change history log · q150kg ltu mid-range quad. 0.91q12 150 11.5 0.316 3.25q20 dumpline quad...

13

Upload: others

Post on 10-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461
Page 2: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 2 of 13 that this is the correct version prior to use.

Change History Log: Rev Number

Revision Date

Sections Affected Description of Change

000 Aug. 19, 2005 All Initial Version 001 Oct. 2, 2005 All Magnet polarities added 002 Jan. 12, 2006 All ETB max., Q18 and 3.25Q20 added, BXG &

BXS tighter reg. tol., QE31-36 are ET-type, BXH1-4 reversed polarity

003 Mar. 30, 2006 All Adjust SOL2 parameters, change BY1,2 magnet type, remove BY1-trim, BXG trim ±5%→±2%, BXH1-4 trim polarities flipped, all bipolar quads set to ‘P’ polarity

004 Feb. 21, 2007 All Rename “QS” GTL magnets to “QG”, remove QG01 quad from design, change Q150kG Leff from 0.3 to 0.316 m, renamed “ETA” quad to “ET” and “ETB” quads to “tweaker”, and add BX32 trim and move BX31 trim to BX36.

005 Jan. 25, 2008 Table 9 BXKIK maximum is 0.05 kG-m, not 0.03, and BYKIK is −0.85 kG-m, not −1.0. Change eng. name of BYD1,2,3 magnets (was 2.0VD15.75T) and group BX31-36 and BYD1-3 in series on one power supply.

006 Apr. 18, 2008 Table 3 Added BX31 bend trim which should have been added when grouping BX3’s & BYD’s.

Page 3: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 3 of 13 that this is the correct version prior to use.

Requirements for LCLS Magnets The physics requirements for all LCLS dipole, quadrupole, and solenoid magnets are listed here in several tables. The tables are separated into the following categories:

1. Magnet types 2. All DC dipole magnets 3. Dipole magnet trim coils (where necessary) 4. Solenoid magnets 5. Injector quadrupole magnets 6. Linac quadrupole magnets (which have requirements beyond LCLS) 7. BSY quadrupoles magnets (which will operate at much lower currents than for which

originally designed, but also do not support non-LCLS operations) 8. LTU and dump-line quadrupole magnets 9. Pulsed dipole magnets

Names in the “Magnet type” column in italics are existing magnet types, which in some cases get relocated and in others must have new copies constructed. In all the listings below, the maximum setting includes enough over-head to accommodate a field standardization cycle up to this limit. The SLAC linac will run approximately 75% of available beam time in LCLS mode, while the remaining time may include linac operation with a high-energy beam, referred to here as ‘SLC’ mode. In ‘SLC’ mode many of the LCLS dipole magnets, and some of the quadrupole magnets, will be switched off and the existing linac quadrupole magnets will be run at a much higher current. The lower and upper limit fields, plus LCLS nominal settings, are included in Table 6 (main linac magnets) so that the power supply configuration can be designed to accommodate both operational modes. Note that one existing quadrupole magnet (Q21201) must have its polarity switched from LCLS to SLC mode, and another (Q21301) must be set to zero in LCLS mode, whereas the other existing magnets do not switch polarity between operational modes. In addition, Q24701 and Q24901 are replaced with doubled-up QE magnets (A & B). Most dipole magnets require separate trim coils, each with individual bipolar power supplies, which are used to adjust the length-integrated field by approximately ±1% of the maximum operating field (value to be finalized for new magnets after final magnet design). Only dipole magnets requiring trim coil power are listed in Table 3. Trim coils may be built into most dipole magnets but not all of them need to be powered. The field (and gradient) regulation tolerances are listed here as both a short-term tolerance, (ΔB/B)S, and a long term tolerance, (ΔB/B)L. The short-term tolerance is the rms relative field regulation evaluated over 1 second, with respect to the mean field during that period, and also normalized to that mean field. Specifically, if the mean field is ⟨B⟩, the rms short-term relative field regulation tolerance is defined as:

(ΔB/B)S ≡ ⟨(B − ⟨B⟩)2⟩1/2/⟨B⟩,

unless the nominal setting is zero (in that case the tolerance is with respect to the maximum setting). Note here that the operator ⟨ ⟩ indicates integration over time. Figure 1 shows each quadrupole magnet’s sensitivity to a small gradient error when misaligned by 200 μm.

Page 4: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 4 of 13 that this is the correct version prior to use.

The long-term tolerance is the rms relative field regulation evaluated over 10 seconds, both with respect to, and also normalized to the nominal LCLS settings, unless that nominal setting is zero (in that case the tolerance is with respect to the maximum setting). Specifically, if the LCLS nominal field setting is B0, the rms long-term relative field regulation tolerance is defined as:

(ΔB/B)L ≡ ⟨(B − B0)2⟩1/2/B0 .

This definition implicitly includes field variations with respect to the setting over longer time scales, which must be achieved over the full peak-to-peak service building temperature variations (for example up to about ±15 °C in the linac gallery). Each tolerance listed here has been tightened by the square-root of the number of power supplies in that class (e.g., quadrupoles) so as to budget the full set of tolerances. The short-term tolerance is required to limit the trajectory centroid1 jitter to <10% of rms beam size in the undulator, assuming 200-μm rms quadrupole misalignments, while the long-term tolerance is required to limit the beta-mismatch amplitude variation from shot to shot in the FEL undulator to <1% rms. The dipole trim tolerances are based on <2% rms beam centroid jitter and the main dipole strings are based on <20 fs timing jitter (chicanes and dog-legs) in the undulator. The relative current regulation tolerance can be considered to be the same as the field regulation tolerance (i.e., ΔB/B ≈ ΔI/I). The nominal polarity for each magnet is also included in the last column of each table. Magnet polarities in the LCLS are defined here using a simple definition describing all beamline magnets as either “positive” (P) or “negative” (N). This general definition is valid for dipole, quadrupole, and solenoid magnets. The proper polarity of each magnet is defined with a “P” or “N” in the polarity (pol.) column of each magnet table. The polarity definitions are described in detail in PRD 1.1-010, Magnet Polarity Conventions in the LCLS, at: http://www-ssrl.slac.stanford.edu/lcls/prd/1.1-010-r0.pdf Note that LCLS operates at any FEL radiation wavelength from 1.5 Å to 15.0 Å, corresponding to an end-of-linac electron beam energy setting of 13.6 GeV and 4.3 GeV, respectively. The energy profile along the LCLS is the same for these two modes up to a point just beyond the BC2 chicane (i.e., the start of sector-25). After this point the energy profile along the linac is the following:

1.5-Å operation: Energy linearly increases from sec-25 to sec-30 (from 4.3 GeV to 13.6

GeV) 15.0-Å operation: Energy remains constant from sec-25 to sec-30 (at 4.3 GeV)

Further specifications for individual magnets, including field quality, stay-clear, and alignment tolerances, are located on the web at (supplemental information – not primary): http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/magnet/LCLS_Linac_Component_Specifications.htm Finally, the existing linac QE quadrupole magnets are presently powered with one 200-A bulk supply per sector (8 magnets per string) and one 20-A booster supply for each magnet. Whatever power

1 See PRD 1.1-007 for a definition of trajectory centroid amplitude.

Page 5: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 5 of 13 that this is the correct version prior to use.

supply configuration chosen, the maximum current difference cannot be larger then that available from the booster supplies that are used.

Table 1. Quadrupole magnet types used in the LCLS (italicized types are existing designs). Magnet type

description designation Max. |∫Gdl| [kG]

pole-tip

radius [mm]

eff. length

[m]

ET Everson-Tesla quadrupole 1.259Q3.5 25 16 0.108 Tweaker BC1/2 chicane tweaker quadrupole 2.362Q3.5 2.1 30 0.108 Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461 FFTBQSM Existing FFTB quad. 0.91Q3.98 45 11.5 0.101 QE Existing linac quad. 1.08Q4.2 110 13.78 0.107 QG Gun-spectrometer quad. 1.575Q1.375 3.8 20 0.076 50Q1 Existing BSY 50Q1 quad. 50Q1 100 10.325 0.094 50Q2 Existing BSY 50Q2 quad. 50Q2 175 10.325 0.162 50Q3 Existing BSY 50Q3 quad. 50Q3 155 10.325 0.143 Qsol Small quad. trims in gun solenoid 3Q9.17 0.012 38 0.233

Page 6: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 6 of 13 that this is the correct version prior to use.

Table 2. LCLS dipole magnets. The power supply ID column (PS ID) is an arbitrary tag number used to indicate which magnets within this table are powered in series on the same power supply. All dipole main power supplies are unipolar. The BXPM1,2,3 magnets are permanent magnets requiring no power supply. Short-term regulation tolerances are the same as long-term here.

Magnet Name

Area Magnet type

Leff

[m] Min.

|∫Bdl| [kG-m]

Nom. ∫Bdl

[kG-m]

Max. |∫Bdl| [kG-m]

(ΔB/B)L rms [%]

PS ID

pol.

BXG GUN new 0.34 0 -0.30 -0.4 0.01 1 N BXH1 INJ new 0.13 0 0.56 0.9 0.06 2 P BXH2 INJ new 0.13 0 -0.56 -0.9 “ 2 N BXH3 INJ new 0.13 0 -0.56 -0.9 “ 2 N BXH4 INJ new 0.13 0 0.56 0.9 “ 2 P BXS INJ new 0.50 1.0 2.72 4.0 0.01 3 P BX01 DL1 1.182D6.82T 0.20 1.0 1.38 2.2 0.01 4 P BX02 DL1 1.182D6.82T 0.20 1.0 1.38 2.2 “ 4 P BX11 BC1 5D7.1 0.20 0 +0.72 +1.12 0.01 5 P BX12 BC1 5D7.1 0.20 0 −0.72 −1.12 “ 5 N BX13 BC1 5D7.1 0.20 0 −0.72 −1.12 “ 5 N BX14 BC1 5D7.1 0.20 0 +0.72 +1.12 “ 5 P BX21 BC2 1D19.7 0.50 0 +4.96 +8.49 0.01 6 P BX22 BC2 1D19.7 0.50 0 −4.96 −8.49 “ 6 N BX23 BC2 1D19.7 0.50 0 −4.96 −8.49 “ 6 N BX24 BC2 1D19.7 0.50 0 +4.96 +8.49 “ 6 P BY1 LTU 3D39 1.025 0.3 1.1 1.5 0.05 7 P BY2 LTU 3D39 1.025 0.3 1.1 1.5 “ 7 P BYW1 LTU SLC-wig 0.23 0.1 1.4 3.5 0.1 8 P BYW2 LTU SLC-wig 0.46 -0.2 -2.8 -7.0 “ 8 N BYW3 LTU SLC-wig 0.23 0.1 1.4 3.5 “ 8 P BX31 LTU 4D102.36T 2.62 -1.1 -4.0 -5.2 0.003 9 N BX32 LTU 4D102.36T 2.62 -1.1 -4.0 -5.2 “ 9 N BX35 LTU 4D102.36T 2.62 +1.1 +4.0 +5.2 “ 9 P BX36 LTU 4D102.36T 2.62 +1.1 +4.0 +5.2 “ 9 P BYD1 DUMP 1.69VD55.1 1.40 -3.5 -13 -17.1 0.005 9 N BYD2 DUMP 1.69VD55.1 1.40 -3.5 -13 -17.1 “ 9 N BYD3 DUMP 1.69VD55.1 1.40 -3.5 -13 -17.1 “ 9 N BXPM1† DUMP 4D36 0.94 -3.0 -3.0 -3.0 NA NA N BXPM2† DUMP 4D36 0.94 -3.0 -3.0 -3.0 NA NA N BXPM3† DUMP 4D36 0.94 -3.0 -3.0 -3.0 NA NA N

† These are permanent magnets requiring no power supply.

Page 7: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 7 of 13 that this is the correct version prior to use.

Table 3. LCLS dipole magnet trim coils. All dipole trim power supplies are bipolar and each listed here has its own supply. The relative range values (e.g., ±1%) are the effective main-coil field induced by the trim coil, and normalized with respect to the maximum main coil field. Since the nominal trim settings are zero (until magnetic measurements are completed), the regulation tolerances here are normalized to the maximum trim coil current setting. The regulation tolerances are listed here as (ΔI/Imax) to point out that this value is normalized to the maximum current of the trim coil, Imax, not the maximum field of the dipole magnet. Both short-term, (ΔI/Imax)S, and long-term, (ΔI/Imax)L, tolerances are listed. The trim polarity defined below is such that a positive output of the trim power supply strengthens that dipole magnet’s field, independent of the sign of the field.

Magnet Name

Area rel. range w.r.t. main

coil max. field[%]

(ΔI/Imax)S rms [%]

(ΔI/Imax)L rms [%]

pol.

BXG GUN ±2.0 0.01 0.05 N BXH1 INJ ±1.0 0.01 0.1 P BXH3 INJ ±1.0 0.01 0.1 N BXH4 INJ ±1.0 0.01 0.1 P BX01 DL1 ±2.0 0.01 0.1 P BX11 BC1 ±1.0 0.01 0.1 P BX13 BC1 ±1.0 0.01 0.1 N BX14 BC1 ±1.0 0.01 0.1 P BX21 BC2 ±1.0 0.003 0.05 P BX23 BC2 ±1.0 0.003 0.05 N BX24 BC2 ±1.0 0.003 0.05 P BYW2 LTU ±1.0 0.01 0.1 N BX31 LTU ±1.5 0.003 0.05 N BX32 LTU ±1.5 0.003 0.05 N BX35 LTU ±1.5 0.003 0.05 P BX36 LTU ±1.5 0.003 0.05 P

Table 4. Injector solenoid magnets. These magnets are purely LCLS magnets, do not support non-LCLS operations, and are not necessarily changed by 15-Å LCLS operations. Each of these magnets requires a separate power supply. Short-term regulation tolerances are the same as long-term here.

Magnet Name

LCLS area

type Leff [m]

Bi- orUni- polar

Min. |∫Bzdl|[kG-m]

Nom. ∫Bzdl

[kG-m]

Max. |∫Bzdl| [kG-m]

(ΔB/B)L rms [%]

pol.

SOL1BK GUN new 0.21 B 0 −0.0017 ±0.0032 0.1 P SOL1 GUN new 0.195 U 0.2 0.50 0.61 0.02 P SOL2 INJ new 0.21 U 0.1 0.38 0.6 0.1 P

Page 8: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 8 of 13 that this is the correct version prior to use.

Table 5. Injector quadrupole magnets which are new for LCLS. These magnets are purely LCLS magnets, do not support non-LCLS operations, and are not necessarily changed by 15-Å LCLS operations. Each of these magnets requires a separate power supply.

Magnet Name

LCLS area

Magnet type

Bi- orUni- polar

Min. |∫Gdl|[kG]

Nom.∫Gdl [kG]

Max. |∫Gdl|[kG]

(ΔB/B)S rms [%]

(ΔB/B)L

rms [%]

pol.

CQ01 GUN Qsol B 0 0 ±0.012 0.1 0.1 P SQ01 GUN Qsol B 0 0 ±0.012 0.1 0.1 P QG02 GSPEC QG B 0 -0.88 ±4.4 0.1 0.1 P QG03 GSPEC QG B 0 2.16 ±4.4 0.1 0.1 P QA01 INJ ET B 0 -1.7 ±3 0.05 0.1 P QA02 INJ ET B 0 1.8 ±3 0.05 0.1 P QE01 INJ ET B 0 -0.33 ±8 0.5 1.0 P QE02 INJ ET B 0 -0.72 ±8 0.2 0.5 P QE03 INJ ET B 0 3.6 ±8 0.05 0.1 P QE04 INJ ET B 0 -3.2 ±8 0.05 0.1 P QM01 INJ ET U 0.2 7.4 12 0.05 0.1 P QM02 INJ ET U -0.2 -5.9 -12 0.05 0.1 P QB INJ QE U 7 11 18 0.05 0.05 P QS01 ISPEC ET B 0 2.68 ±12 0.1 0.1 P QS02 ISPEC ET B 0 -0.51 ±12 0.1 0.1 P

Page 9: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 9 of 13 that this is the correct version prior to use.

Table 6. Linac quadrupole magnets for LCLS and ‘SLC’ mode. Most are existing linac magnets with a bulk and power booster supply, which may need to be reconfigured, but individual control of excitation current is required for each quadrupole listed here, except for Q24701A/B, Q24901A/B (newly doubled up QE magnets around BC2), and the BSY quadrupoles 50Q1,2,3.

Magnet Name

LCLS area

Magnet type

Bi- or

Uni- polar

Min. any

|∫Gdl|[kG]

Nom.LCLS∫Gdl [kG]

Max. LCLS |∫Gdl|[kG]

Max. any

|∫Gdl|[kG]

(ΔB/B)S rms [%]

(ΔB/B)L

rms [%]

pol.

QM03 DL1 ET U -0.2 −4.2 -12 -12 0.05 0.3 P QM04 DL1 ET U 0.2 6.7 12 12 0.05 0.1 P QA11 L1 ET U -0.2 −2.6 −4.3 −4.3 0.05 0.2 P QA12 L1 ET U 0.2 2.0 4.3 4.3 0.2 0.5 P Q21201* BC1 QE Β∗ -5.6 −8.0 −12 100 0.05 0.2 N*QM11 BC1 ET U 0.2 6.4 12 12 0.05 0.1 P CQ11 BC1 tweaker B 0 0 ±0.7 ±0.7 0.1 0.2 P CQ12 BC1 tweaker B 0 0 ±0.7 ±0.7 0.1 0.2 P QM12 BC1 ET U -0.2 −7.2 −12 −12 0.025 0.07 P QM13 BC1 ET U 0.2 7.9 12 12 0.05 0.1 P Q21301† BC1 QE U† 0.12 −0.12 −12 −100 - - N QM14 BC1 ET U 0.2 8.1 12 12 0.05 0.1 P QM15 BC1 ET U -0.2 −8.1 −12 −12 0.025 0.07 P Q21401 L2 QE U 1.0 1.3 5 100 0.05 0.5 P Q21501 L2 QE U -1.0 -1.5 -5 -100 0.05 0.5 N Q21601 L2 QE U 1.2 1.7 5 100 0.05 0.5 P Q21701 L2 QE U -1.5 -2.1 -5 -100 0.05 0.5 N Q21801 L2 QE U 1.7 2.5 5 100 0.05 0.5 P Q21901 L2 QE U -2.0 -2.9 -5 -100 0.05 0.5 N Q22201 L2 QE U 2.2 3.2 8 100 0.05 0.5 P Q22301 L2 QE U -2.7 -3.8 -8 -100 0.05 0.5 N Q22401 L2 QE U 2.7 3.9 8 100 0.05 0.5 P Q22501 L2 QE U -3.0 -4.3 -8 -100 0.05 0.5 N Q22601 L2 QE U 3.3 4.7 8 100 0.05 0.5 P Q22701 L2 QE U -3.5 -5.0 -10 -100 0.05 0.5 N Q22801 L2 QE U 4.0 5.7 10 100 0.05 0.5 P Q22901 L2 QE U -4.1 -5.8 -10 -100 0.05 0.5 N Q23201 L2 QE U 4.4 6.3 10 100 0.05 0.5 P Q23301 L2 QE U -4.8 -6.8 -10 -100 0.05 0.5 N Q23401 L2 QE U 4.8 6.9 10 100 0.05 0.5 P Q23501 L2 QE U -5.1 -7.3 -15 -100 0.05 0.5 N Q23601 L2 QE U 5.3 7.6 15 100 0.05 0.5 P Q23701 L2 QE U -5.6 -8.0 -15 -100 0.05 0.5 N Q23801 L2 QE U 6.4 9.1 15 100 0.05 0.5 P Q23901 L2 QE U -6.3 -9.0 -15 -100 0.05 0.5 N Q24201 L2 QE U 6.9 9.9 15 100 0.05 0.5 P Q24301 L2 QE U -7.7 -11 -20 -100 0.05 0.5 N

Page 10: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 10 of 13 that this is the correct version prior to use.

Q24401 L2 QE U 9.1 13 20 100 0.05 0.4 P Q24501 L2 QE U -9.8 -14 -20 -100 0.05 0.4 N Q24601 L2 QE U§§ 6.1 8.7 15 100 0.05 0.5 P Q24701A2 BC2 QE U§§ -13 -19 -30 -80 0.025 0.2 N Q24701B2 BC2 QE U§§ -13 -19 -30 -80 “ “ N QM21 BC2 FFTB U§ 20 33 50 180 0.025 0.05 P CQ21 BC2 tweaker B§ 0 0 ±2.1 ±2.1 0.1 0.2 P Q24801 BC2 removed - - - - - - - - CQ22 BC2 tweaker B§ 0 0 ±2.1 ±2.1 0.1 0.2 P QM22 BC2 FFTB U§ -20 -33 -50 -180 0.025 0.05 N Q24901A2 BC2 QE U**§§ 10 13 30 80 0.025 0.2 P Q24901B2 BC2 QE U**§§ 10 13 30 80 “ “ P Q25201 L3 QE U 9 12 20 100 0.05 0.3 P Q25301 L3 QE U -6.0 -8.2 -15 -100 0.05 0.4 N Q25401 L3 QE U 6.0 8.0 15 100 0.05 0.5 P Q25501 L3 QE U -6.0 -8.0 -15 -100 0.05 0.5 N Q25601 L3 QE U 6.0 8.3 15 100 0.05 0.5 P Q25701 L3 QE U -6.0 -8.4 -15 -100 0.05 0.5 N Q25801 L3 QE U 6.0 9.3 15 100 0.05 0.5 P Q25901 L3 QE U -6.0 -8.9 -15 -100 0.05 0.5 N Q26201 L3 QE U 6.0 9.4 15 100 0.05 0.5 P Q26301 L3 QE U -6.0 -9.9 -20 -100 0.05 0.5 N Q26401 L3 QE U 6.0 10 20 100 0.05 0.5 P Q26501 L3 QE U -6.0 -10 -20 -100 0.05 0.5 N Q26601 L3 QE U 6.0 11 20 100 0.05 0.5 P Q26701 L3 QE U -6.0 -11 -20 -100 0.05 0.5 N Q26801 L3 QE U 6.0 12 20 100 0.05 0.5 P Q26901 L3 QE U -6.0 -11 -20 -100 0.05 0.5 N Q27201 L3 QE U 6.0 12 20 100 0.05 0.5 P Q27301 L3 QE U -6.0 -12 -25 -100 0.05 0.5 N Q27401 L3 QE U 6.0 13 25 100 0.05 0.5 P Q27501 L3 QE U -6.0 -13 -25 -100 0.05 0.5 N Q27601 L3 QE U 6.0 13 25 100 0.05 0.5 P Q27701 L3 QE U -6.0 -13 -25 -100 0.05 0.5 N Q27801 L3 QE U 6.0 14 25 100 0.05 0.5 P Q27901 L3 QE U -6.0 -14 -25 -100 0.05 0.5 N Q28201 L3 QE U 6.0 14 25 100 0.05 0.5 P Q28301 L3 QE U -6.0 -15 -25 -100 0.05 0.5 N Q28401 L3 QE U 6.0 15 25 100 0.05 0.5 P Q28501 L3 QE U -6.0 -15 -25 -100 0.05 0.5 N Q28601 L3 QE U 6.0 16 25 100 0.05 0.5 P Q28701 L3 QE U -6.0 -16 -30 -100 0.05 0.5 N Q28801 L3 QE U 6.0 17 30 100 0.05 0.5 P Q28901 L3 QE U -6.0 -16 -30 -100 0.05 0.5 N Q29201 L3 QE U 6.0 17 30 100 0.05 0.5 P Q29301 L3 QE U -6.0 -17 -30 -100 0.05 0.5 N

Page 11: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 11 of 13 that this is the correct version prior to use.

Q29401 L3 QE U 6.0 18 30 100 0.05 0.5 P Q29501 L3 QE U -6.0 -17 -30 -100 0.05 0.5 N Q29601 L3 QE U 6.0 18 30 100 0.05 0.5 P Q29701 L3 QE U -6.0 -18 -30 -100 0.05 0.5 N Q29801 L3 QE U 6.0 19 30 100 0.05 0.5 P Q29901 L3 QE U -6.0 -18 -30 -100 0.05 0.5 N Q30201 L3 QE U 6.0 19 30 100 0.05 0.5 P Q30301 L3 QE U -6.0 -20 -30 -100 0.05 0.5 N Q30401 L3 QE U 6.0 20 30 100 0.05 0.5 P Q30501 L3 QE U -6.0 -20 -30 -100 0.05 0.5 N Q30601 L3 QE U 6.0 21 30 100 0.05 0.5 P Q30701 L3 QE U -6.0 -20 -30 -100 0.05 0.5 N Q30801 L3 QE U 6.0 20 30 100 0.05 0.5 P Q50Q1 BSY 50Q1 U†† -6.0 -24 -40 -1001 0.05 0.4 N Q50Q2 BSY 50Q2 “ 10 42 69 1731 “ “ P Q50Q3 BSY 50Q3 “ -9.1 -37 -61 -1531 “ “ N

* In LCLS mode this magnet must run opposite polarity from ‘SLC’ mode (LCLS polarity is ‘N’). † This magnet gets switched off in LCLS mode (note the minimum field is simply the remnant

integrated-gradient, which has been measured on anther QE as 0.12 kG) ** This magnet gets reversed in polarity (permanently) after LCLS construction. § These are new magnets which are not connected to the linac bulk power supplies. §§ Existing magnets which may be disconnected from the linac bulk power supplies. †† These 3 existing quadrupoles, with varying Leff, are in series on one power supply 1 This BSY quad string is rated here for up to 50 GeV 2 These are doubled-up QE magnets to allow stronger focusing around BC2 Table 7. BSY quadrupole magnets which are not modified for LCLS, except in their excitation current settings (3-10 times lower than the original FFTB 46-GeV settings). These magnets are purely LCLS magnets and do not support non-LCLS operations.

Magnet Name

LCLS area

Magnet type

Bi- or

Uni- polar

Min. |∫Gdl|[kG]

Nom.∫Gdl [kG]

Max. |∫Gdl|[kG]

(ΔB/B)S rms [%]

(ΔB/B)L rms [%]

PS ID

pol.

QSM1 BSY FFTBQSM B 0 0 ±45 - - 1 P Q5 BSY FFTB U -12 -46 -80 0.025 0.05 2 N Q6 BSY FFTB U 13 52 80 0.025 0.04 3 P QA0 BSY FFTB U -7.0 -28 -80 0.05 0.2 4 N

Page 12: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 12 of 13 that this is the correct version prior to use.

Table 8. New LCLS LTU and dump-line quadrupole magnet requirements. These magnets are purely LCLS magnets and do not support non-LCLS operations.

Magnet Name

LCLS area

Magnet type

Bi- or

Uni- polar

Min. |∫Gdl|[kG]

Nom. ∫Gdl [kG]

Max. |∫Gdl|[kG]

(ΔB/B)S rms [%]

(ΔB/B)L rms [%]

PSID

pol.

QVM1 LTU FFTB U -41 -162 -260 0.025 0.05 1 N QVM2 LTU FFTB U 32 128 260 0.025 0.07 2 P QVB1 LTU FFTB U -22 -86 -120 0.025 0.1 3 N QVB2 LTU FFTB U 22 86 120 “ “ 3 P QVB3 LTU FFTB U -22 -86 -120 “ “ 3 N QVM3 LTU FFTB U 37 145 260 0.025 0.05 4 P QVM4 LTU FFTB U -36 -143 -260 0.025 0.07 5 N QDL31 LTU Q150kG U 16 64 90 0.05 0.4 6 P QDL32 LTU Q150kG U 16 64 90 “ “ 6 P QDL33 LTU Q150kG U 16 64 90 “ “ 6 P QDL34 LTU Q150kG U 16 64 90 “ “ 6 P QT11 LTU FFTB U -22 -88 -125 0.025 0.015 7 N QT13 LTU FFTB U -22 -88 -125 “ “ 7 N QT21 LTU FFTB U -22 -88 -125 “ “ 7 N QT23 LTU FFTB U -22 -88 -125 “ “ 7 N QT31 LTU FFTB U -22 -88 -125 “ “ 7 N QT33 LTU FFTB U -22 -88 -125 “ “ 7 N QT41 LTU FFTB U -22 -88 -125 “ “ 7 N QT43 LTU FFTB U -22 -88 -125 “ “ 7 N QT12 LTU FFTB U 45 176 250 0.025 0.010 8 P QT22 LTU FFTB U 45 176 250 “ “ 8 P QT32 LTU FFTB U 45 176 250 “ “ 8 P QT42 LTU FFTB U 45 176 250 “ “ 8 P QEM1 LTU Q150kG B -14 -57 ±150 0.025 0.2 9 P QEM2 LTU Q150kG B 16 63 ±150 0.025 0.2 10 P QEM3 LTU Q150kG B -22 -87 ±150 0.025 0.2 11 P QEM3V LTU ET B 0 0 ±15 0.025 0.1 12 P QEM4 LTU Q150kG B 15 61 ±150 0.025 0.2 13 P QE31 LTU ET U 5.0 20 27.5 0.05 0.2 14 P QE32 LTU ET U -5.0 -20 -27.5 “ “ 14 N QE33 LTU ET U 5.0 20 27.5 “ “ 14 P QE34 LTU ET U -5.0 -20 -27.5 “ “ 14 N QE35 LTU ET U 5.0 20 27.5 “ “ 14 P QE36 LTU ET U -5.0 -20 -27.5 “ “ 14 N QUM1 LTU Q150kG B 0 63 ±100 0.025 0.2 15 P QUM2 LTU Q150kG B 0 -56 ±100 0.025 0.2 16 P QUM3 LTU Q150kG B 0 13 ±100 0.05 0.4 17 P QUM4 LTU Q150kG B 0 49 ±100 0.025 0.2 18 P QUE1 DUMP 3.25Q20 U 6.3 25 40 0.25 0.5 19 P QUE2 DUMP 3.25Q20 U -2.3 -9 -40 0.25 0.5 20 N

Page 13: Change History Log · Q150kG LTU mid-range quad. 0.91Q12 150 11.5 0.316 3.25Q20 Dumpline quad 3.25Q20 45 41.3 0.550 FFTB Existing FFTB Novosibirsk quad. 0.91Q17.72 260 11.5 0.461

_______________________________________________________________________________________________________PRD 1.1-006-r6 Check the LCLS Project website to verify 13 of 13 that this is the correct version prior to use.

QDMP1 DUMP 3.25Q20 U -7 -28 -40 0.1 0.1 21 N QDMP2 DUMP 3.25Q20 U -7 -28 -40 “ “ 21 N Table 9. LCLS pulsed dipole magnets. All pulsed power supplies are unipolar and each has its own supply. Physics Requirements Document (PRD) numbers, where more detailed specifications can be found for the pulsed magnets, are listed in the table below. Short-term regulation tolerances are the same as long-term tolerances here.

Magnet Name

Magnet type

PRD doc.

number

Area z location*

[m]

Min. |∫Bdl| [kG-m]

Nom. ∫Bdl

[kG-m]

Max. |∫Bdl| [kG-m]

(ΔB/B)L rms [%]

pol.

BXKIK PM1 1.3-015 L3 2460.2 0 0.02 0.05 0.5 P BYKIK PM2 1.3-014 LTU 3300.1 0 -0.6 -0.85 1 N

* In these linac coordinates, station-100 is located at z = 3048.000 m.

Fig. 1. Relative field gradient error per quadrupole magnet, with 200-μm misalignment in both planes, required to each produce a centroid amplitude at the undulator entrance which is 10% of the rms beam size. The short-term regulation tolerances are based on these sensitivities, but divided down by approximately 1461/2 (≈ 12). Horizontal kick sensitivities are shown as BLUE circles while vertical are shown as RED diamonds. This plot does not include solenoids or dipole magnets.