chapter 12 gaussian elimination (ii)

39
Chapter 12 Gaussian Elimination (II) Speaker: Lung-Sheng Chien Reference book: David Kincaid, Numerical Analysis Reference lecture note: Wen-wei Lin, chapter 2, matrix computati on http://math.ntnu.edu.tw/~min/matrix_computation.html

Upload: madra

Post on 07-Feb-2016

56 views

Category:

Documents


0 download

DESCRIPTION

Chapter 12 Gaussian Elimination (II). Speaker: Lung-Sheng Chien. Reference book: David Kincaid, Numerical Analysis Reference lecture note: Wen-wei Lin, chapter 2, matrix computation http://math.ntnu.edu.tw/~min/matrix_computation.html. OutLine. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 12   Gaussian Elimination (II)

Chapter 12 Gaussian Elimination (II)

Speaker: Lung-Sheng Chien

Reference book: David Kincaid, Numerical Analysis

Reference lecture note: Wen-wei Lin, chapter 2, matrix computation

http://math.ntnu.edu.tw/~min/matrix_computation.html

Page 2: Chapter 12   Gaussian Elimination (II)

OutLine

• Weakness of A=LU- erroneous judgment: A is invertible but A=LU does not exist- unstable, A is far from LU

• A=LU versus PA=LU• Pivoting strategy• Implementation of PA=LU• MATLAB usage

Page 3: Chapter 12   Gaussian Elimination (II)

Fail of LU: singular of leading principal minor

1

2

0 1 11 1 2

xx

10

0 1 1 0 0 11 1 1 0 ?

A

11 0, cannot continuea LU

Question: How about interchanging row 1 and row 2?

1

2

0 1 11 1 2

xP P

x

2,1P

1

2

1 1 20 1 1

xx

1 10 1

U

1 00 1

L

1

2

11

xx

and

Page 4: Chapter 12   Gaussian Elimination (II)

unstable of LU: near singular of leading principal minor [1]

1

2

1 11 1 2

xx

1 02 2

2

1 1 11

1 2 1 1x

O Ox

0

1

2

0 1 11 1 2

xx

1

2

11

xx

0 ?

Theoretical:

Numerical: 1 0 111 11 1 1 0 1

A

if 0 then 21 22, L U

Problem: for double-precision, we only have 16 digit-accuracy, we cannot accept

1

2

1 1 1 11 11 2 1 21 1

xx

, why?

Page 5: Chapter 12   Gaussian Elimination (II)

1

2

12

xAx

1

2

1 1 0 111 1 120 1 1 2

xx

1 1

2

12

xU Lx

backward substitution 2

1 11 2x

02

2 1/ 11 1/

x

step 1:

step 2: 1 2 1x x 21

1 0xx

22

2 1/ 1/ 1 2 11 1/ 1/ 1

x O

Question: why not

01 1/ 1/ due to rounding error02 1/ 1/ due to rounding error

unstable of LU: near singular of leading principal minor [2]

Page 6: Chapter 12   Gaussian Elimination (II)

Case 1: 1410 Case 2: 1810

unstable of LU: near singular of leading principal minor [3]

wrong solution

Page 7: Chapter 12   Gaussian Elimination (II)

Question: How about interchanging row 1 and row 2?

1

2

1 1 21 1

xx

1 1 1 0 1 11 1 0 1

A

LU-factorization

1

2

1 1 1 0 2 20 1 1 1 1 2

xx

1

2

12

xAx

1 1

2

12

xU Lx

backward substitution 21 1 2x 0

21 2 11

x

step 1:

step 2: 1 2 2x x 1 22 1x x

unstable of LU: near singular of leading principal minor [4]

Key observation:

without pivoting

02

2 1/ 11 1/

x

(rounding normal number)

pivoting

02

1 2 11

x

(rounding error does not occur for normal number)

Page 8: Chapter 12   Gaussian Elimination (II)

Case 1: 1410 Case 2: 1810

unstable of LU: near singular of leading principal minor [5]

Why not 1?

Page 9: Chapter 12   Gaussian Elimination (II)

1 ,max iji j n

A A

1810 without pivoting pivoting 1810

1610L U

1L U

(NOT stable)

(stable)

Objective: control growth rate of ,L U control multiplier

unstable of LU: cause and controllability

define largest component of matrix A

Page 10: Chapter 12   Gaussian Elimination (II)

OutLine

• Weakness of A=LU• A=LU versus PA=LU

- controllability of lower triangle matrix L

• Pivoting strategy• Implementation of PA=LU• MATLAB usage

Page 11: Chapter 12   Gaussian Elimination (II)

6 -2 2 4

12 -8 6 10

3 -13 9 3

-6 4 1 -18

121 36

6

6 -2 2 4

0 -4 2 2

0 -12 8 1

0 2 3 -14

1

2 1

0.5 1

-1 1

1L 2A

12,1 2 1L since 1

11 6A is not maximum among 1: 4,1A

6 -2 2 4

0 -4 2 2

0 -12 8 1

0 2 3 -14

12124

1

1

3 1

-0.5 1

2L

6 -2 2 4

0 -4 2 2

0 0 2 -5

0 0 4 -13

3A 2A

1A A

23,2 3 1L since 2

22 4A is not maximum among 2 2 : 4,2A

Recall LU example in chapter 11 [1]

Page 12: Chapter 12   Gaussian Elimination (II)

Recall LU example in chapter 11 [2]

6 -2 2 4

0 -4 2 2

0 0 2 -5

0 0 4 -13

3A

42

1

1

1

2 1

3L

6 -2 2 4

0 -4 2 2

0 0 2 -5

0 0 0 -3

4A

34,3 2 1L since 3

33 2A is not maximum among 3 3: 4,3A

6 -2 2 4

12 -8 6 10

3 -13 9 3

-6 4 1 -18

A

1

2 1

0.5 3 1

-1 -0.5 2 1

L

6 -2 2 4

-4 2 2

2 -5

-3

U

18A 3L

6U

Question: How can we control L , is uniform bound possible?

Page 13: Chapter 12   Gaussian Elimination (II)

6 2 2 412 8 6 103 13 9 36 4 1 18

A

2

3

4

1

2,3, 4,1

T

T

T

T

ee

Pee

PA = LU in MATLAB

12 8 6 103 13 9 36 4 1 18

6 2 2 4

PA

Page 14: Chapter 12   Gaussian Elimination (II)

12 -8 6 10

3 -13 9 3

-6 4 1 -18

6 -2 2 4

31 6

126

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 2 -1 -1

1

0.25 1

-0.5 1

0.5 1

1L 2A

1 2 : 4,1 1L

since 111 12A is maximum among 1 1: 4,1A

1PA A

PA = LU: assume P is given [1]

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 2 -1 -1

2A

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 4/11 -10/11

1

1

0 1

-2/11 1

2L 3A

01211

2 3: 4,2 1L

since 222 11A is maximum among 2 2 : 4,2A

Page 15: Chapter 12   Gaussian Elimination (II)

PA = LU: assume P is given [2]

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 0 3/11

4A

1 44 11

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 4/11 -10/11

3A1

1

1

1/11 1

3L

3 1 111

L since 333 4A is maximum among 3 3: 4,3A

PA L U

12 -8 6 10

3 -13 9 3

-6 4 1 -18

6 -2 2 4

1

0.25 1

-0.5 0 1

0.5 -2/11 1/11 1

12 -8 6 10

-11 7.5 0.5

4 -13

3/11

18A 0.5 1L

13U

Observation: though proper permutation, we can control 1L

Question: in fact, we cannot know permutation matrix in advance, how can we do?

Page 16: Chapter 12   Gaussian Elimination (II)

1 1 111 12 1

1 1 11 21 22 2

1 1 11 2

n

n

n n nn

a a a

a a aA A

a a a

1 1 1 111 12 13 1

2 2 222 23 2

2 2 2 232 33 3

2 2 22 3

0

0

0

n

n

n

n n nn

a a a a

a a aA a a a

a a a

1 2A L A

1 2 1k kA L L L A

1 111 1

1 11, 1 1,

, ,

0

0

0 0

n

k kk k k k n

k kk k k n

k knk nn

a a

a aA

a a

a a

Sequence of matrices during LU-decomposition

1 2 1 10

kL L LI

k row

k col

Page 17: Chapter 12   Gaussian Elimination (II)

OutLine

• Weakness of A=LU• A=LU versus PA=LU• Pivoting strategy

- partial pivoting (we adopt this formulation)- complete pivoting

• Implementation of PA=LU• MATLAB usage

Page 18: Chapter 12   Gaussian Elimination (II)

max : ,k kpkA A k n k , 1, ,p k k n (1) find a such that

(2) swap row ,1:kA k n and row ,1:kA p n

Partial pivoting and complete pivoting

PA LUthen with 1L

Partial pivoting

max : , :k kpqA A k n k n , , 1, ,p q k k n (1) find a such that

(2) swap row ,1:kA k n and row ,1:kA p n

PA LU then with 1L

(2) swap column 1: ,kA n k and column 1: ,kA n q

complete pivoting

Page 19: Chapter 12   Gaussian Elimination (II)

1

3

2

1 0 01,3,2 0 0 1

0 1 0

T

T

T

eP e

e

Define permutation matrix

1 1 1

3 3 3

2 2 2

T T

T T

T T

e e x xPx e x e x x

e e x x

Recall permutation matrix

1 2 37 8 94 5 6

PA

1 2 34 5 67 8 9

A

interchange row 2, 3

1

3 1 3 2

2

T

TT T

xx P Px x x x x

x

1 3 24 6 57 9 8

TAP

interchange column 2, 3

Let

1 2 3

4 5 6

7 8 9

interchange

row 2, 3

1 2 3

7 8 9

4 5 6

interchange

column 2, 3

1 3 27 9 84 6 5

A PA TPA PSymmetric permutation:

TA PAP

Page 20: Chapter 12   Gaussian Elimination (II)

x1

x2 x3

1

2 3

4

56

7

89

Meaning of matrix coefficient

ijA relationship between node and node i j3

1

:ij j ij

A x b

constraint on node i

node is named

1,3,2P

x1

x3 x2

1

2 3

4

56

7

89

i ix

change node 2 to node 3 and node 3 to node 2

write constraint for now node index

1 3 27 9 84 6 5

x1

x1

x2

x3

x2 x3

1 2 3

4 5 6

7 8 9

x1 x2 x3

x1

x2

x3

Page 21: Chapter 12   Gaussian Elimination (II)

Identity matrix is invariant under symmetric permutation

x1

x2 x3

1

1

1

1

1

1

x1

x1

x2

x3

x2 x3

1,3,2P change node 2 to node 3 and node 3 to node 2

x1

x3 x2

1

1

1

1

1

x1

x1

x2

x3

x2 x31

Page 22: Chapter 12   Gaussian Elimination (II)

PA = LU: partial pivoting [1]

6 -2 2 4

12 -8 6 10

3 -13 9 3

-6 4 1 -18

1A A

1 121 max 1: 4,1A A

1 2,1,3, 4P

12 -8 6 10

6 -2 2 4

3 -13 9 3

-6 4 1 -18

1 11PA A

12 -8 6 10

6 -2 2 4

3 -13 9 3

-6 4 1 -18

1A

61 3

126

1

0.5 1

0.25 1

-0.5 1

1L

12 -8 6 10

0 2 -1 -1

0 -11 7.5 0.5

0 0 4 -13

2A

12 -8 6 10

0 2 -1 -1

0 -11 7.5 0.5

0 0 4 -13

2A

2 232 max 2 : 4,2A A

2 1,3, 2, 4P

12 -8 6 10

0 -11 7.5 0.5

0 2 -1 -1

0 0 4 -13

2 22P A A

Page 23: Chapter 12   Gaussian Elimination (II)

PA = LU: partial pivoting [2]

1 1 2 1 2 1 2 1 21 2 2 2 2 2

T T TPA A L A L P P A L P P A L P A

1 2 1 22 1 2 2

TP PA P L P A L A 2 1 1,3,2, 4 2,1,3, 4 2,3,1,4P P where

1

0.5 1

0.25 1

-0.5 1

1L

2 1,3,2,4P

12TL P

Interchange columns 2, 3

1

0.5 1

0.25 1

-0.5 1

12TL P

12 2

TP L P

Interchange rows 2, 3

1

0.25 1

0.5 1

-0.5 1

12 2

TP L P

12 -8 6 10

3 -13 9 3

6 -2 2 4

-6 4 1 -18

2 1P PA

1

0.25 1

0.5 1

-0.5 1

1L

12 -8 6 10

0 -11 7.5 0.5

0 2 -1 -1

0 0 4 -13

2A

verify

Page 24: Chapter 12   Gaussian Elimination (II)

PA = LU: partial pivoting [3]

12 -8 6 10

0 -11 7.5 0.5

0 2 -1 -1

0 0 4 -13

2A

1

1

-2/11 1

0 1

2L

21011

12 -8 6 10

0 -11 7.5 0.5

0 0 4/11 -10/11

0 0 4 -13

3A

12 -8 6 10

0 -11 7.5 0.5

0 0 4/11 -10/11

0 0 4 -13

3A

3 343 max 3: 4,3A A

3 1,2,4,3P

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 4/11 -10/11

3 33P A A

1 2 1 2 3 1 2 3 1 2 3 1 2 32 1 3 3 3 3 3

T T TP PA L A L L A L L P P A L L P P A L L P A

1 2 3 2 33 2 1 3 3

TPP PA P L L P A L A 3 2 1 1,2,4,3 2,3,1,4 2,3,4,1P P P where

Page 25: Chapter 12   Gaussian Elimination (II)

1

0.25 1

0.5 -2/11 1

-0.5 1

1 2L L

3 1, 2,4,3P

1 23TL L P

Interchange columns 3,4

1

0.25 1

0.5 -2/11 1

-0.5 0 1

1 23TL L P

1 23 3

TP L L P

Interchange rows 3.4

1

0.25 1

-0.5 0 1

0.5 -2/11 1

1 23 3

TP L L P

PA = LU: partial pivoting [4]

12 -8 6 10

3 -13 9 3

-6 4 1 -18

6 -2 2 4

3 2 1PP PA

1

0.25 1

-0.5 0 1

0.5 -2/11 1

2L

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 4/11 -10/11

3A

verify

Page 26: Chapter 12   Gaussian Elimination (II)

PA = LU: partial pivoting [5]

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 4/11 -10/11

3A

1

1

1

1/11 1

3L

1 44 11

12 -8 6 10

0 -11 7.5 0.5

0 0 4 -13

0 0 0 3/11

4A

2 3 2 3 43 2 1PP PA L A L L A

3 2 1 2,3, 4,1P PP P where

PA LU

2 3L L L

1

0.25 1

-0.5 0 1

0.5 -2/11 1/11 1

4U A

12 -8 6 10

-11 7.5 0.5

4 -13

3/11

we have

0.5 1L

Page 27: Chapter 12   Gaussian Elimination (II)

OutLine

• Weakness of A=LU• A=LU versus PA=LU• Pivoting strategy• Implementation of PA=LU

- commutability of GE matrix and permutation- recursive formula

• MATLAB usage

Page 28: Chapter 12   Gaussian Elimination (II)

1 2 1 22 1 2 2

TP PA P L P A L A

1

0.5 1

0.25 1

-0.5 1

1L

2 1, 3, 2, 4P Interchange rows and columns 2, 3

1L

1

0.25 1

0.5 1

-0.5 1

12 2

TP L P

1 2 3 2 33 2 1 3 3

TPP PA P L L P A L A

1

0.25 1

0.5 -2/11 1

-0.5 1

1 2L L

3 1,2, 4,3P

1 23 3

TP L L P

Interchange rows and columns 3, 4

1

0.25 1

-0.5 0 1

0.5 -2/11 1

2L

Implementation issue: commutability of GE matrix and permutation [1]

1 12 2P L L P

1 2 22 2P L L L P

Page 29: Chapter 12   Gaussian Elimination (II)

Implementation issue: commutability of GE matrix and permutation [2]

2 1 2 1 1k k k k kTk kL L P L L P L Observation: If we define 0L I , then

where

2 1k k W OL L

M I

1k

1k 1 1

1

1

k kW R

1,2, 1, , 1, , 1, , 1, ,kP k p k p k p n interchanges rows or columns

,k p 1,2,3, ,p k

,k p

11

1

1

11

1k

1k

k

p

k p

and

11

1

11

1

2 1k k Tk kP L L P

interchange

k th p th

Page 30: Chapter 12   Gaussian Elimination (II)

Implementation issue: commutability of GE matrix and permutation [3]

11

1

1

11

1k

1k

k

p

k p

11

1

1

11

partial rows (k and p)

interchange

11

1

1

11

symmetric permutation on an Identity matrix

Page 31: Chapter 12   Gaussian Elimination (II)

1: 1k n

we have compute 1 2 1 ,k k k kP A L L A 11 2 2 1

kk kP P P P P

1 111 1

1 11, 1 1,

, ,

0

0

0 0

n

k kk k k k n

k kk k k n

k knk nn

a a

a aA

a a

a a

update original matrix A

2 1k k W OL L

M I

1k

1k stores in lower triangle matrix L

Algorithm ( PA = LU ) [1]

Given full matrix n nA R , construct initial lower triangle matrix L I

for

use permutation vector P to record permutation matrix kP

let 1 :A A , 1 0L L I 0 1,2,3, ,P n and

Page 32: Chapter 12   Gaussian Elimination (II)

1, 2, 1, , 1, , 1, , 1, ,kP k p k p k p n k k

kA P A

Algorithm ( PA = LU ) [2]

define permutation matrix

then after swapping rows ,k p , we have

00

k TA dc B

k row

k col

max c

compute 1k kkP P P

compute 1 2 1k k k Tk kL P L L P by swapping ,1: 1L k k and ,1: 1L p k

then 1 2 1k k k kP A L L A 1k k kP A L A

for 0 1, 2,3, ,P n

if 1k then

endif

swap row , :kA k k n and row , :kA p k n

max : ,k kpkA A k n k , 1, ,p k k n find a such that1

2

3

4

Page 33: Chapter 12   Gaussian Elimination (II)

Algorithm ( PA = LU ) [3]

endfor

1 0 , 0 0

Tk T cdA d B B

B

0 10 /

k

IL

c I

k row

k col

by updating 1: , /L k n k c

by updating matrix 1: , 1:TcdA k n k n

then 1 2 1k k k kP A L L A 1 1k k k kP A L L A

decompose 1k k kA L A where5

(recursion is done)

Page 34: Chapter 12   Gaussian Elimination (II)

Question: recursion implementation

• Initialization- check algorithm holds for k=1

• Recursion formula- check algorithm holds for k, if k-1 is true

• Termination condition- check algorithm holds for k=n

• Breakdown of algorithm- check which condition PA=LU fails

• Exception: algorithm works only for square matrix?

normal

abnormal

Extension of algorithm

Page 35: Chapter 12   Gaussian Elimination (II)

n

n n n

n n1 2 3 1 1 2 34 5 6 4 1 3 67 8 9 7 2 1 0

A

m

m m m

m m

p p

1 2 3 4 5 1 1 2 3 4 56 7 8 9 10 6 1 5 10 15 201 19 13 14 17 1 3.4 1 24 41 56

A

Exception: algorithm works only for square matrix? [1]

m nCase 1:

n m p m Case 2:

Page 36: Chapter 12   Gaussian Elimination (II)

n

n

p

n

n

p I

O

n

n

O p

pm n p n Case 3:

Exception: algorithm works only for square matrix? [2]

1 6 1 1 1 6 12 7 19 2 1 5 173 8 13 3 2 1 244 9 14 4 3 1.7 15 10 17 5 4 2.3 1

A

B L O U LU LA U

C M I O MU M

we can simplify it as

Question: what is termination condition of case 3 ?

Page 37: Chapter 12   Gaussian Elimination (II)

OutLine

• Weakness of A=LU• A=LU versus PA=LU• Pivoting strategy• Implementation of PA=LU• MATLAB usage

- abs- max

Page 38: Chapter 12   Gaussian Elimination (II)

max : ,k kpkA A k n k

Command “abs”: take absolute value

In PA=LU algorithm, we need to take absolute value of one

column vector for pivoting

abs also works for matrix

Page 39: Chapter 12   Gaussian Elimination (II)

Command “max”: take maximum value

5 3 max 1: 3A A

3 1 max 1: 3A A