

    Dewatering Heating/Freezing Vitrification

    Compaction

  • 8/7/2019 CEC6-1

    5/52

    Compaction and ObjectivesCompaction and Objectives

    CompactionCompaction

    ManyMany typestypes ofof earthearth construction,construction, suchsuch asas dams,dams, retainingretainingwalls,walls, highways,highways, andand airport,airport, requirerequire manman--placedplaced soil,soil, oror fillfill..ToTo compactcompact aa soil,soil, thatthat is,is, toto placeplace itit inin aa densedense statestate..

    TheThe densedense statestate isis achievedachieved throughthrough thethe reductionreduction ofof thethe airairvoidsvoids inin thethe soil,soil, withwith littlelittle oror nono reductionreduction inin thethe waterwatercontentcontent.. ThisThis processprocess mustmust notnot bebe confusedconfused withwithconsolidation,consolidation, inin whichwhich waterwater isis squeezedsqueezed outout underunder thetheactionaction ofof aa continuouscontinuous staticstatic loadload..

    Objectives:Objectives:

    (1)(1) Decrease future settlementsDecrease future settlements

    (2)(2) Increase shear strengthIncrease shear strength

    (3)(3) Decrease permeabilityDecrease permeability

  • 8/7/2019 CEC6-1

    6/52

    Share information on:Share information on:

    Experiences of dynamic compactionExperiences of dynamic compaction

    TechniqueTechnique

    DesignDesign

    EvaluationEvaluation

    EffectivenessEffectiveness

    AimAim

  • 8/7/2019 CEC6-1

    7/52

    TechniqueTechnique

    Energy transfer mechanismEnergy transfer mechanism

    Stages of compactionStages of compactionApplicationApplication which soils are compacted ?which soils are compacted ?

    TypesTypes

    Ground VibrationsGround Vibrations

    Design ConsiderationsDesign Considerations

    QuestionsQuestions

    SequenceSequence

  • 8/7/2019 CEC6-1

    8/52

    TECHNIQUETECHNIQUE

  • 8/7/2019 CEC6-1

    9/52

    TechniqueTechnique involvesinvolves repeatedlyrepeatedly droppingdropping aa largelarge weightweight

    fromfrom aa cranecrane

    WeightWeight maymay rangerange fromfrom 66 toto 172172 tonstons

    DropDrop heightheight typicallytypically variesvaries fromfrom 1010 mm toto 4040 mm

  • 8/7/2019 CEC6-1

    10/52

    degreedegree ofof densificationdensification achievedachieved isis aa functionfunction ofof thethe

    energyenergy inputinput (weight(weight andand dropdrop height)height) asas wellwell asas thethe

    saturationsaturation level,level, finesfines contentcontent andand permeabilitypermeability ofof thethe

    materialmaterial

    66 3030 tonton weightweight cancan densifydensify thethe looseloose sandssands toto aa depthdepth

    ofof 33 mm toto 1212 mm

  • 8/7/2019 CEC6-1

    11/52

    DoneDone systematicallysystematically inin aa rectangularrectangular oror triangulartriangular

    patternpattern inin phasesphases

    EachEach phasephase cancan havehave nono ofof passespasses;; primary,primary, secondary,secondary,tertiary,tertiary, etcetc..

    3 m 3 m 3 m 3 m3 m3 m3 m 3 m 3 m 3 m3 m3 m

    8 m

    8m

    LEGE D

    Primary Pass

    Secondary Pass

    3 m 3 m 3 m 3 m3 m3 m3 m 3 m 3 m 3 m3 m3 m

    8 m

    8m

    LEGE D

    Primary Pass

    Secondary Pass

    (a)(b)

    3 m 3 m 3 m 3 m3 m3 m3 m 3 m 3 m 3 m3 m3 m

    8 m

    8m

    LEGE D

    Primary Pass

    Secondary Pass

    3 m 3 m 3 m 3 m3 m3 m3 m 3 m 3 m 3 m3 m3 m

    8 m

    8m

    LEGE D

    Primary Pass

    Secondary Pass

    (a)(b)

  • 8/7/2019 CEC6-1

    12/52

    SpacingSpacing betweenbetween impactimpact pointspoints dependdepend uponupon::

    DepthDepth ofof compressiblecompressible layerlayer

    PermeabilityPermeability ofof soilsoil ocationocation ofof groundground waterwater levellevel

    DeeperDeeper layerslayers areare compactedcompacted atat widerwider gridgrid

    spacing,spacing, upperupper layerlayer areare compactedcompacted withwith closercloser

    gridgrid spacingspacing

  • 8/7/2019 CEC6-1

    13/52

    DeepDeep craterscraters areare formedformed byby tampingtamping

    CratersCraters maymay bebe filledfilled withwith sandsand afterafter eacheach passpass

    HeaveHeave aroundaround craterscraters isis generallygenerally smallsmall

  • 8/7/2019 CEC6-1

    14/52

    ENER Y TRANSFER MECHANISMENER Y TRANSFER MECHANISM

  • 8/7/2019 CEC6-1

    15/52

    Energy transferred by propagation of RayleighEnergy transferred by propagation of Rayleigh

    (surface) waves and volumic (shear and(surface) waves and volumic (shear and

    compression) wavescompression) waves RayleighRayleigh 67 %67 %

    ShearShear 26 %26 %

    CompressionCompression 7%7%

  • 8/7/2019 CEC6-1

    16/52

    DENSIFICATION PROCESSDENSIFICATION PROCESS

  • 8/7/2019 CEC6-1

    17/52

    Compressibility of saturated soil due to presence ofCompressibility of saturated soil due to presence of

    micro bubblesmicro bubbles

    radual transition to liquefaction under repeatedradual transition to liquefaction under repeatedimpactsimpacts

    Rapid dissipation of pore pressures due to highRapid dissipation of pore pressures due to high

    permeability after soil fissuringpermeability after soil fissuring

    Thixotropic recoveryThixotropic recovery

  • 8/7/2019 CEC6-1

    18/52

    APP ICATION

  • 8/7/2019 CEC6-1

    19/52

    Zone 1: Best

    Zone 3: Worst (consider alternate methods)

    Zone 2: Must apply multiple phases to allow for pore pressure dissipation

    Zone 1: Best

    Zone 3: Worst (consider alternate methods)

    Zone 2: Must apply multiple phases to allow for pore pressure dissipation

    Applicable to wide variety of soilsApplicable to wide variety of soils

    rouping of soils on the basis of grain sizesrouping of soils on the basis of grain sizes

  • 8/7/2019 CEC6-1

    20/52

    Mainly used to compact granular fillsMainly used to compact granular fills

    Particularly useful for compacting rockfills belowParticularly useful for compacting rockfills below

    water and for bouldery soils where other methods canwater and for bouldery soils where other methods cannot be applied or are difficultnot be applied or are difficult

    Waste dumps, sanitary landfills, and mine wastesWaste dumps, sanitary landfills, and mine wastes

  • 8/7/2019 CEC6-1

    21/52

    InIn sanitarysanitary fills,fills, settlementssettlements areare causedcaused eithereither byby

    compressioncompression ofof voidsvoids oror decayingdecaying ofof thethe trashtrash materialmaterial

    overover time,time, DDCDDC isis effectiveeffective inin reducingreducing thethe voidvoid ratio,ratio,andand thereforetherefore reducingreducing thethe immediateimmediate andand longlong termterm

    settlementsettlement..

    DDCDDC isis alsoalso effectiveeffective inin reducingreducing thethe decayingdecaying problem,problem,

    sincesince collapsecollapse meansmeans lessless availableavailable oxygenoxygen forfor decayingdecayingprocessprocess..

    ForFor recentrecent fillsfills wherewhere organicorganic decompositiondecomposition isis stillstill

    underway,underway, DDCDDC increasesincreases thethe unitunit weightweight ofof thethe soilsoil

    massmass byby collapsingcollapsing voidsvoids andand decreasingdecreasing thethe voidvoid ratioratio..

    ForFor olderolder fillsfills wherewhere biologicalbiological decompositiondecomposition isis

    complete,complete, DDCDDC hashas greatestgreatest effectseffects byby increasingincreasing unitunit

    weightweight andand reducingreducing longlong termterm groundground subsidencesubsidence..

  • 8/7/2019 CEC6-1

    22/52

    TYPES

    OF

    DYNAMIC COMPACTION

  • 8/7/2019 CEC6-1

    23/52

    Dynamic compactionDynamic compaction

    Dynamic consolidationDynamic consolidation

    Dynamic replacementDynamic replacement

    Rotational dynamic compactionRotational dynamic compaction

    Rapid impact dynamic compactionRapid impact dynamic compaction

    TYPES OF DYNAMIC COMPACTIONTYPES OF DYNAMIC COMPACTION

  • 8/7/2019 CEC6-1

    24/52

    ItIt isis thethe compactioncompaction ofof unsaturatedunsaturated oror highlyhighly

    permeablepermeable saturatedsaturated granulargranular materialsmaterials byby heavyheavy

    tampingtamping

    TheThe responseresponse toto tampingtamping isis immediateimmediate

    Dynamic CompactionDynamic Compaction

  • 8/7/2019 CEC6-1

    25/52

    TheThe improvementimprovement byby heavyheavy tampingtamping ofof saturatedsaturated

    cohesivecohesive materialsmaterials inin whichwhich thethe responseresponse toto tampingtamping isis

    largelylargely timetime dependentdependent

    ExcessExcess porepore waterwater pressurespressures areare generatedgenerated asas aa resultresult

    ofof tampingtamping andand dissipatedissipate overover severalseveral hourshours oror daysdays afterafter

    tampingtamping..

    Dynamic ConsolidationDynamic Consolidation

  • 8/7/2019 CEC6-1

    26/52

    TheThe formationformation byby heavyheavy tampingtamping ofof largelarge pillarspillars ofof importedimported

    granulargranular soilsoil withinwithin thethe bodybody ofof softsoft saturatedsaturated soilsoil toto bebe improvedimproved

    TheThe originaloriginal soilsoil isis highlyhighly compressedcompressed andand consolidatedconsolidated betweenbetween

    thethe pillarspillars andand thethe excessexcess porepore pressurepressure generatedgenerated requiresrequires severalseveral

    hourshours toto dissipatedissipate

    TheThe pillarspillars areare usedused bothboth forfor soilsoil reinforcementreinforcement andand drainagedrainage

    Dynamic ReplacementDynamic Replacement

  • 8/7/2019 CEC6-1

    27/52

    Process of Dynamic Replacement

  • 8/7/2019 CEC6-1

    28/52

    AA newnew dynamicdynamic compactioncompaction techniquetechnique whichwhich makesmakes useuse ofof thethefreefree fallfall energyenergy asas wellwell asas rotationalrotational energyenergy ofof thethe tampertamper calledcalled

    RotationalRotational DynamicDynamic CompactionCompaction (RDC)(RDC)

    TheThe techniquetechnique increasesincreases depthdepth ofof improvementimprovement inin granulargranularsoilssoils

    ComparativeComparative studystudy showedshowed thatthat thethe conecone penetrationpenetration resistanceresistance

    waswas generallygenerally largerlarger thanthan conventionalconventional dynamicdynamic compactioncompaction andand

    thethe tampertamper penetrationpenetration inin rotationalrotational dynamicdynamic compactioncompaction waswas

    twicetwice asas largelarge asas thatthat ofof conventionalconventional dynamicdynamic compactioncompaction

    Rotational Dynamic CompactionRotational Dynamic Compaction

  • 8/7/2019 CEC6-1

    29/52

    Rotational Dynamic CompactionRotational Dynamic Compaction

  • 8/7/2019 CEC6-1

    30/52

    Rapid Impact Dynamic CompactionRapid Impact Dynamic Compaction

  • 8/7/2019 CEC6-1

    31/52

    EVA UATION

    OF

    IMPROVEMENT

  • 8/7/2019 CEC6-1

    32/52

    TheThe depthdepth ofof improvementimprovement isis proportionalproportional toto thethe energyenergy

    perper blowblow

    TheThe improvementimprovement cancan bebe estimatedestimated throughthrough empiricalempirical

    correlation,correlation, atat designdesign stagestage andand isis verifiedverified afterafter

    compactioncompaction throughthrough fieldfield teststests suchsuch asas StandardStandard

    PenetrationPenetration TestsTests (SPT),(SPT), ConeCone PenetrationPenetration TestTest (CPT),(CPT),

    etcetc..

    EVA UATION OF IMPROVEMENTEVA UATION OF IMPROVEMENT

    W

  • 8/7/2019 CEC6-1

    33/52

    DDmaxmax==nnW x HW x H

    Where,Where,DDmaxmax == Max depth of improvement, mMax depth of improvement, m

    nn == CoefficientCoefficient thatthat caterscaters forfor soilsoil andand

    equipmentequipment variabilityvariability

    WW == WeightWeight ofof tamper,tamper, tonstons

    HH == Height of fall of tamper, mHeight of fall of tamper, m

    TheThe effectivenesseffectiveness ofof dynamicdynamic compactioncompaction cancan alsoalso bebeassessedassessed readilyreadily byby thethe cratercrater depthdepth andand requirementrequirement ofof

    backfillbackfill

  • 8/7/2019 CEC6-1

    34/52

    Reference N-Values

    Menard and Broise (1975) 1.0

    Leonard et al. (1980) 0.5Bjolgerud and Han (1963) 1.0 (rockfill)

    Smoltcyk (1983)0.5 (soil with unstable structure)0.67 (silts and sands)

    1.0 (purely frictional sand)Lukas (1980) 0.65 - 0.8

    Mayne et al. (1984) 0.3 - 0.8

    Gambin (1984) 0.5 1.0

    Qian (1985) 0.65 (fine sand)0.66 (soft clay)0.55 (loess)

    Van Impe (1989) 0.65 (silty sand)0.5 (clayey sand)

  • 8/7/2019 CEC6-1

    35/52

    GROUND VIBRATIONS

  • 8/7/2019 CEC6-1

    36/52

    DynamicDynamic compactioncompaction generatesgenerates surfacesurface waveswaves withwith aa

    dominantdominant frequencyfrequency ofof 33 toto 1212 HzHz

    TheseThese vibrationsvibrations generategenerate compression,compression, shearshear andand

    RayleighRayleigh waveswaves

    TheThe RaleighRaleigh waveswaves containcontain aboutabout 6767 percentpercent ofof thethe

    totaltotal vibrationvibration energyenergy andand becomebecome predominantpredominant overover

    otherother wavewave typestypes atat comparativelycomparatively smallsmall distancesdistances

    fromfrom thethe sourcesource

    RaleighRaleigh waveswaves havehave thethe largestlargest practicalpractical interestinterest forfor

    thethe designdesign engineersengineers becausebecause buildingbuilding foundationsfoundations

    areare placedplaced nearnear thethe groundground surfacesurface

  • 8/7/2019 CEC6-1

    37/52

    TheThe groundground vibrationsvibrations areare quantifiedquantified inin termsterms ofof

    peakpeak particleparticle velocityvelocity (PPV)(PPV);; thethe maximummaximum velocityvelocity

    recordedrecorded inin anyany ofof thethe threethree coordinatecoordinate axesaxes

    TheThe measurementmeasurement ofof vibrationsvibrations isis necessarynecessary toto

    determinedetermine anyany riskrisk toto nearbynearby structuresstructures

    TheThe vibrationsvibrations cancan bebe estimatedestimated throughthrough empiricalempirical

    correlationscorrelations oror measuredmeasured withwith thethe helphelp ofof

    instrumentsinstruments suchsuch asas portableportable seismograph,seismograph,

    accelerometers,accelerometers, velocityvelocity transducers,transducers, linearlinear variablevariable

    displacementdisplacement transducerstransducers ( VDT),( VDT), etcetc..

  • 8/7/2019 CEC6-1

    38/52

    TheThe frequencyfrequency ofof thethe RaleighRaleigh waveswaves decreasesdecreases withwith

    increasingincreasing distancedistance fromfrom thethe pointpoint ofof impactimpact

    RelationshipRelationship betweenbetween PPVPPV andand inverseinverse scaledscaled

    distancedistance isis shownshown graphicallygraphically (the(the inverseinverse scaledscaled

    distancedistance isis thethe squaresquare rootroot ofof thethe compactioncompaction energy,energy,

    divideddivided byby thethe distance,distance, dd fromfrom thethe impactimpact point)point)

  • 8/7/2019 CEC6-1

    39/52

    Tolerance imits for StructuresTolerance imits for Structures

    British Standard 7385: Part 2British Standard 7385: Part 2--1993, lays down following1993, lays down followingsafety limits for various structures having different naturalsafety limits for various structures having different natural

    frequencies:frequencies:

    Reinforced or framed structures industrial and heavyReinforced or framed structures industrial and heavy

    commercial buildings at 4 Hz and abovecommercial buildings at 4 Hz and above 50 mm/s50 mm/s

    UnUn--reinforced or light framed structures residential or lightreinforced or light framed structures residential or light

    commercial type buildings at 4 Hzcommercial type buildings at 4 Hz 15 Hz15 Hz

    1515--20 mm/s20 mm/s

    UnUn--reinforced or light framed residential or lightreinforced or light framed residential or light

    commercial type buildings at 15 Hzcommercial type buildings at 15 Hz 40 Hz and above40 Hz and above

    2020--50 mm/s50 mm/s

  • 8/7/2019 CEC6-1

    40/52

    Effect on HumansEffect on Humans

    0.1 mm/sec0.1 mm/sec not noticeablenot noticeable

    0.15 mm/sec0.15 mm/sec nearly not noticeablenearly not noticeable

    0.35 mm/sec0.35 mm/sec seldom noticeableseldom noticeable

    1.00 mm/sec1.00 mm/sec always noticeablealways noticeable

    2.00 mm/sec2.00 mm/sec clearly noticeableclearly noticeable

    6.00 mm/sec6.00 mm/sec strongly noticeablestrongly noticeable

    14.00 mm/sec14.00 mm/sec very strongly noticeablevery strongly noticeable

    17. mm/sec17. mm/sec severe noticeablesevere noticeable

  • 8/7/2019 CEC6-1

    41/52

    MONITORING ANDCONTRO

  • 8/7/2019 CEC6-1

    42/52

  • 8/7/2019 CEC6-1

    43/52

    DESIG

    N AND ANA YSISCONSIDERATIONS

  • 8/7/2019 CEC6-1

    44/52

    Depth of improvement, dDepth of improvement, d

    Impact energy, EImpact energy, E

    Influence of cable dragInfluence of cable drag

    Equipment limitationsEquipment limitations

    Influence of tamper sizeInfluence of tamper size

    Grid spacing, S

    Grid spacing, S

    Time delay between passesTime delay between passes

    Soil conditionsSoil conditions

  • 8/7/2019 CEC6-1

    45/52

    Primary concernPrimary concern

    DependsDepends onon::

    SoilSoil conditionsconditions

    EnergyEnergy perper dropdrop

    ContactContact pressurepressure ofof tampertamper

    Grid

    Grid spacingspacing

    NumberNumber ofof passespasses

    TimeTime laglag betweenbetween passespasses

    Depth of ImprovementDepth of Improvement

  • 8/7/2019 CEC6-1

    46/52

    WeightWeight ofof tampertamper timestimes thethe heightheight ofof dropdrop

    MainMain parameterparameter inin determiningdetermining thethe depthdepth ofof

    improvementimprovement

    CanCan bebe calculatedcalculated fromfrom thethe equationequation

    DDmaxmax== nnWW xx HH

    (Free(Free fallingfalling ofof weights)weights)

    Impact E nergy, EImpact E nergy, E

  • 8/7/2019 CEC6-1

    47/52

    CableCable attachedattached toto thethe tampertamper causescauses frictionfriction andand

    reducesreduces velocityvelocity ofof tampertamper

    FreeFree fallfall ofof tampertamper isis moremore efficientefficient

    Influence of Cable DragInfluence of Cable Drag

  • 8/7/2019 CEC6-1

    48/52

    CraneCrane capacitycapacity

    HeightHeight ofof dropdrop

    MassMass ofof tampertamper

    TamperTamper sizesize

    Equipment limitationsEquipment limitations

  • 8/7/2019 CEC6-1

    49/52

    SignificantSignificant effecteffect onon depthdepth ofof improvementimprovement

    FirstFirst passpass compactscompacts deepestdeepest layer,layer, shouldshould bebe equalequal

    toto thethe compressiblecompressible layerlayer

    SubsequentSubsequent passespasses compactcompact shallowershallower layers,layers, maymay

    requirerequire lesserlesser energyenergy

    IroningIroning passpass compactscompacts toptop layerlayer

    Grid SpacingGrid Spacing

  • 8/7/2019 CEC6-1

    50/52

    AllowAllow porepore pressurespressures toto dissipatedissipate

    PiezometersPiezometers cancan bebe installedinstalled toto monitormonitor dissipationdissipation

    ofof porepore pressurespressures followingfollowing eacheach passpass

    Time Delay between PassesTime Delay between Passes

  • 8/7/2019 CEC6-1

    51/52

    SignificantSignificant effecteffect onon depthdepth ofof improvementimprovement

    FirstFirst passpass compactscompacts deepestdeepest layer,layer, shouldshould bebe equalequal

    toto thethe compressiblecompressible layerlayer

    SubsequentSubsequent passespasses compactcompact shallowershallower layers,layers, maymay

    requirerequire lesserlesser energyenergy

    IroningIroning passpass compactscompacts toptop layerlayer

    Grid SpacingGrid Spacing

  • 8/7/2019 CEC6-1

    52/52