chapter 12 transients may 2010 - zhejiang...

21
12 1 Chapter 12 Transients & Periodic Current/Voltage waveforms a. Galvanostatic polarization b. Potentiostatic polarization c. NonDC waveform plating Pulse Periodic reverse

Upload: hoangkien

Post on 09-May-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 1 

 

 

 

Chapter 12 

Transients & Periodic Current/Voltage waveforms

a. Galvanostatic polarization  b. Potentiostatic polarization c. Non‐DC waveform plating 

Pulse  Periodic reverse  

 

 

 

 

 

 

 

 

 

 

 

Page 2: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 2 

 

Outline: 

•  Time constants in Electrochemical systems 

•  Pulse shape 

•  Transient diffusion equation 

 Ganlvanodynamic  

 Potentiodynamic  

 Semi‐infinite and restricted diffusion 

•  Waveform Modes 

•  Why Pulse Plating? 

•  Controlling the Boundary Layer Thickness 

•  Analysis of Pulsed Potential vs. Pulsed Current 

•  Periodic Reverse Plating for Effective Leveling 

Introduction: 

The fundamental equation controlling electrochemical systems is the Nernst Plank equation: 

    jj j j j j j

c + v c = F (z u c ) + (D c )

t

  [10] 

Assuming that no transients are applied on the velocity field (v), we must consider transients in 

concentration (C), ohmic potential (), and kinetics (s – not shown explicitly in Eq. [10] but in 

its boundary conditions). Since the ohmic potential responds instantaneously ( ~ 10‐13 s), and the activation has a typical time constant of ts = RsCDL ~ s, we are concerned primarily with the 

transient response of the concentration field.  

Accordingly, once we neglect the potential variation, Eq. [10] can be simplified to:  

                          jj j j

c + v c = (D c )

t

    [44] 

The  boundary  conditions  are  reformulated,  recognizing  that  since  the  electric  field  driven 

current becomes negligible, the current density now takes the form: 

      n j j jj

i = - F z D c      [45] 

On the cell boundaries we have:  

Page 3: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 3 

 

Insulator:          i = 0       0RC   [46] 

Electrode:        CV- E= ln ln 1e

b L

RT c RT i

nF c nF i

    [47] 

In deriving eq. [47] we recognize that S and  are negligible compared to C. We furthermore 

recognize that the concentration overpotential (in boundary condition [47]) cannot be significant 

unless i approaches iL. For this to happen we must have: 

          ce << cb, or cb ~ 0   [48] 

    Inspecting  eq.  [44]  and  its  boundary  conditions  [46]  and  [48], we  recognize  that  it  is 

identical  to  the  convective diffusion equation  common  in  representing  transport problems  in 

non‐electrochemical  systems. Accordingly,  invoking  the mass  transport  control  approximation 

causes the problem to  lose all  its electrochemical characteristics, transforming  it to a transient 

diffusion problem. Obtaining  general  analytical  solutions  to  the  transient  convective diffusion 

problem is complex since it requires solving the transient concentration distribution in the cell in 

conjunction with the fluid‐flow.  

    An  approximation  that  applies  to  systems  undergoing  transient  polarization  can  be 

invoked. Assuming  stagnant  solution  (no  velocity) within  the  region  of  varying  concentration 

where the approximation is applied (usually the boundary layer), eq. [44] simplifies to: 

        2RR R

c = D c

t

  [50] 

The subscript R in eq. [50] indicates that it is applied to the reactant ion. Also, it is assumed that 

the reactant diffusivity is constant, independent of the concentration. Eq. [50] is known as Fick’s 

2nd  law.  Its  solution  is  particularly  relevant  to  problems  of  transient  (periodic)  current  and 

potential applications such as pulse and periodic reverse waveforms when the time constant  is 

in the range of the concentration profile relaxation time, i.e., about 0.01 seconds or longer (1‐4). 

1. J. C. Puippe and F. H. Leaman, Theory and practice of pulse plating, American Electroplaters and Surface Finishers Society, (1986). 

2. K. I. Popov and M. D. Maksimovic, in Modern Aspects of Electrochemistry, Vol. 19, B. E. Conway, J. O. M. Bockris, and R. E. White, eds., Plenum Press, New York, p. 193, 1989 

3. B. K. Purushothaman, P. W. Morrison and U. Landau, "Reducing Mass Transport Limitations by the Application of Special Pulsed Current Modes”, J. Electrochem. Soc., 152 (4) J33‐J39 (2005) 

4. B. K. Purushothaman, and U. Landau, "Rapid Charging of Lithium Ion Batteries Using Pulsed Currents – A Theoretical Analysis”, J. Electrochem. Soc., 153, (3) A533‐542 (2006) 

Page 4: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 4 

 

Transients in Electrochemical Processes

i

t

t

V a

c

a

c

TV E

T a C l

i

0

lna

RT i

F i

ln EC

B

CRT

nF C

10-6 s min10-13 s  

 

 

Page 5: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 6 

 

 

 

 

Page 7: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 7 

 

 

 

 

Page 8: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 9: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 9 

 

 

 

Page 10: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 10 

 

 

 

 

Page 11: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 11 

 

 

 

 

Page 12: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 12 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 13: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 13 

 

 

 

Page 14: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 14 

 

 

Page 15: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 16: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 17: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 17 

 

Periodic Reverse Plating for Effective Leveling

U. Landau, Extended Abstract, The ECS Meeting, Hawaii, October 1993

(In the Tafel range)

Wa = = =

L i L

b

i L

RT

F i

a 1

Wa >> 1 Uniform Distribution

Wa << 1 Non-Uniform Distribution

0.5 V

+0 V

+0 V

0 V

+1 V

+1 V

To achieve uniform deposit thickness, apply periodic reverse plating with:

High Wa during plating (for level deposition): Low current density Low C

Low Wa during dissolution (for non-uniformity) High current density High A

PLATE (~uniformly)

DISSOLVE (very non-uniformly)

 

 

 

 

 

 

 

 

 

 

 

Page 18: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 18 

 

 

 

 

 

Page 19: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 21: Chapter 12 Transients May 2010 - Zhejiang Universityche.zju.edu.cn/attachments/2010-05/01-1274438207-27075.pdf · Puippe and F. H. Leaman, Theory and practice of pulse plating, American

 

    12 ‐ 21