cfd lagrangian multiphase simulation applied to dust explosion...

32
CFD Lagrangian Multiphase Simulation Applied to Dust Explosion Characterization Authors: Daniel Vizcaya, Carlos Murillo, Nathalie Bardin-Monnier, Olivier Dufaud, Laurent Perrin, Nicolás Ratkovich & Felipe Muñoz Contact: Daniel Vizcaya ([email protected]) 1 Speaker: Hugo Pineda

Upload: others

Post on 18-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

CFD Lagrangian Multiphase Simulation Applied to Dust Explosion

Characterization

Authors: Daniel Vizcaya, Carlos Murillo, Nathalie Bardin-Monnier,

Olivier Dufaud, Laurent Perrin, Nicolás Ratkovich & Felipe Muñoz

Contact: Daniel Vizcaya ([email protected])

1

Speaker: Hugo Pineda

Page 2: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

Content

1. Introduction to dust explosions

2. Explosivity Parameters and Equipment

3. Simulation

4. Results

5. Conclusiones and Future Work

2

Page 3: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

1. Introduction to dust explosions: Imperial Sugar Case

Place: Port Wentworth, Georgia, USA

Date: February 7, 2008.

Process: Sugar refinery.

Combustible: Sugar.

Mean Particle size (m): 23

Pmax (bar): 7.5

MEC (g/m3): 95

Kst (bar m/s): 139

Impact:

• 14 fatalities.

• 36 injured.

• Process plant total destruction.3

Vorderbrueggen (2011)

Page 4: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

1. Introduction to dust explosions

4

Eckhoff (2009)

Page 5: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

1. Introduction to dust explosions

5

Page 6: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

2. Explosivity parameters: Maximumpressure and maximum rate of pressure rise

6

Typical pressure profile of an explosion on the 20 L Sphere

Dahoe et al. (2001)

Page 7: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

2. Explosivity parameters: MinimumExplosivity Concentration (MEC)

7

Eckhoff (2009)

Maize Starch Characterization

Page 8: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

2. Explosivity parameters: Particle Size

8

Eckhoff (2009)

Aluminium Dust in Air

Page 9: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

2. Explosivity parameters: Turbulence level

9Eckhoff (2009)

Lycopodium in Air

Page 10: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

10

𝐾𝑠𝑡 =𝑑𝑃

𝑑𝑡𝑉1/3

Is a severity index developed from the maximum rate of

pressure rise and volume-invariant.

Risk Level Kst (bar m/s) Explosion Description

ST 1 1-200 Weak

ST 2 201-300 Strong

ST 3 > 300 Very Strong

2. Explosivity parameters: Deflagration Index

Table 1. Risk level associated to Deflagration Index

Page 11: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

11

𝐾𝑠𝑡 =𝑑𝑃

𝑑𝑡𝑉1/3

Is a severity index developed from the maximum rate of

pressure rise and volume-invariant.

Material Mean ParticleSize

Concentration Kst (bar m/s)

Starch 10 105 189

Polyethylene 63 25 267

Phenolic Resin 40 50 165

2. Explosivity parameters: Deflagration Index

Page 12: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

2. Dust explosion characterization equipment

12

• MEC from nominal concentration.

• Maximum pressure (Pmax).

• Maximum rate of pressure rise (dP/dtmax).

20 L Sphere 1 m3 Vessel

Page 13: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

𝐾𝑠𝑡 =𝑑𝑃

𝑑𝑡𝑉1/3

13

2. Deflagration Index

Dahoe et al. (2001)

Page 14: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

[13] 14

20 L Sphere 1 m3 Vessel

Dust containerpressure (barg)

20 20

Ignition Time (ms) 60 200

Ignition Energy (kJ) 10 10

Type of nozzle Rebound Annular

Type of flammabledust

High densities All densities

Table 2. Comparison between dust explosion characterization equipments

2. Dust explosion characterization equipment: Comparative Table

Page 15: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

15

2. Experimental Studies

Dahoe et al. (2001)

Page 16: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

• To develop a CFD multiphase flow to evaluate the dispersionphenomena of flammable dust within the 20 L Sphere understandard test conditions.

• To evaluate the dust concentration at ignition point on themoments previous to the explosion.

• To evaluate the turbulence level during the dispersion of thedust.

• To evaluate the particle distribution within the domain takinginto account the particle size.

16

3. Objectives

Page 17: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

17

3. Simulation: General Geometry

Canister

Sphere

Igniters

Nozzle

Nozzle Vertical Cut

Page 18: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

18

3. Simulation: Mesh

Models:

• Polyhedral mesher

• Advancing Layer Mesher

• Surface Remesher

Principal Reference Values:

• Number prism layers: 2

• Prism Layer Thickness: 0.036 mm

• Minimum Surface Size: 0.2 mm

Mesh Results:

• Cells: 7,316,852

• Faces: 51,224,435

• Verts: 43,619,275

Page 19: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

19

3. Simulation: Mesh

Velref > 400 m/s

Page 20: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

• Implicit Unsteady.– Time Step: 1 ms

– Temporal Discretization: 2nd Order

• Compressible Gas: Peng-Robinson

• Lagrangian Multiphase

• Detached Eddy Simulation

20

3. Simulation: Principal Models

Page 21: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

• Lagrangian Multiphase:– Material: Starch– Models:

• Constant density: = 610 kg/m3

• Drag Force• Material Particles• Pressure Gradient Force• Spherical Particles

• Injector:– Mass Flow Rate: 6 kg/s for t <

0.2 ms– Number of Parcels: 2.2e+06– Particle Size Distribution from

laser diffraction (Table 3)

21

3. Simulation: Principal Models

Table 3. Particle Size Distribution from laser

diffraction

0

0.1

0.2

0.3

0.4

Mas

s Fr

acti

on

Particle Size (μm)

Particle Size Distribution

Page 22: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

22

3. Simulation: Initial Conditions

Page 23: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

23

4. Results: Influence of iterations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20

Pre

ssu

re (

bar

)

Time Step

Pressure profile

250 Iter

1000 Iter

Experimental results

Page 24: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

24

4. Results: Computational cost

0

50

100

150

200

0 5 10 15

Sim

ula

tio

n t

ime

(h

)

Time Step

Computational Cost

250 iter

1000 iter

• Windows Server 2008 – 64-bit

• Processor: Intel ® Xeon ® X5060 @ 2.67GHz

• RAM; 40 Gb

Page 25: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

25

4. Results: Particle flow

Page 26: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

26

4. Results: Particle flow

Page 27: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

27

4. Results: Particle diameter for 1000 iter

Page 28: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

• STAR-CCM+® was used to developed a multiphase lagrangianflow in order to simulate the flammable dust dispersionwithin the 20 L sphere.

• The number of Maximum Inner Iterations has a significantimpact on the results as well as on the computational cost.

• The nozzle disperses correctly the dust within the domain.However, the smaller particles tends to the walls and thebigger ones to the center of the sphere.

• In order to model correctly the behavior of the flow, and dueto the geometry high complexity, it was necessary toimplement the DES turbulence model.

28

5. Conclusions

Page 29: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

• The Maximum Inner Iterations will be increased to 1500.

• The simulation time will be 120 ms in order to evaluate abetter ignition time for the standard test.

• The use of cohesion models to represent particlefragmentation and agglomeration will be added.

• Another types of nozzle will be simulated in order to evaluatethe dust homogeneity within the sphere.

29

5. Future Work

Page 30: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

CFD Lagrangian Multiphase Simulation Applied to Dust Explosion

Characterization

Authors: Daniel Vizcaya, Carlos Murillo, Nathalie Bardin-Monnier,

Olivier Dufaud, Laurent Perrin, Nicolás Ratkovich & Felipe Muñoz

Contact: Daniel Vizcaya ([email protected])

30

Speaker: Hugo Pineda

Page 31: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

7. BIBLIOGRAFHY

"ISO 6184/1," Explosion Protection Systems - Part 1: Determination of Explosion

Indices of Combustible Dusts in Air, ISO 6184/1, 1985.

W. Bartknecht, "Explosions and how they may be prevented," 1978.

W. Bartknecht, "Explosions: Course, Prevention, Protection," 1981.

W. Bartknecht, "Ignition capabilities of hot surfaces and mechanically generated

sparks in flammable gas and dust/air mixtures," 1987.

A. E. Dahoe, R. S. Cant, M. J. Pegg, and B. Scarlett, "On the transient flow in the

20-liter explosion sphere," Journal of Loss Prevention in the Process Industries,

vol. 14, pp. 475-487, 2001.

V. Di Sarli, P. Russo, R. Sanchirico, and A. Di Benedetto, "CFD simulations of dust

dispersion in the 20 L vessel: Effect of nominal dust concentration," Journal of

Loss Prevention in the Process Industries, vol. 27, pp. 8-12, 2014.

R. K. Eckhoff, "Understanding dust explosions. The role of powder science and

technology," Journal of Loss Prevention in the Process Industries, vol. 22, pp. 105-

116, 2009.

M. Hertzberg, I. A. Zlochower, R. S. Conti, and K. L. Cashdollar, "Thermokinetic

transport control and structural microscopic realities in coal and polymer pyrolysis

and devolatilization: their dominant role in dust explosions," 1987, pp. 24-41.

31

Page 32: CFD Lagrangian Multiphase Simulation Applied to Dust Explosion …mdx2.plm.automation.siemens.com/sites/default/files/... · 2018-05-06 · CFD Lagrangian Multiphase Simulation Applied

O. Kalejaiye, P. R. Amyotte, M. J. Pegg, and K. L. Cashdollar, "Effectiveness of

dust dispersion in the 20-L Siwek chamber," Journal of Loss Prevention in the

Process Industries, vol. 23, pp. 46-59, 2010.

N. Kalkert and H. G. Schecker, "Determination of explosion limits of ammonia in

mixtures with simple hydrocarbons and air," German Chemical Engineering, vol. 3,

pp. 53-56, 1980.

C. Murillo, O. Dufaud, N. Bardin-Monnier, O. López, F. Munoz, and L. Perrin, "Dust

explosions: CFD modeling as a tool to characterize the relevant parameters of the

dust dispersion," Chemical Engineering Science, vol. 104, pp. 103-116, 2013.

C. Proust, A. Accorsi, and L. Dupont, "Measuring the violence of dust explosions

with the "20 l sphere" and with the standard "ISO 1 m3 vessel". Systematic

comparison and analysis of the discrepancies," Journal of Loss Prevention in the

Process Industries, vol. 20, pp. 599-606, 2007.

R. Siwek, "20-L Laborapparatur für die Bestimmung der Explosionskenngrößen

brennbarer Stäube," Thesis, 1977.

J. B. Vorderbrueggen, "Imperial sugar refinery combustible dust explosion

investigation," Process Safety Progress, vol. 30, pp. 66-81, 2011.

32

7. BIBLIOGRAPHY