ch 8: an intro to metabolism 2016. chapter 8: metabolism from topic 2.1 understandings: metabolism...

30
Ch 8: An Intro to Metabolism 2016

Upload: mohammed-caleb

Post on 22-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Ch 8: An Intro to Metabolism

2016

Page 2: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Chapter 8: MetabolismFrom Topic 2.1Understandings:• Metabolism is the web of all the enzyme-catalysed reactions in a cell or organism.

From Topic 2.5Essential idea: Enzymes control the metabolism of the cell.From Topic 2.5Nature of science: Experimental design—accurate, quantitative measurements in enzyme experiments require replicates to ensure reliability. (3.2)Understandings:• Enzymes have an active site to which specific substrates bind.• Enzyme catalysis involves molecular motion and the collision of substrates with the active site.• Temperature, pH and substrate concentration affect the rate of activity of enzymes.• Enzymes can be denatured.• Immobilized enzymes are widely used in industry.Applications and skills:• Application: Methods of production of lactose-free milk and its advantages.• Skill: Design of experiments to test the effect of temperature, pH and substrate concentration on the activity of enzymes.• Skill: Experimental investigation of a factor affecting enzyme activity (Practical 3).Guidance:• Lactase can be immobilized in alginate beads and experiments can then be carried out in which the lactose in milk is hydrolysed.• Students should be able to sketch graphs to show the expected effects of temperature, pH and substrate concentration on the activity of enzymes.They should be able to explain the patterns or trends apparent in these graphs.Utilization:• Enzymes are extensively used in industry for the production of items from fruit juice to washing powder.

From Topic 8.1Understandings:• Enzymes lower the activation energy of the chemical reactions that they catalyse.• Enzyme inhibitors can be competitive or non-competitive.• Metabolic pathways can be controlled by end-product inhibition.• Metabolic pathways consist of chains and cycles of enzyme-catalysed reactions.Applications and skills:• Application: Use of databases to identify potential new anti-malarial drugs.• Application: End-product inhibition of the pathway that converts threonine to isoleucine.• Skill: Calculating and plotting rates of reaction from raw experimental results.• Skill: Distinguishing different types of inhibition from graphs at specified substrate concentration.Guidance:• Enzyme inhibition should be studied using one specific example for competitive and non-competitive inhibition.Utilization:• Many enzyme inhibitors have been used in medicine. For example ethanol has been used to act as a competitive inhibitor for antifreeze poisoning.• Fomepizole, which is an inhibitor of alcohol dehydrogenase, has also been used for antifreeze poisoning.Aims:• Aim 6: Experiments on enzyme inhibition can be performed.• Aim 7: Computer simulations on enzyme action including metabolic inhibition are available.

Page 3: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Chapter 8: MetabolismFrom Topic 6.1 (further discussed in Digestion Mini-Unit of HL 1) Understandings:• The contraction of circular and longitudinal muscle of the small intestine mixes the food with enzymes and moves it along the gut.• The pancreas secretes enzymes into the lumen of the small intestine.• Enzymes digest most macromolecules in food into monomers in the small intestine.Utilization:• Some hydrolytic enzymes have economic importance, for example amylase in production of sugars from starch and in the brewing of beer.Guidance:• Students should know that amylase, lipase and an endopeptidase are secreted by the pancreas. The name trypsin and the method used to activate it are not required.

Page 4: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Free Energy (G)• Unstable systems have a lot free energy (G) and have a tendency to change

spontaneously to a more stable state. Cells can then use this release of energy for cellular work.

Page 5: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Free Energy (G)• Exergonic• Endergonic

Page 6: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Activation Energy EA• Enzyme help lower the Activation Energy of chemical reaction;

thus speeding the process- Energy of activation (activation energy or EA)= amount of energy that reactant molecules need to absorb to start a reaction.

http://www.sumanasinc.com/webcontent/animations/content/enzymes/enzymes.html

Page 7: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

EA – Reaching the Transition State• In order for reactants A+B and C+D to be converted to products, they must

absorb enough energy from their surroundings (pass the EA) to reach the unstable transition state, where bonds can become unstable and can reform.

Q: Based on this graph, is it an exergonic or endergonic reaction?

Page 8: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Catalysts• Catalyst: chemical agent that accelerates a reaction without

being permanently changed in the process.• Enzymes: are biological catalysts.

- Are proteins.- Lower activation energy.- Do not change the nature of the reaction but only speed it up.- Are very selective - Can continue their function after a reaction.

Page 9: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Enzymes• Enzymes are substrate

specific.• Substrate: the substance

an enzyme acts on.• Place where enzyme

binds to substrate is called the active site.• Usually a pocket or groove

on protein’s surface.• Formed with only a few of

the enzymes amino acids (charged etc…)

• Determines specificity.• Changes shape in response

to substrate.

Page 10: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

How Enzymes lower EA

Active site hold two or more reactants in proper position.

Induced fit may distort bonds making it easier.

Active site provides proper microenvironment.

Amino acids may play a direct role in reaction.

Page 11: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Enzyme Function, pg153

Page 12: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Induced Fit

Page 13: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Rates of Reaction• The higher the substrate concentration the higher the rate of

reaction up to a certain point.• Enzymes become saturated at a point.

• Then it depends on how fast the reaction happens.• The rate of reaction can increase if more enzyme is added

up to a point.

Page 14: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Environmental Factors1) Temperature: each has an

optimal temperature. (Mostly between 35-40⁰C).- Enzymatic activity

increases with temp up to a certain point.

2) Ph: amount of charge (H+) in the environment.

3) Salt Concentration: Na+ and Cl- (charged ions)

Page 15: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Environmental Factors Cont.• Changes in temperature, pH, and salt concentration

can lead to an enzyme losing its confirmation (shape) leading to denaturation.

- too hot breaks the bonds within a protein- charges in H+, Na+, or Cl- can disrupt the bonds within the protein

Page 16: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Factors affecting Enzymes Graphs

Effect of Temperature

Page 17: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Factors affecting Enzymes Graphs

Effect of pH

Page 18: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Factors affecting Enzymes Graphs

Effect of Substrate Concentration

Page 19: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Designing an Experiment

Page 20: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Designing an Experiment

Page 21: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Designing an Experiment

Page 22: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Designing an Experiment

Page 23: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Designing an Experiment

Page 24: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Enzyme Inhibitors • Can be reversible or irreversible.• Competitive inhibitors: compete

for active site.Ex. Sulpha drugs.

• Non-competitive inhibitors : don’t bind to active site.Ex: Metals, antibiotics, DDT or another molecule in the metabolic pathway.

http://www.wiley.com/college/pratt/0471393878/student/animations/enzyme_inhibition/

Page 25: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Competitive Inhibition Example • Sulpha drugs contain

sulfonamide group. • Act as an competitive

inhibitor to DHPS, which is an enzyme responsible for folic acid biosynthesis. Folic acid is a vitamin needed to make nucleotides and amino acids.

• Sulpha drugs are used as antibiotics to inhibit bacteria’s ability to make DNA/RNA and amino acids.

Page 26: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Noncompetitive Inhibition Example • Isoleucine an

amino acid that acts as a noncompetitive inhibitor to threonine deaminase.

• Stopping its own metabolic pathway.

Page 27: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Inhibition Graphs

Page 28: Ch 8: An Intro to Metabolism 2016. Chapter 8: Metabolism From Topic 2.1 Understandings: Metabolism is the web of all the enzyme-catalysed reactions in

Controlling Metabolism w/ Enzymes• Allosteric regulation: activation, inhibition,

or cooperativity. • Allosteric site: specific site on enzyme other

than active site.• Allosteric regulator: bind to allosteric site

and can either activate or inhibit the enzyme activity. - Activation: turns on the enzyme- Inhibition: turns off the enzyme- Cooperativity- a type of activation; binding

of the substrate may enhance the enzymes function.

• Feedback inhibition: a metabolic pathway in which it is turned off with its own end-product; the product attaches to an enzyme in an earlier reaction

http://bcs.whfreeman.com/thelifewire/content/chp06/0602002.html http://programs.northlandcollege.edu/biology/Biology1111/animations/enzyme.html