ch13

Upload: priyanka-cholleti

Post on 27-Mar-2016

215 views

Category:

Documents


0 download

DESCRIPTION

notes

TRANSCRIPT

  • 7/21/2019 ch13

    1/98

    1

    13. Buckling of Columns

    CHAPTER OBJECTIVES

    Discuss the behavior ofcolumns.

    Discuss the buckling ofcolumns.

    Determine the axial loadneeded to buckle an idealcolumn.

    Analyze the buckling with

    bending of a column. Discuss inelastic buckling of a column. Discuss methods used to design concentric and

    eccentric columns.

  • 7/21/2019 ch13

    2/98

    2

    13. Buckling of Columns

    CHAPTER OUTLINE

    1. Critical oad

    2. !deal Column with "in #u$$orts

    %. Columns &aving 'arious (y$es of #u$$orts

    ). *(he #ecant +ormula

    ,. *!nelastic -uckling

    . *Design of Columns for Concentric oading

    /. *Design of Columns for 0ccentric oading

  • 7/21/2019 ch13

    3/98

    %

    13. Buckling of Columns

    13.1 CRITICAL LOA

    ong slender members subected to axialcom$ressive force are called columns.

    (he lateral deflection that occurs iscalled buckling.

    (he maximum axial load a column cansu$$ort when it is on the verge ofbuckling is called the critical loadPcr.

  • 7/21/2019 ch13

    4/98

    )

    13. Buckling of Columns

    13.1 CRITICAL LOA

    #$ring develo$s restoring forceF = k whilea$$lied load Pdevelo$s two horizontalcom$onentsPx= P tan which tends to $ush the$in further out of e3uilibrium.

    #ince is small4 5L627 and tan . (hus restoring s$ring

    force becomesF = kL/2 anddisturbing force is2Px4 2P.

  • 7/21/2019 ch13

    5/98

    ,

    13. Buckling of Columns

    13.1 CRITICAL LOA

    +or k

    L/

    2 8 2P,

    +or kL/2 9 2P,

    +or kL/2 4 2P,

    me3uilibriustable4

    kLP

    me3uilibriuneutral4

    kLPcr=

  • 7/21/2019 ch13

    6/98

    13. Buckling of Columns

    13.! IEAL COLU"N #ITH PIN SUPPORTS

    An ideal column is $erfectly straight before loadingmade of homogeneous material and u$on whichthe load is a$$lied through the centroid of the x:section.

    ;e also assume that the material behaves in alinear:elastic manner and the column buckles orbends in a single $lane.

  • 7/21/2019 ch13

    7/98/

    13. Buckling of Columns

    13.! IEAL COLU"N #ITH PIN SUPPORTS

    !n order to determine the critical load and buckledsha$e of column we a$$ly 03n 12:1

  • 7/21/2019 ch13

    8/98>

    13. Buckling of Columns

    13.! IEAL COLU"N #ITH PIN SUPPORTS

    #umming momentsM4 P

    ,

    03n 1%:1becomes

    ?eneral solution is

    #ince 4 < atx4

  • 7/21/2019 ch13

    9/98@

    13. Buckling of Columns

    13.! IEAL COLU"N #ITH PIN SUPPORTS

    Disregarding trivial soln for C14

  • 7/21/2019 ch13

    10/981

    13. Buckling of Columns

    E$A"PLE 13.1 %SOLN&

    Fse 03n 1%:, to obtain critical load withEst4 2

  • 7/21/2019 ch13

    19/981@

    13. Buckling of Columns

    E$A"PLE 13.1 %SOLN&

    (his force creates an average com$ressive stress inthe column of

    #ince cr9 Y 4 2,< "a a$$lication of 0ulers e3n

    is a$$ro$riate.

    ( )

    ( ) ( )[ ]MPa100N/mm2.100

    mm7075

    N/kN1000kN2.228

    2

    222

    ==

    ==

    A

    Pcrcr

    13 B kli f C l

  • 7/21/2019 ch13

    20/982@< mm2

    Ix4 ),.,1

  • 7/21/2019 ch13

    22/9822

    13. Buckling of Columns

    E$A"PLE 13.! %SOLN&

    ;hen fully loaded average com$ressive stress in

    column is

    #ince this stress exceeds yield stress 52,< E6mm27the load " is determined from sim$le com$ressionG

    ( )

    2

    2

    N/mm5.320

    mm5890

    N/kN1000kN6.1887

    =

    ==A

    Pcrcr

    kN5.1472

    mm5890N/mm250

    22

    =

    =

    P

    P

    13 B kli f C l

  • 7/21/2019 ch13

    23/982%

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    +rom free:body diagramM4P57. Differential e3n for the deflection curve is

    #olving by using boundary conditionsand integration we get

    ( )7-132

    2

    EI

    P

    EI

    P

    dx

    d =+

    ( )8-13cos1

    = x

    EI

    P

    13 B kli f C l

  • 7/21/2019 ch13

    24/982)

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    (hus smallest critical load occurs when n4 1 sothat

    -y com$aring with 03n 1%:, a column fixed:

    su$$orted at its base will carry only one:fourth thecritical load a$$lied to a $in:su$$orted column.

    ( )9-134 2

    2

    L

    EIPcr

    =

    13 B ckling of Col mns

  • 7/21/2019 ch13

    25/982,

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    0ffective length !f a column is not su$$orted by $inned:ends then

    0ulers formula can also be used to determine thecritical load.

    HLI must then re$resent the distance between thezero:moment $oints.

    (his distance is called the columns effective length

    Le.

    13 Buckling of Columns

  • 7/21/2019 ch13

    26/98

    2

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    0ffective length

    13 Buckling of Columns

  • 7/21/2019 ch13

    27/98

    2/

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    0ffective length any design codes $rovide column formulae that

    use a dimensionless coefficientK known as theeeffective:length factor.

    (hus 0ulers formula can be ex$ressed as( )10-13KLLe=

    ( ) ( )

    ( )( )12-13

    11-13

    2

    2

    2

    2

    rKL

    E

    KL

    EI

    P

    cr

    cr

    =

    =

    13 Buckling of Columns

  • 7/21/2019 ch13

    28/98

    2>

    13. Buckling of Columns

    13.3 COLU"NS HAVIN' VARIOUS T(PES O) SUPPORTS

    0ffective length &ere 5KL/r7 is the columns effective:slenderness

    ratio.

    13 Buckling of Columns

  • 7/21/2019 ch13

    29/98

    2@

    13. Buckling of Columns

    E$A"PLE 13.3

    A ;1, mlong and is fixed at its ends asshown. !ts load:carrying ca$acityis increased by bracing it aboutthey-yaxis using struts that areassumed to be $in:connectedto its mid:height. Determine theload it can su$$ort s$ that the

    column does not buckle normaterial exceed the yield stress.

    (akeEst4 2

  • 7/21/2019 ch13

    30/98

    %

    13. Buckling of Columns

    *13.+ THE SECANT )OR"ULA

    (he secant formula aximum stress in column occur when

    maximum moment occurs at thecolumns mid$oint.

    Fsing 03ns 1%:1% and 1%:1

    aximum stress is com$ressive and

    ( )

    ( )18-13

    2

    s"c

    max

    =

    +=

    L

    EI

    PPe

    eP

    +=+=

    2s"c# maxmax

    L

    EI

    P

    I

    Pec

    A

    P

    I

    Mc

    A

    P

    13. Buckling of Columns

  • 7/21/2019 ch13

    39/98

    %@

    13. Buckling of Columns

    *13.+ THE SECANT )OR"ULA

    (he secant formula #ince radius of gyration r2= I/A

    max4 maximum elastic stress in column at innerconcave side of mid$oint 5com$ressive7.

    P4 vertical load a$$lied to the column. P9Pcr

    unless e4

  • 7/21/2019 ch13

    40/98

    ) m 4 >

  • 7/21/2019 ch13

    47/98

    )/

    g

    E$A"PLE 13., %SOLN&

    x-x axis yieldingG

    #olving forPxby trial and error noting that argumentfor secant is in radians we get

    #ince this value is less than 5Pcr7y4 ,1% kE failurewill occur about thex-xaxis.

    Also 4 )1@.)1< mm24 ,,.% "a 9 Y 4 2,< "a.

    kN4.419N419368 ==xP

    13. Buckling of Columns

  • 7/21/2019 ch13

    48/98

    )>

    g

    *13.- INELASTIC BUCLIN'

    A$$lication of 0ulers e3uation re3uires that the

    stress in column remain -0; the materials yield$oint when column buckles. #o it only a$$lies tolong slender columns.

    !n $ractice most areintermediate columns so wecan study their behavior bymodifying 0ulers e3uation to

    a$$ly for inelastic buckling. Consider a stress:strain

    diagram as shown.

    13. Buckling of Columns

  • 7/21/2019 ch13

    49/98

    )@

    g

    *13.- INELASTIC BUCLIN'

    "ro$ortional limit is pl and

    modulus of elasticityEisslo$e of lineA.

    A $lot of 0ulers hy$erbola is

    shown having a slendernessratio as small as 5KL/r7plsince at this $t cr4 pl.

    ;hen column about to buckle

    change in strain that occurs iswithin a small range soEfor material can be taken asthe tangent modulusE!.

    13. Buckling of Columns

  • 7/21/2019 ch13

    50/98

    ,==r

    KL

    13. Buckling of Columns

  • 7/21/2019 ch13

    75/98

    /,

    E$A"PLE 13.11

    A board having x:sectional

    dimensions of 1,< mm by )< mmis used to su$$ort an axial loadof 2< kE.

    !f the board is assumed to be$in:su$$orted at its to$ and basedetermine its greatest allowablelengthLas s$ecified by the E+"A.

    13. Buckling of Columns

  • 7/21/2019 ch13

    76/98

    /

    E$A"PLE 13.11 %SOLN&

    -y ins$ection board will buckle about the y axis. !n

    the E+"A e3ns d4 )< mm.Assuming that 03n 1%:2@ a$$lies we have

    ( )

    ( )( ) ( ) ( )

    mm1336

    mm40/1

    N/mm3718

    mm40mm150

    N1020

    /

    MPa3718

    2

    23

    2

    =

    =

    =

    L

    L

    dKLA

    P

    13. Buckling of Columns

    13 11 %SO &

  • 7/21/2019 ch13

    77/98

    //

    E$A"PLE 13.11 %SOLN&

    &ere

    #ince 2 9KL/d,

  • 7/21/2019 ch13

    78/98

    />

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    A column may be re3uired to

    su$$ort a load acting at itsedge or on an angle bracketattached to its side.

    (he bending momentM = Pe

    caused by eccentric loadingmust be accounted for whencolumn is designed.

    Fse of available column formulae

    #tress distribution acting over x:sectional area ofcolumn shown is determined from both axial force Pand bending momentM = Pe.

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    79/98

    /@

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    Fse of available column formulae

    aximum com$ressive stress is

    A ty$ical stress $rofile is also shown here. !f we assume entire x:section is subected to uniform

    stress max then we can com$are it with allow which

    is determined from formulae given in cha$ter 1%.. !f maxallow then column can carry the s$ecifiedload.

    ( )30-13maxI

    Mc

    A

    P+=

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    80/98

    >1

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    !t is sometimes desirable to see how the bendingand axial loads interact when designing aneccentrically loaded column.

    !f allowable stress for axial load is 5

    a7allow thenre3uired area for the column needed to su$$ort theloadPis

    ( )all#$aa

    PA

    =

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    82/98

    >2

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    #imilarly if allowable bending stress is 57allow thensinceI = Ar2 re3uired area of column needed toresist eccentric moment is determined from flexureformula

    ( ) 2r

    Mc

    Aall#$b

    b

    =

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    83/98

    >%

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    (hus total areaAfor the column needed to resistboth axial force and bending moment re3uires that

    ( ) ( )

    ( ) ( )

    ( ) ( )( )31-131

    1

    /

    2

    2

    2

    +

    +

    +=+

    r

    McP

    r#r

    AArMcP

    AA

    all#$ball#$a

    all#$b

    b

    all#$a

    a

    all#$ball#$aba

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    84/98

    >)

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    a4 axial stress caused by forcePand determinedfrom a4P/A whereAis the x:sectional area of thecolumn.

    4 bending stress caused by an eccentric load ora$$lied momentMM is found from 4Mc/I whereIis the moment of inertia of x:sectional areacom$uted about the bending or neutral axis.

    ( ) ( )

    ( ) ( )( )31-131

    1

    2

    2

    +

    +

    r

    McP

    r

    all#$ball#$a

    all#$b

    b

    all#$a

    a

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    85/98

    >,

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    5a7allow4 allowable axial stress as defined by formulaegiven in cha$ter 1%. or by design code s$ecs. Fsethe largest slenderness ratio for the columnregardless of which axis it ex$eriences bending.

    57allow4 allowable bending stress as defined by codes$ecifications.

    ( ) ( )

    ( ) ( )( )31-131

    1

    2

    2

    +

    +

    r

    McP

    r

    all#$ball#$a

    all#$b

    b

    all#$a

    a

    13. Buckling of Columns

    *13 / ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

  • 7/21/2019 ch13

    86/98

    >

    *13./ ESI'N O) COLU"NS )OR ECCENTRIC LOAIN'

    !nteraction formula

    03n 1%:%1 is sometimes referred to as theinteraction formula.

    (his a$$roach re3uires a trial:and:check $rocedure.

    Designer needs to choose an available column andcheck to see if the ine3uality is satisfied. !f not a larger section is $icked and the $rocess

    re$eated. American !nstitute of #teel Construction s$ecifies

    the use of 03n 1%:%1 only when the axial:stress ratioa65a7allow 0.15.

    13. Buckling of Columns

    E$A"PLE 13 1!

  • 7/21/2019 ch13

    87/98

    >/

    E$A"PLE 13.1!

    Column is made of 2

  • 7/21/2019 ch13

    88/98

    >>

    E$A"PLE 13.1! %SOLN&

    K4 2. argest slenderness ratio for column is

    -y ins$ection 03n 1%:2 must be used 52//.1 8 ,,7.

    ( )

    ( ) ( ) ( )[ ] ( ) ( )[ ]1.277

    mm80mm40/mm408012/1

    mm160023

    mm

    ==

    r

    KL

    ( ) ( )MPa92.4

    1.277

    MPa378125MPa37812522ao

    ===rKL

    13. Buckling of Columns

    E$A"PLE 13 1! %SOLN&

  • 7/21/2019 ch13

    89/98

    >@

    E$A"PLE 13.1! %SOLN&

    Actual maximum com$ressive stress in the column is

    determined from the combination of axial load andbending.

    Assuming that this stress is uniform over the x:section instead of ust at the outer boundary

    ( )

    ( ) ( ) ( )( ) ( ) ( )

    P

    PP

    I

    cPe

    A

    P

    00078125.0

    mm80mm4012/1mm40mm20

    mm80mm40 3

    max

    =

    +=

    +=

    kN30.6N6.6297

    00078125.092.4#maxao

    ====P

    P

    13. Buckling of Columns

    E$A"PLE 13 13

  • 7/21/2019 ch13

    90/98

    @