chapter 11 quantum physics · 2010-04-25 · wave&aspectof&light • lightpassing&...

49
Chapter 11 Quantum Physics Ma#er and force fields display a universal duality. Such stuff appears both wavelike and par=clelike. Both wave and par=cle aspects are essen=al to understanding microscopic physics. 4/20/10 1 Carlsmith Physics 107

Upload: others

Post on 18-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Chapter 11 Quantum Physics •  Ma#er  and  force  fields  display  a  universal  duality.  

•  Such  stuff  appears  both  wave-­‐like  and  par=cle-­‐like.  

•  Both  wave  and  par=cle  aspects  are  essen=al  to  understanding  microscopic  physics.  

4/20/10   1  Carlsmith  Physics  107  

Page 2: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Wave  aspect  of  light  

•  Light  passing  through  two  slits  displays  a  wave-­‐like  interference  pa#ern  

4/20/10   Carlsmith  Physics  107   2  

Page 3: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Par=cle  aspect  of  light  

•  Examined  closely,  it  appears  that  light  energy  interacts  with  ma#er  in  =ny  chunks  or  quanta  called  photons.  

•  The  wave-­‐like  interference  pa#ern  appears  in  the  pa#ern  of  individual  photon  interac=ons.  

4/20/10   Carlsmith  Physics  107   3  

Page 4: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Wave  and  par=cle  aspects  of  electrons  

•  Electrons  and  other  material  par=cles  show  similar  behavior.  

•  Wave  interference  is  observed  when  passing  a  beam  of  material  par=cles  through  two  slits.  

4/20/10   Carlsmith  Physics  107   4  

Page 5: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

The  energy  of  photons  

•  The energy E of a quantum of light in a wave of frequency f is proportional to frequency.

•  E = hf, h=6.626068 × 10-34 Joule-s •  h is called Planck’s constant •  High frequency quanta (such as X-rays) bear

more energy and are more particle-like than lower frequency (longer wavelength) quanta such as those in a radio wave.

4/20/10   Carlsmith  Physics  107   5  

Page 6: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Ques=on  

•  Compared  to  an  infrared  photon,  an  ultraviolet  photon  carries  

•  1)  less  energy  •  2)  the  same  energy  

•  3)  more  energy  

•  4)  some=me  less,  some=mes  more,  depends  on  frequency  

4/23/10   Carlsmith  Physics  107   6  

Page 7: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Par=cle  proper=es  of  photons  

•  Many  experiments  show  that  photons  carry  not  just  energy  E=hf  but  linear  momentum  (p  =  E/c  =  hf/c)  and  move  at  light  speed  and  are  massless.  

•  The  values  are  established  by  sca#ering  photons  from  material  par=cles  and  observing  energy  and  momentum  conserva=on.  

•  Photons  also  carry  an  intrinsic  spin  angular  momentum  S=+-­‐  h/(2  pi)  associated  with  L  and  R  circular  polariza=on.  

4/20/10   Carlsmith  Physics  107   7  

Page 8: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Energy  conserva=on  and  photoelectric  effect  

•  Light  of  a  fixed  frequency  f  ejects  electrons  from  atoms.  The  ejected  electrons  have  (max)  energy  E=hf-­‐W  where  W  is  a  constant  atom  specific  binding  energy.  

•  Einstein  successful  described  this  as  the  absorp=on  of  single  photons  by  electrons.  

4/23/10   Carlsmith  Physics  107   8  

Page 9: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Compton  sca#ering  

•  In  sca#ering  from  free  (not  bound)  electrons,  both  energy  and  momentum  are  found  to  be  conserved  if  for  photons  p=E/c=hf/c.  

4/23/10   Carlsmith  Physics  107   9  

Page 10: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Par=cle  proper=es  of  electrons  

•  Electrons  carry  not  just  energy  but  spin  +-­‐  h/(4pi)  and  (rela=vis=c)  linear  momentum  

•  Neutrinos  are  essen=ally  electrically  neutral  nearly  massless  electrons.    

•  These  are  examples  of  fundamental  fermionic  ma#er  known  as  leptons  and  quarks.  

4/23/10   Carlsmith  Physics  107   10  

Page 11: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Matter waves •  The  wavelength  associated  with  a  freely  moving  ma#er  par=cle  of  momentum  p  is  given  by  the  de  Broglie  rela=on  

•  No=ce  that  higher  momentum  corresponds  to  short  wavelength.  

•  An  electron  of  kine=c  energy  1  eV  has  a  wavelength  of  1.23  nm,  the  atomic  scale.  

•  Such  wavelengths  are  measured  by  diffrac=on  from  atoms  in  a  crystal.  

4/23/10   11  Carlsmith  Physics  107  

Page 12: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Bound  ma#er  waves  •  Like  sound,  a  ma#er  wave  in  a  box  has  a  fundamental  and  harmonic  modes  of  oscilla=on.  

•  The  wavelength  takes  discrete  values  and  the  energy  of  the  ma#er  par=cle  is  quan=zed.  

4/23/10   Carlsmith  Physics  107   12  

Page 13: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

The  wave  nature  of  atomic  electrons  

•  An  electron  wave  is  bound  by  the  Coulomb  force  of  a#rac=on  to  nuclei.  

•  The  binding  force  is  like  a  box  with  soa  sides  and  a  deep  center.  

•  The  ma#er  wave  can  oscillate  in  its  fundamental  (ground  state)  and  harmonic  modes  in  3-­‐d  

•  The  energy  of  the  electron  is  quan=zed  •  The  characteris=c  frequencies  are  the  natural  “sounds”  of  ma#er  waves  in  atoms.  

4/23/10   Carlsmith  Physics  107   13  

Page 14: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Shape  of  ma#er  wave  states  •  Various  representa=ons  indicate  electron  density  in  atomic  ma#er  waves.  

4/23/10   Carlsmith  Physics  107   14  

Page 15: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Hydrogen  atom  

•  The  energy  of  the  natural  electron/ma#er  wave  modes  for  hydrogen  is  given  by  a  simple  formula  

•  E(n)=  -­‐13.6  eV/n2  

4/23/10   Carlsmith  Physics  107   15  

Page 16: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Molecules  

•  In  the  presence  of  mul=ple  nuclei,  the  ma#er  wave  is  shared.  

•  Again  there  is  a  fundamental  mode  (ground  state)  and  discrete/quan=zed  excited  states.  

4/23/10   Carlsmith  Physics  107   16  

Page 17: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Chemistry  and  beyond  

•  The  ma#er  wave  aspect  of  electrons  governs  the  binding  of  atoms  into  complex  molecules  and  solids.  

•  Ma#er  waves  resonant  between  atoms  in  a  molecule  and  are  distributed  in  space.  

4/23/10   Carlsmith  Physics  107   17  

Page 18: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Radia=on  and  atoms  •  A  photon  of  energy  E

(ini=al)-­‐E(final)  is  emi#ed  when  an  electron  makes  a  transi=on  between  ini=al  and  final  bound  energy  levels.  

•  A  photon  is  absorbed  only  if  its  energy  matches  a  difference  between  electron  energy  levels.  

•  The  emission  and  absorp=on  “frequency  spectrum”  is  different  for  every  atom.  

4/23/10   Carlsmith  Physics  107   18  

Page 19: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Quantum  dots  

•  It  is  possible  to  fabricate  nanoscale  structures  which  confine  electrons  in  =ny  boxes.  

•  Their  size  determines  the  electron  excita=on  spectrum  and  characteris=c  color.  

•  Various  sizes  permit  various  custom  spectra.  

4/23/10   Carlsmith  Physics  107   19  

Page 20: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Lasers •  Laser  light  sources  use    one  and  only  one  interlevel  atomic  transi=on  to  produce  single  frequency  (“monochroma=c”)  light.  

4/20/10   20  Carlsmith  Physics  107  

Page 21: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Spontaneous  and  s=mulated  emission  

•  An  electron  in  an  excited  state  spontaneously  radiates  a  photon  and  jumps  to  a  lower  energy  state  in  a  =me  typically  of  order  1  ns  

•  The  presence  of  light  of  the  correct  frequency  can  =ckle  an  atom  to  emit  light  heading  in  the  same  direc=on.  This  is  called  s=mulated  emission.  

4/23/10   Carlsmith  Physics  107   21  

Page 22: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Light Amplification by Stimulated Emission

•  Excite  atoms  by  electron  bombardment  or  a  light  source.  Use  mirrors  to  contain  light  of  a  certain  direc=on.  Exponen=al  growth  of  s=mulated  emission  yields  a  preponderance  of  light  of  that  direc=on.  Let  it  leak  out  of  a  mirror  to  form  the  beam.  

4/20/10   22  Carlsmith  Physics  107  

Page 23: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Laser  guts  

•  Solid  and  gases  work.  •  Excita=on  by  flash  lamp  or  collisions  

4/23/10   Carlsmith  Physics  107   23  

Page 24: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

The  mystery  of  waves  and  par=cles  

•  A  wave  pulse  (or  packet)  is  a  localized  moving  wave,  somehwat  par=cle  like.  

•  It  can  be  understood  as  a  superposi=on  of  harmonic  waves.  

4/24/10   Carlsmith  Physics  107   24  

Page 25: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Construc=ng  a  packet  

4/24/10   Carlsmith  Physics  107   25  

440 Hz + 439 Hz

440 Hz + 439 Hz + 438 Hz

440 Hz + 439 Hz + 438 Hz + 437 Hz + 436 Hz

Page 26: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

The  components  of  a  packet  •  A  general  wave  packet  is  a  superposi=on  of  harmonic  waves  with  a  range  of  wavelengths  or  “wave  vectors”  k=1/lambda  =  p/h.  A  par=cle  associated  with  a  packet  has  a  corresponding  range  of  momenta.  

4/24/10   Carlsmith  Physics  107   26  

Page 27: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Uncertainty principle

4/24/10   27  Carlsmith  Physics  107  

A  single  wavelength  wave  is  infinitely  distributed  throughout  space.  A  localized  wave  pulse  has  some  width  dx  in  space  and  a  range  dk  of  wave  vectors  with  non  vanishing  amplitude.  These  are  inversely  related:  

Ma#er  waves:  A  par=cle  of  sharp  momentum  p  is  spread  throughout  space.  A  par=cle  localized  to  a  region  dx  has  a  momentum  uncertainty  of    

Page 28: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Lesson  from  free  par=cle  wave  packets  

•  The  proper=es  of  a  par=cle-­‐wave  are  changeable  and  blurred.  

•  A  quantum  par=cle  can  not  simultaneously  have  a  well  defined  posi=on  and  momentum.  

•  If  we  force  it  to  be  localized  (dx~0),  its  wave  will  have  a  large  range  of  momenta,  and  the  wave  will  subsequently  rapidly  disperse.  

•  If  the  force  it  to  have  a  sharp  momentum/wavelength,  is  must  be  spread  throughout  space.  

4/24/10   Carlsmith  Physics  107   28  

Page 29: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Heisenberg  uncertainty  principle  

4/24/10   Carlsmith  Physics  107   29  

Consider  a  prototypical  experiment  in  which  light  is  used  to  “see”  an  electron  with  minimal  disturbance.  

Suppose  for  simplicity  unit  magnifica=on  with  a  single  lens  as  in  the  eye.  Let  f=  focal  length,  D=  lens  diameter.  

Page 30: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Analysis  

4/24/10   Carlsmith  Physics  107   30  

Because  light  is  a  wave,  diffrac=on  implies  an  image  size  (f=focal  length,  D=  lens  diameter)  

Individual  photons  have  momentum  in  a  range  intercepted  by  the  lens  or  

In  the  single  quantum  sca#ering,  the  photons  transfer  this  uncertain  momentum  to  the  electron  and  so..  

Page 31: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Interpreta=on  

•  In  so  far  as  all  ma#er  and  light  has  the  dual  wave/par=cle  character,  a  measurement  that  determines  the  posi=on  of  a  par=cle  to  within  a  range  dx  necessarily  implies  it  imparts  an  uncertainty  in  momentum  dp=h/dx.    

•  No  par=cle  has  simultaneously  a  unique  posi=on  and  momentum.  

4/24/10   Carlsmith  Physics  107   31  

Page 32: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Two  slit  experiment  

•  At  low  beam  intensity,  one  observes  the  quantum  nature  of  ma#er  and  light  -­‐  single  par=cle  events  assembling  randomly  to  form  the  wave  interference  pa#ern.  

4/24/10   Carlsmith  Physics  107   32  

Page 33: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Two  slits  versus  one  

•  If  one  slit  or  the  other  is  blocked,  one  observes  a  single  slit  diffrac=on  pa#ern.  With  both  slits  open,  the  pa#ern  is  NOT  the  sum.  Instead  a  two  slit  interference  pa#ern  with  nega=ve  inteference  at  some  points.  

4/24/10   Carlsmith  Physics  107   33  

Page 34: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

The  weirdness  of  interference  again  

•  Star=ng  from  one  slit  open,  opening  the  other  yields  at  some  angles  no  par=cles  where  there  were  some  previously  (destruc=ve  interference)  and  more  than  double  the  number  at  other  angles  (construc=ve  interference).  

4/24/10   Carlsmith  Physics  107   34  

Page 35: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Outsmar=ng  two  slits  

•  It  seems  a  par=cle  explore  both  slits  simultaneously.  Suppose  we  place  some  electrons  behind  one  slit  to  see  which  slit  each  par=cle  is  going  through.  

4/24/10   Carlsmith  Physics  107   35  

Page 36: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

We  are  outsmarted  

•  The  target  par=cles  must  have  some  dy<<D  and  by  the  uncertainty  principle  some  momentum  dpy~h/dy>>h/D  

•  This  momentum  uncertainty  will  be  transferred  to  the  beam  par=cles  and  will  wash  out  the  interference  pa#ern!  

4/24/10   Carlsmith  Physics  107   36  

This  experiment  is  different  and  gives  different  results!  The  uncertainty  principle  s=ll  rules!  

Page 37: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Lesson  

•  It  is  not  possible  to  establish  that  a  par=cle  follows  a  trajectory  in  the  classical  sense  except  within  the  limita=ons  prescribed  by  the  uncertainty  principle.  

4/24/10   Carlsmith  Physics  107   37  

If  you  can’t  observe  it  it  doesn’t  exist  -­‐  a  quantum  par=cle  does  not  have  a  trajectory.  

Page 38: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Tunneling  

•  Waves  bound  in  a  box  leak  out  beyond  the  region  classically  allowed  by  energy  conserva=on.  

4/24/10   Carlsmith  Physics  107   38  

Page 39: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

More  tunneling  

•  Upon  encountering  a  poten=al  energy  barrier,  waves  are  in  part  reflected  and  in  part  transmi#ed.  The  wave  “tunnels”  through  the  barrier.  

4/24/10   Carlsmith  Physics  107   39  

Page 40: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Two  places  at  once  •  An  electron  associated  with  a  wave  packet  is  already  in  many  places  at  once,  partly  delocalized.  

•  The  par=al  reflec=on  and  par=al  transmission  of  a  packet  make  being  in  two  places  at  once  painfully  obvious.  

4/25/10   Carlsmith  Physics  107   40  

Page 41: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Tunneling  between  conductors  •  The  space  between  two  conductors  forms  a  poten=al  barrier.  As  they  approach  one  another,  tunneling  gives  an  exponen=al  increase  in  current.  

•  =>  The  onset  of  conduc=on  is  exponen=ally  sensi=ve  to  the  separa=on.  

4/24/10   Carlsmith  Physics  107   41  

Page 42: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Scanning  tunnel  microscope  

4/24/10   Carlsmith  Physics  107   42  

Page 43: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

STM  images  of  atoms  on  surfaces  

4/24/10   Carlsmith  Physics  107   43  

Page 44: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Atomic  scale  manipula=on  

•  A  probe  =p  may  be  used  to  place  atoms,  to  write  your  name  in  atoms!    

•  The  Kanji  characters  for  "atom."  The  literal  transla=on  is  something  like  "original  child.”  

4/24/10   Carlsmith  Physics  107   44  

Page 45: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Nanotechnology  Center  

4/24/10   Carlsmith  Physics  107   45  

Page 46: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Nanoscale  Science  and  Engineering  Center  

4/24/10   Carlsmith  Physics  107   46  

Page 47: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Nanophysics  

4/24/10   Carlsmith  Physics  107   47  

Page 48: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Promises,  promises  

•  If  I  were  asked  for  an  area  of  science  and  engineering  that  will  most  likely  produce  the  breakthroughs  of  tomorrow,  I  would  point  to  nanoscale  science  and  engineering.  

•  -­‐Neal  Lane,  Assistant  to  the  President  for  Science  and  Technology  

4/24/10   Carlsmith  Physics  107   48  

Page 49: Chapter 11 Quantum Physics · 2010-04-25 · Wave&aspectof&light • Lightpassing& through&two&slits& displays&awave;like& interferencepaern 4/20/10 Carlsmith&Physics&107& 2

Where  can  this  technology  go?  

4/24/10   Carlsmith  Physics  107   49  

Richard  Feynman  

“There  is  plenty  of  room  at  the  bo#om!”  

h#p://www.its.caltech.edu/~feynman/plenty.html  

BTW,  Feynman  is  also  remembered  for  saying  “I  think  I  can  safely  say  that  nobody  understands  Quantum  Mechanics."