chapter 12: phase transformations - cheric transformation c fcc fe3c (cementite) ... solidification:...

36
Chapter 12 - AMSE 205 Spring ‘2016 1 ISSUES TO ADDRESS... Transforming one phase into another takes time. How does the rate of transformation depend on time and temperature ? Is it possible to slow down transformations so that non-equilibrium structures are formed? Are the mechanical properties of non-equilibrium structures more desirable than equilibrium ones? Fe γ (Austenite) Eutectoid transformation C FCC Fe 3 C (cementite) α (ferrite) + (BCC) Chapter 12: Phase Transformations

Upload: buiphuc

Post on 29-Apr-2018

250 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 1

ISSUES TO ADDRESS...• Transforming one phase into another takes time.

• How does the rate of transformation depend ontime and temperature ?

• Is it possible to slow down transformations so that non-equilibrium structures are formed?

• Are the mechanical properties of non-equilibriumstructures more desirable than equilibrium ones?

Feγ

(Austenite)

Eutectoid transformation

C FCC

Fe3C(cementite)

α(ferrite)

+(BCC)

Chapter 12: Phase Transformations

Page 2: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 2

Phase TransformationsNucleation

– nuclei (seeds) act as templates on which crystals grow– for nucleus to form rate of addition of atoms to nucleus must be

faster than rate of loss– once nucleated, growth proceeds until equilibrium is attained

Driving force to nucleate increases as we increase ΔT– supercooling (eutectic, eutectoid)– superheating (peritectic)

Small supercooling slow nucleation rate - few nuclei - large crystals

Large supercooling rapid nucleation rate - many nuclei - small crystals

Page 3: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 3

Solidification: Nucleation Types

• Homogeneous nucleation– nuclei form in the bulk of liquid metal– requires considerable supercooling

(typically 80-300 °C)

• Heterogeneous nucleation– much easier since stable “nucleating surface” is

already present — e.g., mold wall, impurities in liquid phase

– only very slight supercooling (0.1-10 °C)

Page 4: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 4

r* = critical nucleus: for r < r* nuclei shrink; for r > r* nuclei grow (to reduce energy) Adapted from Fig.12.2(b), Callister & Rethwisch 9e.

Homogeneous Nucleation & Energy Effects

ΔGT = Total Free Energy= ΔGS + ΔGV

Surface Free Energy- destabilizes the nuclei (it takes energy to make an interface)

γ = surface tension

Volume (Bulk) Free Energy –stabilizes the nuclei (releases energy)

Page 5: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 5

2v

3*

v

*

2v

3

G316G

G2r

0r4dr1Gr

34

dr1

drGd

22v

2m

3

2v

3*

v

m

v

*

m

v

m

mv

m

vvvvv

TH3T16

G316G

THT2

G2r

TTH

TTTH

THTHSTHG

Page 6: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 6

Solidification

Note: ΔHf and γ are weakly dependent on ΔT

r* decreases as ΔT increases

For typical ΔT r* ~ 10 nm

ΔHf = latent heat of solidificationTm = melting temperatureγ = surface free energy

ΔT = Tm - T = supercooling

r* = critical radius

Page 7: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 7

22

23

2

3*

3

16

3

16

TH

T

GG

v

m

v

THT2

G2r

v

m

v

*

Page 8: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016

Nucleation Kinetics

8

d

Page 9: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 9

Heterogeneous Nucleation

)(SGG

G316G

G2r

cos

*ohom

*hetero

2v

3SL*

hetero

V

SL*

SLSIIL

Page 10: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 10

Rate of Phase Transformations

Kinetics - study of reaction rates of phase transformations

• To determine reaction rate – measure degree of transformation as function of time (while holding temp constant)

measure propagation of sound waves –on single specimen

electrical conductivity measurements –on single specimen

X-ray diffraction – many specimens requiredHow is degree of transformation measured?

Page 11: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 11

Rate of Phase Transformation

Jonson-Mehl-Avrami (JMA) equation => x = 1- exp (-kt n)K: reaction rate constantn : Avrami exponent

transformation complete

log tFrac

tion

trans

form

ed, x

Fixed T

fraction transformed

time

0.5

By convention rate = 1 / t0.5

Fig. 12.10, Callister & Rethwisch 9e.

maximum rate reached – now amount unconverted decreases so rate slows

t0.5

rate increases as interfacial surface areaincreases & nuclei grow

Page 12: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 12

Rate of Phase TransformationThe kinetics of recrystallization for some alloys obey the JMA equation and the Avrami exponent, n, is 3.1. If the fraction of recrystallized is 0.3after 20 min, determine the rate of recrystallization.

Page 13: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 13

Temperature Dependence of Transformation Rate

• For the recrystallization of Cu, sincerate = 1/t0.5

rate increases with increasing temperature

• Rate often so slow that attainment of equilibrium state not possible!

Fig. 12.11, Callister & Rethwisch 9e.(Reprinted with permission from Metallurgical Transactions, Vol. 188, 1950, a publication of The Metallurgical Society of AIME, Warrendale, PA. Adapted from B. F. Decker and D. Harker, “Recrystallization in Rolled Copper,” Trans. AIME, 188, 1950, p. 888.)

135C 119C 113C 102C 88C 43C

1 10 102 104

Page 14: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 14

Transformations & Undercooling

• For transf. to occur, must cool to below 727 oC (i.e., must “undercool”)

• Eutectoid transf. (Fe-Fe3C system): γ α + Fe3C0.76 wt% C

0.022 wt% C6.7 wt% C

Fe3C

(cem

entit

e)

1600

1400

1200

1000

800

600

4000 1 2 3 4 5 6 6.7

L

γ(austenite)

γ+L

γ+Fe3C

α+Fe3C

L+Fe3C

δ

(Fe) C, wt%C

1148°C

T(°C)

αferrite

727°C

Eutectoid:Equil. Cooling: Ttransf. = 727°CΔTUndercooling by Ttransf. < 727°C

0.76

0.02

2Fig. 11.23, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

Page 15: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 15

The Fe-Fe3C Eutectoid Transformation

Coarse pearlite formed at higher temperatures – relatively softFine pearlite formed at lower temperatures – relatively hard

• Transformation of austenite to pearlite:

Adapted from Fig. 11.14, Callister & Rethwisch 9e.

γαααα

α

α

pearlite growth direction

Austenite (γ)grain boundary

cementite (Fe3C)Ferrite (α)

γ

• For this transformation,rate increases with [Teutectoid – T ] (i.e., ΔT). Adapted from

Fig. 12.12, Callister & Rethwisch 9e.

675°C (ΔT smaller)

0

50y

(% p

earli

te)

600°C (ΔT larger)

650°C

100

Diffusion of C during transformation

α

αγ γ

αCarbon diffusion

Page 16: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 16

Fig. 12.13, Callister & Rethwisch 9e.[Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Generation of Isothermal Transformation Diagrams

• The Fe-Fe3C system, for C0 = 0.76 wt% C• A transformation temperature of 675 ºC.

100

50

01 102 104

T = 675°C

y,

% tr

ansf

orm

ed

time (s)

400

500

600

700

1 10 102 103 104 105

Austenite (stable) TE (727 oC)Austenite (unstable)

Pearlite

T(°C)

time (s)

isothermal transformation at 675°C

Consider:

Page 17: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 17

• Eutectoid composition, C0 = 0.76 wt% C• Begin at T > 727°C• Rapidly cool to 625 oC• Hold T (625 oC) constant (isothermal treatment)

Fig. 12.14, Callister & Rethwisch 9e.[Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Austenite-to-Pearlite Isothermal Transformation

400

500

600

700

Austenite (stable) TE (727 oC)Austenite (unstable)

Pearlite

T(ºC)

1 10 102 103 104 105

time (s)

γ γ

γγ γ

γ

Page 18: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016

Fig. 11.23, Callister & Rethwisch 9e. [Adapted from Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski (Editor-in-Chief), 1990. Reprinted by permission of ASM International, Materials Park, OH.]

18

Transformations Involving Noneutectoid Compositions

Hypereutectoid composition – proeutectoid cementite

Consider C0 = 1.13 wt% C

a

TE (727°C)

T(oC)

time (s)

A

A

A+C

P

1 10 102 103 104

500

700

900

600

800

A+

P

Fig. 12.16, Callister & Rethwisch 9e. [Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Fe3C

(cem

entit

e)

1600

1400

1200

1000

800

600

4000 1 2 3 4 5 6 6.7

L

γ(austenite)

γ+L

γ+Fe3C

α+Fe3C

L+Fe3C

δ

(Fe) C, wt%C

T(oC)

727°C

0.76

0.02

2

1.13

Page 19: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 19

10 103 105

time (s)10-1

400

600

800

T(°C)Austenite (stable)

200

P

B

TEA

A

Bainite: Another Fe-Fe3C Transformation Product

• Bainite:-- elongated Fe3C particles in

α-ferrite matrix-- diffusion controlled

• Isothermal Transf. Diagram, C0 = 0.76 wt% C

Fig. 12.18, Callister & Rethwisch 9e. [Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Fig. 12.17, Callister & Rethwisch 9e. (From Metals Handbook, Vol. 8, 8th edition,Metallography, Structures and Phase Diagrams,1973. Reproduced by permission of ASMInternational, Materials Park, OH.)

Fe3C(cementite)

5 μm

α (ferrite)

100% bainite

100% pearlite

Page 20: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 20

• Spheroidite:-- Fe3C particles within an α-ferrite matrix-- formation requires diffusion-- heat bainite or pearlite at temperature

just below eutectoid for long times-- driving force – reduction

of α-ferrite/Fe3C interfacial area

Spheroidite: Another Microstructure for the Fe-Fe3C System

Fig. 12.19, Callister & Rethwisch 9e. (Copyright United States Steel Corporation, 1971.)

60 μm

α(ferrite)

(cementite)Fe3C

Page 21: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 21

• Martensite:-- γ(FCC) to Martensite (BCT)

Fig. 12.21, Callister & Rethwisch 9e. (Courtesy United States Steel Corporation.)

Adapted from Fig. 12.20, Callister & Rethwisch 9e.

Martensite: A Nonequilibrium Transformation Product

Martensite needlesAustenite

60 μ

m

현재 이이미지를 표시할 수없습니다 .

현재 이이미지를 표시할 수없습니다 .

xx x

xx

x potential C atom sites

Fe atom sites

Adapted from Fig. 12.22, Callister & Rethwisch 9e.

• Isothermal Transf. Diagram

• γ to martensite (M) transformation.-- is rapid! (diffusionless)-- % transformation depends only

on T to which rapidly cooled

10 103 105 time (s)10-1

400

600

800

T(°C)Austenite (stable)

200

P

B

TEA

A

M + AM + A

M + A

0%50%90%

Page 22: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 22

γ (FCC) α (BCC) + Fe3C

Martensite Formation

slow cooling

tempering

quench

M (BCT)

Martensite (M) – single phase – has body centered tetragonal (BCT)

crystal structure

Diffusionless transformation BCT if C0 > 0.15 wt% CBCT few slip planes hard, brittle

Page 23: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 23

Phase Transformations of AlloysEffect of adding other elements

Change transition temp.

Cr, Ni, Mo, Si, Mnretard γ α + Fe3C reaction (and formation of pearlite, bainite)

Fig. 12.23, Callister & Rethwisch 9e. [Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Page 24: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 24

Continuous Cooling Transformation Diagrams

Conversion of isothermal transformation diagram to continuous cooling transformation diagram

Cooling curve

Fig. 12.25, Callister & Rethwisch 9e. [Adapted from H. Boyer (Editor), Atlas of Isothermal Transformation and Cooling Transformation Diagrams, 1977. Reproduced by permission of ASM International, Materials Park, OH.]

Page 25: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 25

Isothermal Heat Treatment Example Problems

On the isothermal transformation diagram for a 0.45 wt% C, Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures:a) 42% proeutectoid ferrite and 58% coarse

pearliteb) 50% fine pearlite and 50% bainitec) 100% martensited) 50% martensite and 50% austenite

Page 26: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 26

Solution to Part (a) of Example Problem

a) 42% proeutectoid ferrite and 58% coarse pearlite

Isothermally treat at ~ 680°C

-- all austenite transforms to proeutectoid α and coarse pearlite.

A + B

A + P

A + αA

BP

A50%

0

200

400

600

800

0.1 10 103 105time (s)

M (start)M (50%)M (90%)

Fe-Fe3C phase diagram, for C0 = 0.45 wt% C

T (°C)

Figure 12.39, Callister & Rethwisch 9e.(Adapted from Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. Vander Voort, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Page 27: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 27

b) 50% fine pearlite and 50% bainite

Solution to Part (b) of Example Problem

T (ºC)

A + B

A + P

A + αA

BP

A50%

0

200

400

600

800

0.1 10 103 105time (s)

M (start)M (50%)M (90%)

Fe-Fe3C phase diagram, for C0 = 0.45 wt% C

Then isothermally treat at ~ 470°C

– all remaining austenite transforms to bainite.

Isothermally treat at ~ 590°C – 50% of austenite transforms

to fine pearlite.

Figure 12.39, Callister & Rethwisch 9e.(Adapted from Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. Vander Voort, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Page 28: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 28

Solutions to Parts (c) & (d) of Example Problem

c) 100% martensite – rapidly quench to room temperature

d) 50% martensite & 50% austenite

-- rapidly quench to ~ 290°C, hold at this temperature

T (°C)

A + B

A + P

A + αA

BP

A50%

0

200

400

600

800

0.1 10 103 105time (s)

M (start)M (50%)M (90%)

Fe-Fe3C phase diagram, for C0 = 0.45 wt% C

d)

c)Figure 12.39, Callister & Rethwisch 9e.(Adapted from Atlas of Time-Temperature Diagrams for Irons and Steels, G. F. Vander Voort, Editor, 1991. Reprinted by permission of ASM International, Materials Park, OH.)

Page 29: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 29

Mechanical Props: Influence of C Content

Fig. 11.29, Callister & Rethwisch 9e. (Courtesy of Republic Steel Corporation.)

• Increase C content: TS and YS increase, %EL decreases

C0 < 0.76 wt% CHypoeutectoid

Pearlite (med)ferrite (soft)

Fig. 11.32, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.)

C0 > 0.76 wt% CHypereutectoid

Pearlite (med)Cementite

(hard)

Fig. 12.29, Callister & Rethwisch 9e. [Data taken from Metals Handbook: Heat Treating, Vol. 4, 9th edition, V. Masseria (Managing Editor), 1981. Reproduced by permission of ASM International, Materials Park, OH.]

300

500

700

900

1100YS(MPa)TS(MPa)

wt% C0 0.5 1

hardness0.

76

Hypo Hyper

wt% C0 0.5 10

50

100%EL

Impa

ct e

nerg

y (Iz

od, f

t-lb)

0

40

80

0.76

Hypo Hyper

Page 30: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 30

Mechanical Props: Fine Pearlite vs. Coarse Pearlite vs. Spheroidite

Fig. 12.30, Callister & Rethwisch 9e. [Data taken from Metals Handbook: Heat Treating, Vol. 4, 9th edition, V. Masseria (Managing Editor), 1981. Reproduced by permission of ASM International, Materials Park, OH.]

• Hardness:• %RA:

fine > coarse > spheroiditefine < coarse < spheroidite

80

160

240

320

wt%C0 0.5 1

Brin

ell h

ardn

ess

fine pearlite

coarsepearlitespheroidite

Hypo Hyper

0

30

60

90

wt%C

Duc

tility

(%R

A)

fine pearlite

coarsepearlite

spheroidite

Hypo Hyper

0 0.5 1

Page 31: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 31

Mechanical Props: Fine Pearlite vs. Martensite

• Hardness: fine pearlite << martensite.

Page 32: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 32

Tempered Martensite• tempered martensite less brittle than martensite• tempering reduces internal stresses caused by quenching

Figure 12.33, Callister & Rethwisch 9e. (Copyright 1971 by United States Steel Corporation.)

• tempering decreases TS, YS but increases %RA• tempering produces extremely small Fe3C particles surrounded by α.

Fig. 12.34, Callister & Rethwisch 9e. (Adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, 1939. Reproduced by permission of ASM International, Materials Park, OH.)

9 μm

YS(MPa)TS(MPa)

800

1000

1200

1400

1600

1800

30405060

200 400 600Tempering T (°C)

%RA

TS

YS

%RA

Heat treat martensite to form tempered martensite

Page 33: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 33

Shape Memory AlloyNitinol: (Ni-Ti Naval Ordnance Laboratory)

Page 34: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016

Shape Memory Effect

Page 35: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016

Pseudo Elasticity (Super Elasticity)

Page 36: Chapter 12: Phase Transformations - CHERIC transformation C FCC Fe3C (cementite) ... Solidification: Nucleation Types • Homogeneous nucleation –nuclei form in the bulk of liquid

Chapter 12 -AMSE 205 Spring ‘2016 36

Summary of Possible TransformationsAdapted from Fig. 12.36, Callister & Rethwisch 9e.

Austenite (γ)

Pearlite(α + Fe3C layers + a proeutectoid phase)

slow cool

Bainite(α + elong. Fe3C particles)

moderatecool

Martensite(BCT phase diffusionless

transformation)

rapid quench

Tempered Martensite (α + very fine

Fe3C particles)

reheat

Stre

ngth

Duc

tility

Martensite T Martensite

bainite fine pearlite

coarse pearlite spheroidite

General Trends