channels and challenges: higgs search at the lhcplehn/includes/talks/2004/bielefeld04.pdf ·...

23
Channels and Challenges: Higgs Search at the LHC Tilman Plehn CERN The Puzzle of Mass & the Higgs Boson Standard Model Higgs Boson at the LHC Supersymmetric Higgs Bosons at the LHC

Upload: others

Post on 11-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Channels and Challenges:

Higgs Search at the LHC

Tilman Plehn

CERN

The Puzzle of Mass & the Higgs Boson

Standard Model Higgs Boson at the LHC

Supersymmetric Higgs Bosons at the LHC

Page 2: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Elementary Particles

Standard Model: particles & interactions

• leptons (essentially means ‘like electron’)

1897 Thomson: electron(1) me = 0.5 MeV

1937 Anderson: muon(2) mµ = 106 MeV

1975 Perl: tau lepton(3) mτ = 1800 MeV

definition of ‘mass’: inertia in TV tube, dropping in LEP ring

• plus three neutrinos and anti-neutrinos ν

1990s CERN: no more than 3 light neutrinos

• quarks (essentially means ‘not like electron at all’)

neutron (uud) and proton (udd): up(1) and down(1)

in bound states: strange(2), charm(2) and bottom(3)

1995 Fermilab: top(3) mt = 175 GeV

⇒ Fermions in three generations, different only by mass

Mixing of generations

• quarks mix a little (Cabbibo–Kobayashi–Maskawa matrix)

→ one complex phase in 3 × 3 mixing matrix

→ ‘CP violating effect’ observed

• leptons mix a lot (Maki–Nakagawa–Sakata matrix)

→ CP violation not yet observed

Page 3: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

The Puzzle of Mass

Another take on particle masses

• Rutherford 1911: electrons and protons/neutrons compose matter

→ proton mass multiparticle effect

→ electron mass essentially zero

• electromagnetic and gravitational interactions

→ all forces with infinite range (Coulomb potential V ∝ 1/r)

→ equivalent to massless (virtual) photon exchange

• Fermi 1934: theory of weak interactions (n → pe−ν̄e and µ → e−ν̄eνµ)

→ divergent four fermion reaction amplitude: A ∝ GFE2

→ unitarity violation (transition probability ∝ |A|2)

→ ‘effective theory’ valid for E < 600 GeV

• Yukawa 1935: massive virtual particle exchange

→ Fermi’s theory for E � M

→ unitary for large energies: A ∝ g2E2/(E2 − M 2)

→ mass of Yukawa particles means??

• CERN 1983: W, Z bosons discovered

→ mW ∼ 80 GeV and mZ ∼ 91 GeV (mW,Z ∼ (mt + mb)/2)

→ mass: inertia when pushed, dropping to the ground in flight

⇒ boson and fermion masses the same thing

W

Page 4: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Unitarity and Higgs Boson

Theory of W, Z bosons

• start with SU(2) gauge theory (massless W,Z)

• measured masses L ∼ −mW,ZAµAµ

→ not gauge invariant (except in small mW,Z limit)

→ not renormalizable (means not predictive to all scales)

→ but valid effective theory of massive W, Z bosons

W

WW

W

= +γ,Z

γ,Z+

Unitarity tests

• probe theory in WW → WW scattering

→ A ∝ GFE2 just like Fermi’s theory, not unitary above 1.2 TeV

→ postulate additional scalar particle: Higgs boson

→ unitarity conserved

→ fixed coupling gWWH ∝ mW

• add fermions: WW → f f̄ scattering

→ fixed coupling gffH ∝ mf

• test new theory with WW → HH scattering

→ fixed coupling gHHH ∝ m2H/mW

• final test: HH → HH scattering

→ fixed coupling gHHHH ∝ m2H/m2

W

• Standard Model: complete unitary theory of massive W, Z bosons

• Higgs mass a free parameter, all Higgs couplings fixed

Page 5: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Hadron Colliders: Tevatron & LHC

Conversion of energy into mass (E = mc2 with c=1)

• search for new physics/particles (conclusive only if real particle produced)

→ highest possible energies required

• electron colliders: collide two highly relativistic e+e−

LEP: 46 GeV each to produce one Z

LEP2: 103 GeV each to produce pairs of new particles

TESLA/CLIC: 1...3 TeV?

• hadron colliders: collide protons

Tevatron: pp̄ collision with 2 TeV (mostly valence quarks)

LHC: pp collisions with 14 TeV (mostly gluons)

→ LHC mass reach roughly 3 TeV

• special feature: trade luminosity for energy

New physics with hadron colliders

• what is a jet and what isn’t??? (b tag, τ tag)

• trigger: ‘no leptons — no data’ (e.g. pp → tt̄ → W+bW−b̄ → bb̄ + 4jets)

• huge and uncertain backgrounds rates pp → jj or pp → WZ+jets

• statistical significance: S/√

B > 5 is discovery

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σt

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σb

σtot

proton - (anti)proton cross sections

σ (

nb)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

Page 6: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle
Page 7: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

0.1 1 1010-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σjet(ETjet > √s/4)

LHCTevatron

σt

σHiggs(MH = 500 GeV)

σZ

σjet(ETjet > 100 GeV)

σHiggs(MH = 150 GeV)

σW

σjet(ETjet > √s/20)

σb

σtot

proton - (anti)proton cross sections

σ (

nb)

√s (TeV)

even

ts/s

ec f

or L

= 1

033 c

m-2

s-1

Page 8: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 1: Find SM Higgs

t W,Z

b,tW,Z

Designing Higgs searches for the LHC

• (a) unitarity limit: mH < 1 TeV

(b) electroweak precision tests: mH < 220 GeV

• production and decay combos for light Higgs

gg → H

qq → qqH

gg → tt̄H

qq̄′ → WH...

⇐⇒

signal × trigger

backgrounds

systematics

S/√

B vs. S/B

mass resolution...

⇐⇒

H → bb̄

H → WW

H → τ+`hτ

−`

H → γγ

H → µµ...

State of the art

• 6 million Higgses in gluon fusion: gg → H → γγ

(mass resulution ∆mH/mH ∼ Γ/√

S < 0.5%)

• backgrounds smaller in WW fusion: qq → qqH → qqττ

(reconstruct mττ in collinear approximation, S/B = O(1))

• off-shell Higgs decays: qq → qqH → qqWW

(works down to mH < 120 GeV)

• few examples of ‘marginally successful’ strategies:

gg → tt̄H → tt̄bb̄ (complexity of signal)

gg → tt̄H → tt̄ττ (never openly admitted)

qq̄′ → WH → Wbb̄ (NLO background estimate)

qq → qqH → qqbb̄ (no ATLAS trigger) ....

1

10

10 2

100 120 140 160 180 200

mH (GeV/c2)

Sig

nal s

igni

fica

nce

H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

qqH → qq ττ

Total significance

5 σ

∫ L dt = 30 fb-1

(no K-factors)

ATLAS

Page 9: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

σ(pp→H+X) [pb]√s = 14 TeV

Mt = 175 GeV

CTEQ4Mgg→H

qq→Hqqqq

_’→HW

qq_→HZ

gg,qq_→Htt

_

gg,qq_→Hbb

_

MH [GeV]0 200 400 600 800 1000

10-4

10-3

10-2

10-1

1

10

10 2

0 100 200 300 400 500 600 700 800 900 1000

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

102

103

Page 10: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

4000

5000

6000

7000

8000

110 120 130 140

Eve

nts/

500

MeV

for

100

fb–1

0

200

400

600

110 120 130 140

mγγ (GeV)

Eve

nts/

500

MeV

for

100

fb–1

a) b)mγγ (GeV)

Page 11: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

1

10

10 2

100 120 140 160 180 200

mH (GeV/c2)

Sig

nal s

igni

fica

nce

H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

qqH → qq ττ

Total significance

5 σ

∫ L dt = 30 fb-1

(no K-factors)

ATLAS

Page 12: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 2: Higgs Properties

Find the Higgs — what are you talking about???

+ mass measurement (H → γγ)

+ coupling to W (qq → qqH and gg → H → γγ)

coupling to Z (gg → H → ZZ)

coupling to top (gg → H)

coupling to tau (qq → qqH → qqττ)

+ WWH coupling gµν and CP (qq → qqH → qqττ jet correlations)

+ ZZH coupling gµν and CP (gg → H → ZZ decay correlations)

+ invisible Higgs decay (qq → qqH for 10% invisible decays)

? trilinear Higgs self coupling λHHH (really tough, next transparency)

? spin 0 scalar (spin 1 ruled out by H → γγ)

− coupling to bottom and to light generations? (maybe qq → qqH → qqµµ)

→ Yukawa couplings to fermions not established

− total width? (to compare with sum of observed decays)

− four Higgs self coupling λ4H? (not in my life time)

⇒ LHC luminosity upgrade for precision studies

⇒ linear collider TESLA mandatory (rule of thumb: factor 10 better)

0

0.025

0.05

0.075

0.1

0 50 100 150∆Φjj

WBF H→ττ1/σtot dσ/d∆Φjj

SM

CP even

CP odd

Z→ττ

Page 13: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

0

0.025

0.05

0.075

0.1

0 50 100 150∆Φjj

WBF H→ττ1/σtot dσ/d∆Φjj

SM

CP even

CP odd

Z→ττ

Page 14: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 2b: Higgs Self Coupling

Higgs Self Coupling

• scalar with Yukawa couplings to fermions, so what?

• back to Higgs potential (λ = m2H/(2v2))

V (H) =m2

H

2H2 +

m2H

2vH3 +

m2H

8v2H4

⇒ self couplings the holy grail of Higgs physics

Higgs pair production

• HH → 4W : serious detector simulation needed, not hopeless

(use observable mvis to determine λHHH)

• HH → bb̄ττ : miracle required

• HH → 4b: several major miracles mandatory

(TESLA in better shape)

• HH → bb̄µµ: at least small miracle would be helpful

(might come out of µµ mass resolution)

• HH → bb̄γγ: some enhancement needed

⇒ serious challenge to detectors and machine

(my personal favorite for luminosity upgrade)

Page 15: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle
Page 16: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 3: Variants

Many attempts to modify the Higgs sector

• idea usually to hide it at some unwanted collider

(always easier to hide things than to find them)

• example: many Higgs doublets (thought to hide at LHC)

(a) precision data: m2H → ∑

C2i m

2hi

= 〈M 2〉 . (200GeV)2

(b) W, Z masses: v2 →∑

v2i = v2

C2i

(c) fermion masses: mt = vYt →∑

viYit = v

CiYit

• assume vi = v/N and Yi = Y (also∑

C2i = NC2 = 1 and

Ci = NC =√

N)

→ fermion widths Γf = ΓSMf C2

i /(∑

i Ci)−2 = ΓSM

f /N 2

→ gauge boson widths ΓW,Z = ΓSMW,Z/N 2

⇒ all decays same as SM Higgs with mass mhi

LHC strategy

• production process for 〈M 2〉 ∼ (200GeV)2

→ integrated qq → qqH production rate roughly matches SM rate

• decay channel without mass reconstruction: H → WW → `−`+νν̄

⇒ no problem to find continuum Higgs at all

• We will find the Higgs at the LHC

• We will measure some Higgs parameters

• Funny variants will not prevent that

Page 17: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

MSSM Higgs Sector

Why Minimal Supersymmetric Standard Model?

• quadratically divergent one-loop corrections to mH :

δm2H = Λ2 3

8π2v2

(

2m2W + m2

Z + m2H − 4m2

t

)

→ Higgs mass always driven to cutoff scale (except Veltman’s condition)

→ invent theory with mirror particles which enter with (−1)

→ remember spin–statistics: change spin by 1/2

→ call it supersymmetry → stabilize proton → explain dark matter ...

• Higgs sector: two Higgs doublets for top and bottom mass

Two Higgs doublet model

• one (complex) Higgs doublet: 4 degrees of freedom

→ three for longitudinal gauge bosons, one for (neutral) scalar Higgs

• two (complex) Higgs doublet: 8 degrees of freedom

→ three for longitudinal gauge bosons, five for physical Higgs particles

→ two scalars h0, H0, one pseudoscalar A0, one charged H±

• free parameters

(1) still only one free mass scale: mA (usually heavy)

(2) two vacuum expectation values: tanβ = vt/vb

→ surprising prediction: mh < 135 GeV50 100 150 200 250 300 350 400 450 500

MA [GeV]

50

100

150

200

250

300

350

400

450

500

MH

iggs

[GeV

]

hHA

H+-

mhmax

scen., tanβ = 5

FeynHiggs2.0

Page 18: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

50 100 150 200 250 300 350 400 450 500MA [GeV]

50

100

150

200

250

300

350

400

450

500

MH

iggs

[GeV

]

hHA

H+-

mhmax

scen., tanβ = 5

FeynHiggs2.0

Page 19: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 4: Find One MSSM Higgs Boson

MSSM Higgs bosons and qq → qqH → qqττ

• allowed MSSM Higgs masses: mZ � mh < 135 GeV

• decoupling regime mA & 160 GeV

→ pseudoscalar, scalar H0, and charged Higgs heavy

→ light scalar h0 looks like SM Higgs (of the corresponding mass)

→ production rate: gWWh ∼ 1

→ branching fraction: BR(h0 → ττ) > BR(HSM → ττ)

• opposite case mA . 120 GeV

→ heavy scalar H0 around 135 GeV

→ qq → qqH0 → qqττ SM-like

• intermediate case mA ∼ 120 GeV

→ usually regarded as toughest

→ h0, H0 → ττ just add up

⇒ perfect channel qq → qqh0 → qqττ : MSSM no–lose theorem

80 100 120140 160

10

20

30

80

100

120

mAtanβ

mh[GeV]

ho

80 100 120140 160

10

20

30

140

160

mAtanβ

mH[GeV]

Ho

80 100 120140 160

10

20

30

0.20.40.60.8

mAtanβ

sin2(β-α)

80 100 120140 160

10

20

30

0.20.40.60.8

mAtanβ

cos2(β-α)

80 100 120140 160

10

20

30

0.2

0.4

mAtanβ

(σ.B)h[fb]

80 100 120140 160

10

20

30

0

0.2

0.4

mAtanβ

MSUSY=1 TeV, maximal mixing

(σ.B)H[fb]

5

10

15

20

25

30

80 100 120 140 160MA[GeV]

tanβ

LEP2: e+e−→Zh

LHC(40fb-1):VV→H→ττ VV→h→ττ

Futile attempts to escape this channel

• low tanβ: forbidden by LEP2

• super–large mixing At > 6 TeV: enhanced WBF WW and γγ rate

• CP phases in At: coverage solid

• funny couplings of all kind: still standing

Page 20: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

80 100 120140 160

10

20

30

80

100

120

mAtanβ

mh[GeV]

ho

80 100 120140 160

10

20

30

140

160

mAtanβ

mH[GeV]

Ho

80 100 120140 160

10

20

30

0.20.40.60.8

mAtanβ

sin2(β-α)

80 100 120140 160

10

20

30

0.20.40.60.8

mAtanβ

cos2(β-α)

80 100 120140 160

10

20

30

0.2

0.4

mAtanβ

(σ.B)h[fb]

80 100 120140 160

10

20

30

0

0.2

0.4

mAtanβ

MSUSY=1 TeV, maximal mixing

(σ.B)H[fb]

Page 21: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

5

10

15

20

25

30

80 100 120 140 160MA[GeV]

tanβ

LEP2: e+e−→Zh

LHC(40fb-1):VV→H→ττ VV→h→ττ

Page 22: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle

Challenge 5: Find all MSSM Higgs Bosons

How to tell it is two Higgs doublets (not even talking about MSSM)

• intermediate mA ∼ 120 GeV:

→ lots of Higgs bosons observable

→ problem distinguishing them: H0 → µµ

→ top quark decays t → bH+? (Tevatron RunI top sample still small)

• decoupling regime mA & 160 GeV

→ light SM like h0 guaranteed (indirect evidence tough)

→ Yukawa coupling for heavy states: mb tan β and mt/ tan β

→ tan β < 20 hopeless? (possibly gg → H0 → h0h0 or SUSY cascades?)

• decoupling regime mA & 160 GeV and large tan β

→ bottom Yukawa coupling mb tan β & 100 GeV desirable

→ production processes bb̄ → H0 or bb̄ → A0 or gb → tH−

→ decays H0, A0 → ττ, µµ or H− → t̄b, τ ν̄

→ SUSY correction mb/(1 − ∆b) with ∆b ∝ µmg̃/M2SUSY

• We will find one MSSM Higgs at the LHC

• We might find all of them

• Some more progress would not hurt

Page 23: Channels and Challenges: Higgs Search at the LHCplehn/includes/talks/2004/bielefeld04.pdf · Rutherford 1911: electrons and protons/neutrons compose matter! proton mass multiparticle