chap 04

69
Chapter 4: The Medium Access Layer Computer Networks Maccabe Computer Science Department The University of New Mexico September 2002

Upload: grihitha

Post on 19-Nov-2014

26 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chap 04

Chapter 4: The Medium Access LayerComputer Networks

Maccabe

Computer Science DepartmentThe University of New Mexico

September 2002

Page 2: Chap 04

Medium Access Layer

Point-to-point versus broadcast networks

Broadcast

multiaccess channels

random access channels

Arbitrate contention

General coverage of LANs

Chapter 4 – p.2/69

Page 3: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth

Data Link Layer Switching

Chapter 4 – p.3/69

Page 4: Chap 04

Channel AllocationStatic Allocation

FDM and TDM are examples of static allocationTraffic is bursty, mean to peak ratio of 1:1000Mean delay:

T � 1µC � λ

where C is channel capacity in bpsλ is arrival rate in frames/sec1

µ is the mean frame length in bits/frameµC is the service rate

Replace channel with N C

N bps channels

TFDM

� 1µ

C

N

��

λ

N

� � NµC � λ

� NTChapter 4 – p.4/69

Page 5: Chap 04

Channel AllocationDynamic Allocation

Station Model: N independent stationsprobability of frame generation in interval ∆t is λ∆tstation blocks until frame is transmitted

Single Channelno external channels

Collisionsimultaneous transmission results in garbled signal

TimeContinuous frame transmission can start at any timeSlotted time is divided into discrete intervalsCarrierNo sense channels transmit then look for collisionsSense stations wait while channel is busy

Chapter 4 – p.5/69

Page 6: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth

Data Link Layer Switching

Chapter 4 – p.6/69

Page 7: Chap 04

MAC Protocols

ALOHA

Carrier Sensed Multiple Access (CSMA)

Collision-Free Protocols

Limited-Contention Protocols (skip)

Wavelength Division Multiple Access Protocols(skip)

Wireless LAN Protocols

Chapter 4 – p.7/69

Page 8: Chap 04

ALOHAPure ALOHA

Stations transmit and look for collisions (could waitfor ACKs if unable to listen while transmitting)Random time for backoff (avoids lockstep)

User

Time

A

B

C

D

E

Chapter 4 – p.8/69

Page 9: Chap 04

ALOHAEfficiency

Let t be the time to transmit a frame

Vulnerable period for a frame is 2t

Collides with the start of the shaded

frame

Collides with the end of the shaded

framet

to to+ t to+ 2t to+ 3t Time

Vulnerable

Chapter 4 – p.9/69

Page 10: Chap 04

ALOHAEfficiency

Let G be the mean transmissions (old and new) perframe time

Probability of k frames generated during a frametime is:

Pr[k] � Gke

� G

k!2G frames in an interval of length 2t

Throughput is (offered load times probability of nocollisions)

S � Ge

� 2G

Chapter 4 – p.10/69

Page 11: Chap 04

ALOHAEfficiency

0.40

0.30

0.20

0.10

0 0.5 1.0 1.5

G (attempts per packet time)

2.0 3.0

S (

thro

ughp

ut p

er fr

ame

time)

Slotted ALOHA: S = Ge–G

Pure ALOHA: S = Ge–2G

Chapter 4 – p.11/69

Page 12: Chap 04

ALOHASlotted

Can only start at the beginning of a slot

Reduces vulnerability by 1/2 S � Ge� G

Probability of a collision is 1 � e� G

Probability of requiring k attemptsPk

� e

� G �

1 � e

� G � k � 1

Expected number of transmissions

E �

∑k �1

kPk

∑k �1

ke

� G �

1 � e

� G � k � 1 � eG

Chapter 4 – p.12/69

Page 13: Chap 04

Carrier Sense Multiple Access

1-persistent: sense, when free transmitpropagation delaynonpersistent: slotted, random delay when slot busyp-persistent: transmit with probability p when slot isidle

1.0

0.9

0.8

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8 90

0.6

0.7

S (

thro

ughp

ut p

er p

acke

t tim

e)

G (attempts per packet time)

Pure ALOHA

Slotted ALOHA

1-persistent CSMA

0.1-persistent CSMA

0.5-persistent CSMA

Nonpersistent CSMA

0.01-persistent CSMA

Chapter 4 – p.13/69

Page 14: Chap 04

CSMA with Collision Detection(CSMA/CD)

Early transmission abort

Random backoff

Bounding the contention interval (2τ, where τ ispropagation delay)

Contention slots

Contention period

Transmission period

Idle period

to

Frame Frame Frame Frame

TimeChapter 4 – p.14/69

Page 15: Chap 04

Collision-Free

1-bit reservation

0 1

1 1 1 1 1 1 5 11 3 7

2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

18 Contention slotsFrames

8 Contention slots

2

d

issue: 1 bit per stationMaking the overhead logarithmic

0 0 1 0 0 – – –

0 1 2 3

Bit time

0 1 0 0 0 – – –

1 0 0 1 1 0 0 –

1 0 1 0 1 0 1 0

1 0 1 0Result

Stations 0010 and 0100 see this

1 and give up

Station 1001 sees this 1 and gives up

Chapter 4 – p.15/69

Page 16: Chap 04

Wireless LANCSMA

Hidden station (a – C better not send to B)

Exposed station (b – C could send to D)

A

(a)

B DC

Radio range

A

(b)

B DC

Chapter 4 – p.16/69

Page 17: Chap 04

Wireless LANAvoidance

RTS / CTS

(a) (b)

Range of A's transmitter

A RTS

E

B DC A CTS

E

B DC

Range of B's transmitter

Chapter 4 – p.17/69

Page 18: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth

Data Link Layer Switching

Chapter 4 – p.18/69

Page 19: Chap 04

Ethernet

CablingManchester EncodingMAC Sublayer ProtocolBinary Exponential BackoffPerformanceSwitched EthernetFast EthernetGigabit EthernetLogical Link ControlRetrospective

Chapter 4 – p.19/69

Page 20: Chap 04

Ethernet CablingCommon Kinds of Cable

10Base5vampire taps10 Mbps, Baseband signaling, 500 meters

10Base2: BNC connectors

Name Cable Max seg N/seg Advantages

10Base5 Thick coax 500 m 100 Original;now obsolete

10Base2 Thin coax 185 m 30 No hub

10Base-T Twisted pair 100 m 1024 Cheapest

10Base-F Fiber optics 2000 m 1024 Best betweenbuildings

Chapter 4 – p.20/69

Page 21: Chap 04

Ethernet CablingIllustrating Kinds of Cable

Core

ConnectorHub

Transceiver cable

Vampire tap

Controller

Transceiver

Transceiver + controller

Twisted pair

Controller

(a) (b) (c)

(a) 10Base5, (b) 10Base2, (c) 10Base-T

Chapter 4 – p.21/69

Page 22: Chap 04

Ethernet CablingCable Topologies

A B

A B C DC

D

Tap

Backbone

Repeater

(a) (b) (c) (d)

(a) Linear, (b) Spine, (c) Tree, (d) Segmented

Chapter 4 – p.22/69

Page 23: Chap 04

EthernetManchester Encoding

Transition on every bit, clock recoveryBasic: 1 is high to low; 0 is low to highDifferential: 0 has a transition at the startRequires 2x bandwidth+.85V, -.85V

Bit stream 1 0 0 0 0 1 0 1 1 1 1

Binary encoding

Manchester encoding

Differential Manchester encoding

Transition here indicates a 0

Lack of transition here indicates a 1

(a)

(b)

(c)

Chapter 4 – p.23/69

Page 24: Chap 04

Ethernet MAC Sublayer ProtocolFrame Formats

Preamble(a)

Bytes

Type Data PadCheck-

sumDestination

addressSource address

8 2 0-1500 0-46 46 6

Preamble(b) Length Data PadCheck-

sumDestination

addressSource address

(a) DIX (Digital, Intel, Xerox) Ethernet, (b) IEEE 802.3

Chapter 4 – p.24/69

Page 25: Chap 04

Ethernet FrameDIX

Preamble: 10101010 (* 8) – 10-MHz square wavefor 6.4 µsecDestination and Source addresses: 2 or 6 bytes(only 6 is used)

Group addresses – msb is 1

Broadcast – all 1’s

Bit 46 is used for local versus global address

48 � 2 bits for global addressesTypes field specifies the upper level protocolData – 1500 byte maximum die to memory costsPad: to ensure minimum lengthChecksum: CRC-32

Chapter 4 – p.25/69

Page 26: Chap 04

Ethernet MAC Sublayer ProtocolMinimum Frame Size

Packet starts at time 0A B A B

Packet almost at B at τ - ∋

Collision at time τ

A B

Noise burst gets back to A at 2τ

A B

(a) (b)

(c) (d)

Chapter 4 – p.26/69

Page 27: Chap 04

Ethernet MAC Sublayer ProtocolMinimum Frame Size

802.3

longest segment 500 m

at most 4 repeaters

maximum LAN length is 2500 m

Maximum round-trip time is 50µsec

10 Mbps implies 100 nsec / bit, 500 bits takes 50µsec

802.3 uses 512 bits (64 bytes) as minimum framesize

Chapter 4 – p.27/69

Page 28: Chap 04

EthernetBinary Exponential Backoff

Slots are defined to be 51.2µsec during contentionperiodAfter i collisions, backoff random number ofintervals between 0 and 2i � 1

i is bounded at 10

after 16 attempts, the sender quits

IntuitionAssume that number of contending stations is small until

proven otherwise

if i were fixed at 1023, lots of unnecessary waiting

if i were fixed at 1, potential for unbounded waiting

Chapter 4 – p.28/69

Page 29: Chap 04

Ethernet PerformanceModel

Metcalfe and Boggs – ignore binary exponentialbackoff and assume constant probability, p, ofretransmission in each slotProbability that one station acquires a slot, A, is

A � kp�

1 � p

� k � 1

wherek number of stations ready to transmitp probability that a station will retransmit

A is maximized when p is 1

kWhen p is 1

k, A 1

e as k ∞

Chapter 4 – p.29/69

Page 30: Chap 04

Ethernet PerformanceSize of Contention Window, w

A

A � 1

� j � 1 is the probability that the contentionwindow is j slotsMean number of slots per contention is:

∑j �0

jA

1 � A� j � 1 � 1

A

Each slot is bounded by 2τ, so the mean windowsize is bounded by 2τ

AAssuming optimal p (p � 1

k), A � 1

e and

w � 2τe � 5 � 4τ

Chapter 4 – p.30/69

Page 31: Chap 04

Ethernet PerformanceEfficiency

Let P be the mean transmission time / frame

Channel efficiency � PP

�2τ

A

Let

F frame lengthB bandwidthL cable lengthc speed of light

P � F

B

and

Channel efficiency � 11

2BLe

cF

As BL increases, efficiency decreases Chapter 4 – p.31/69

Page 32: Chap 04

Ethernet PerformanceEfficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 4 8 16Number of stations trying to send

Cha

nnel

effi

cien

cy

32 64 128 256

1024-byte frames

512-byte frames

256-byte frames

128-byte frames

64-byte frames

2τ � 51 � 2µsec, 10 Mbps

Chapter 4 – p.32/69

Page 33: Chap 04

Switched Ethernet

10Base-T connection

To hosts

To hosts

To the host computers

To hosts

Hub

ConnectorSwitch

Ethernet

collision domains

Chapter 4 – p.33/69

Page 34: Chap 04

Fast EthernetCabling

Name Cable Max seg Advantages

100Base-T4 Twisted pair 100 m Category 3 UTP

100Base-TX Twisted pair 100 m full duplex 100 Mbpscategory 5

100Base-TF Fiber optics 2000 m full duplex 100 Mpbslong runs

Chapter 4 – p.34/69

Page 35: Chap 04

Gigabit Ethernet

Switch or hub

Ethernet

(b)(a)

Ethernet

Computer

(a) two-station Ethernet, (b) multistation Ethernet

Chapter 4 – p.35/69

Page 36: Chap 04

Gigabit EthernetIt’s not Ethernet

Full duplexswitched, no collisions

not CSMA/CD

segment length determined by signalling properties

Half duplexhubs, collisions

100 times faster, 25 meter maximum length

carrier extension–hardware pad to 512 bytes (9% efficiency)

frame bursting–sender sends combined packets up to 512

bytes

Chapter 4 – p.36/69

Page 37: Chap 04

Gigabit EthernetCabling

Name Cable Max seg Advantages

1000Base-SX Fiber optics 550 m Multimode fiber(50, 62.5 microns)

1000Base-LX Fiber optics 5000 m Single (10µ) or multi-mode (50, 60.5 µ)

1000Base-CX 2 pairs of STP 25 m Shieldedtwisted pair

1000Base-T 4 pairs of UTP 100 m Standardcat 5 UTP

Chapter 4 – p.37/69

Page 38: Chap 04

IEEE 802.2: Logical Link Control

Data link

layer

Network layer

Physical layer Network

(a) (b)

LLC

MAC

LLC

LLC

Packet

Packet

Packet MAC MAC

(a) Position of LLC, (b) Protocol formats

Chapter 4 – p.38/69

Page 39: Chap 04

EthernetRetrospective

Simple – cheap, reliable, and easy to mainain

Evolution

Chapter 4 – p.39/69

Page 40: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth

Data Link Layer Switching

Chapter 4 – p.40/69

Page 41: Chap 04

802.11Protocol Stack

802.11 Infrared

802.11 FHSS

802.11 DSSS

802.11a OFDM

802.11b HR-DSSS

MAC sublayer

Physical layer

Data link layer

Upper layers

Logical link control

802.11g OFDM

Chapter 4 – p.41/69

Page 42: Chap 04

802.11Physical Layer

802.11a

OFDM Othogonal Frequency Division Multiplexing

up to 54 Mbps

52 frequencies: 48 for data, 4 for synchronization

802.11b

HR-DSSS High Rate Direct Sequence Spread Spectrum

1, 2, 5.5, and 11 Mbps

7 times the range of 802.11a

802.11g (enhanced 802.11b)

Chapter 4 – p.42/69

Page 43: Chap 04

802.11MAC Sublayer Protocol

Hidden and Exposed stations

Radios are half duplex (can’t listen while sending)

Modes

DCF Distributed Coordination Function

PCF Point Coordination Function

base station, polls for frames to send

beacon frame

CSMA/CA

Chapter 4 – p.43/69

Page 44: Chap 04

802.11Hidden and Exposed Stations

C

Range of C's radio

A CB

(a)

A C

Range of A's radio

B

(b)

A wants to send to B but cannot hear that

B is busy

B wants to send to C but mistakenly thinks

the transmission will fail

C is transmitting

A is transmitting

Chapter 4 – p.44/69

Page 45: Chap 04

802.11Virtual Channel Sensing

RTS DataA

CTS ACKB

C

D

NAV

NAV

Time

Chapter 4 – p.45/69

Page 46: Chap 04

802.11Fragment Burst

Errors are related to fragment length

RTS Frag 3Frag 2Frag 1A

CTS ACKACKACKB

C

D

NAV

NAV

Time

Fragment burst

Chapter 4 – p.46/69

Page 47: Chap 04

802.11Combining PCF and DCF

ACK

Time

SIFS

PIFS

DIFS

Control frame or next fragment may be sent here

EIFS

PCF frames may be sent here

DCF frames may be sent hereBad frame recovery done here

Chapter 4 – p.47/69

Page 48: Chap 04

802.11Protocol Stack

Frame control

Bytes

Dur- ation

Address 1

Address 2

Address 3

Address 4

Seq. Data

2 2 6 6 6 62 0-2312

Check- sum

4

Version Type Subtype

2Bits 2 4

To DS

From DS

MF Re- try

Pwr More W O Frame control

1 1 1 1 1 1 11

Chapter 4 – p.48/69

Page 49: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless (skip)

Bluetooth

Data Link Layer Switching

Chapter 4 – p.49/69

Page 50: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth (skip)

Data Link Layer Switching

Chapter 4 – p.50/69

Page 51: Chap 04

Topics

Arbitrating access to broadcast networks

Channel Allocation

Multiple Access Protocols

Ethernet

Wireless LANs

Broadband Wireless

Bluetooth

Data Link Layer Switching

Chapter 4 – p.51/69

Page 52: Chap 04

Bridging LANsExample

Cluster on a single LAN

B B B BBackbone LAN

Bridge

Work- station

File server

LAN

Chapter 4 – p.52/69

Page 53: Chap 04

Bridging LANsReasons

Autonomy: partitioning reflects political boundaries

Geography: partitioning reflects geographicdistance

Load: partition to isolate load

Distance: further than 2500 meters

Reliability: limit the effect of a bad node

Security: limit the spread of sensitive information(promiscuous mode)

Chapter 4 – p.53/69

Page 54: Chap 04

Data Link Layer Switching

Bridges from 802.x to 802.y

Local Internetworking

Spanning Tree Bridges

Remote Bridges

Repeaters, Hubs, Bridges, Switches, Routers, andGateways

Virtual LANs

Chapter 4 – p.54/69

Page 55: Chap 04

Bridges from 802.x to 802.yBridge Function

Host A

Network

LLC

MAC

Physical

Pkt

Pkt

Pkt802.11

802.11 Pkt

Host B

BridgePkt

Pkt

Pkt802.3

802.3 Pkt

802.11

802.11 Pkt

Pkt

802.11 Pkt

802.3 Pkt

802.3 Pkt

802.3 PktPkt

Wireless LAN Ethernet

Chapter 4 – p.55/69

Page 56: Chap 04

Bridges from 802.x to 802.yIssues

Different frame formats

802.3 Length Data PadCheck-

sumDestination

addressSource address

802.11 Seq. DataCheck-

sumAddress

1Address

2Address

3Address

4Frame control

Dur- ation

802.16 DataCheck-

sumLength Connection ID

Header CRC

Type EK0 E C

C I

Different data rates

100 Mbs to 11 Mbps

many to one

Chapter 4 – p.56/69

Page 57: Chap 04

Bridges from 802.x to 802.yIssues (continued)

Different maximum frame sizes

frames arrive in one piece or they don’t

no provision for fragmenting and reassembling frames

MTU – lacks transparency

Security

encryption on wireless, but not on Ethernet

encrypt at higher layers

Quality of service

Chapter 4 – p.57/69

Page 58: Chap 04

Local Internetworking

Transparent bridging of Local Ethernets

D EB1 B2A B C

F G H

LAN 1 LAN 2 LAN 3

LAN 4Bridge

For each frame, bridge decides to forward or discardRouting table in each bridge, local knowledge onlyBackward learning with decay

Chapter 4 – p.58/69

Page 59: Chap 04

Spanning Tree BridgesIssue

Multiple bridges in parallelRouting loops

F

F 1 F 2LAN 2

LAN 1

Frame copied by B2

Initial frame

Bridge

Frame copied by B1

B1 B2

Build a tree, avoid loops, but ignore some possiblelinks

Chapter 4 – p.59/69

Page 60: Chap 04

Spanning Tree BridgesSample Solution

LAN

LAN

1 2

5

8 9

6 7

3 4

A B C

D

H I J

E F

Bridge

G

(a) (b)

1 2 3

5 6

8 9

7

A B C

D E

H J

F

Bridge that is part of the

spanning treeBridge that is not part of the spanning tree

4

Chapter 4 – p.60/69

Page 61: Chap 04

Spanning Tree BridgesBuilding the Tree

Selecting a root node

broadcast serial numbers

select bridge with lowest serial number

Construct a tree with shortest paths from root toevery bridge

Continue to run algorithm to detect changes intopology

Chapter 4 – p.61/69

Page 62: Chap 04

Remote BridgesPPP Links

LAN 1 LAN 2

LAN 3

Bridge

Point-to-point line

MAC frames as payload

Strip MAC header and trailer and forward payloadonly (may miss errors in bridge memory)

Chapter 4 – p.62/69

Page 63: Chap 04

Repeaters, Hubs, Bridges,Switches, Routers and Gateways

Application layer Application gateway

Transport layer Transport gateway

Network layer RouterFrame header

Packet header

TCP header

Packet (supplied by network layer)

Frame (built by data link layer)

(b)(a)

User data

CRC

Data link layer Bridge, switch

Physical layer Repeater, hub

Chapter 4 – p.63/69

Page 64: Chap 04

Hubs, Bridges, and Switches

A B C D

E F G H

(a) (b)

Hub Bridge Switch

Host

LAN

(c)

A B C D

E F G H

A B C D

E F G H

Cutthrough switches

Chapter 4 – p.64/69

Page 65: Chap 04

Routers and Gateways

Routers operate at the network layer

strip off MAC header and trailer

use destination address (e.g., IP) address in network

header for routing

Transport gateways connect networks usingdifferent transport protocols (e.g., TCP and ATM)

Application gateways, e.g., e-mail to SMSmessages

Chapter 4 – p.65/69

Page 66: Chap 04

Virtual LANs

Physical Topology may not match the logicalorganization

Security, Load, Broadcast

Twisted pair to a hub

Office

Switch

Hub

Hub

Corr idor

Cable duct

Chapter 4 – p.66/69

Page 67: Chap 04

Example VLANs

Port versus MAC versus protocol or IP

(b)(a)

E F G H

A B C D

I

J

K

L

M

N

O

E F G H

A B C D

I

J

K

L

M

N

OB1 B2 S1 S2

GW GW

GW

GW

W

G

G

G

G

W

WWWG

G W G G

W

WG

31

4

2

Chapter 4 – p.67/69

Page 68: Chap 04

802.1Q – Being VLAN AwareTransition

Switching done using tags

Legacy frame

Tagged frame

Tagged frame

VLAN-aware

switch

VLAN-aware end domain

Legacy end domain

Legacy PC

VLAN-aware core domain

VLAN- aware

PC

Chapter 4 – p.68/69

Page 69: Chap 04

802.1Q Frame Format

802.3 Length Data PadCheck-

sumDestination

addressSource address

802.1Q Length Data PadTag

VLAN IdentifierVLAN protocol ID (0x8100)

PriC F I

Check- sum

Destination address

Source address

Chapter 4 – p.69/69