chapter 13 rna splicing the chemistry of rna splicing the spliceosome machinery splicing pathways...

54
Chapter 13 RNA splicing • The chemistry of RNA splicing • The spliceosome machinery • Splicing pathways • Alternative splicing • Exon shuffling • RNA editing • mRNA transport

Post on 19-Dec-2015

263 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Chapter 13 RNA splicing

• The chemistry of RNA splicing

• The spliceosome machinery

• Splicing pathways

• Alternative splicing

• Exon shuffling

• RNA editing

• mRNA transport

Page 2: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 3: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 4: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

The chemistry of RNA splicing

Page 5: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Sequences within the RNA determine where splicing occurs

Page 6: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

The intron is removed in a form called a lariat as the flanking exons are joined

Page 7: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-5 The structure of the three-way junction formed during the splicing reaction

Page 8: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

• The splicing reactions have no net gain in the no. of chemical bonds. Yet, a large number of ATP is consumed, not for the chemistry, but to properly assemble and operate the slicing machinery.

• What ensures the slicing only goes forward?

(1) Increase in entropy

(2) Excised intron is quickly degraded

Page 9: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Box 13-1 Adenovirus and the discovery of splicing

Map of the human adenovirus-2 genome

Human adenovirus is a DNA virus which serve as a model for studying eukaryotic gene regulation.

Same promoter and the tripartate leader sequence for all the transcripts which are resulted from alternative splicing

Page 10: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

•R-loop mapping of the adenovirus-2 late messenger RNAs.

Page 11: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Exons from different RNA molecules can be fused by trans-splicing

Fig 13-6 trans-splicing

Although generally rare, trans-spicing occurs in almost all the mRNAs of trypanosomes (錐體蟲 )

eg. Nematode worms (C. elegans)

Page 12: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

The spliceosome machinery

• RNA splicing is carried out by a large complex called the spliceosome

• Spliceosome comprises about 150 proteins and 5 RNAs and is similar in size with ribosomes.

• Many functions of spliceosome are carried out by RNAs rather by proteins.

• Five RNAs (U1, U2, U4, U5 and U6) are collectively called small nuclear RNAs (snRNAs) with the size in the range of 100-300 bp long and are complexed to

• small nuclear ribonuclear proteins (snRNP)• The makeup of spliceosome varies at different stages of the

splicing reaction.

Page 13: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-7 some RNA-RNA hybrids formed during the splicing reaction

Page 14: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Structure of spliceosomal protein-RNA complex: U1A binds hairpin II of U1 snRNA

Page 15: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Splicing pathways

• Assembly, rearrangements, and catalysis within the spliceosome: the splicing pathway

Page 16: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-8 steps of the spliceosome-mediated splicing reaction.

Early (E) complex

The A complex

The B complex

U1 snRNP replaced by U6 snRNP Active site formed

U4 released, U2 forming RNA-RNA hybrids with U6

Lariat initially still bound with tri-snRNP. Soon the lariat degrades, leaving the snRNPs to be recycled.

Page 17: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Self-splicing introns reveal that RNA can catalyze RNA splicing

class abundance mechanism Catalytic machinery

Nuclear pre-mRNA

Very common; used for most eukaryotic genes

Two transestirification reactions;

branch site A

Major spliceosome

Group II introns Rare; some eukaryotic genes from organelles and prokaryotes

Same as pre-mRNA

RNA enzyme encoded by intron (ribozyme)

Group I introns Rare; nuclear rRNA in some eukaryotes, organelle genes, and a few prokaryotic genes

Two transestirification reactions;

Branch site G

Same as group II

Page 18: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-9 group I and group II introns

Group I introns release a linear intron rather than a lariat

Page 19: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-10 Proposed folding of the RNA catalytic regions for splicing of group II introns and pre-mRNAs.

Page 20: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

• Group I intron use a free G nucleoside or nucleotide. This G species is bound by the RNA and its 3’OH group is presented to the 5’ splice site.

• Structure of group I intron includes

(1) a binding pocket that will accommodate any guanine nucleoside and nucleotide.

(2) Internal guide sequence that base-pairs with the 5’ splice site sequence.

Page 21: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Box 13-1 group I introns can be converted into true ribozymes.

Page 22: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

How does the spliceosome find the splice sites reliably?

• The average exon in only some 150 nt long, whereas the average intron is about 3,000 nt long. Thus, the exons must be identified within a vast ocean of intronic sequences.

Page 23: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-12 Errors produced by mistakes in splice-site selection.

Page 24: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

• To avoid exon-skipping: co-transcriptional loading of spliceosome components onto the splice sites.(refer to 12-20)

• To avoid pseudo splice-site selection:

Page 25: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-12 SR (serine-arginine rich) proteins recruit spliceosome components to the 5’ and 3’ splice sites.

ESE: exonic splicing enhancer

Page 26: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

A small group of introns are spliced by an alternative spliceosome composed of a different set of snRNPs

Fig 13-13 The AT-AC (minor) spliceosome catalyzed splicing.

This minor spliceosome has distinct splice site sequences but same splicing chemistry.

Page 27: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Alternative Splicing

• Single genes can produce multiple products by alternative splicing

• By alternative splicing multiple proteins can be produced from a single gene. These different proteins are called isoforms. They can have similar functions, distinct functions, or even antagonistic functions.

Page 28: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-14 Alternative splicing in the troponin T gene

Page 29: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-15 Five ways to splice a RNA

Page 30: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-16 constitutive alternative splicing: monkey virus SV40 T-antigen

5’SST: 5’ splice site used to generate the large T mRNA5’sst: 5’ splice site used to generate the small T mRNA

Page 31: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Several mechanisms exist to ensure mutually exclusive splicing

1. Steric hindrance

2. Combinations of major and minor splice sites

3. Nonsense-mediated decay

Page 32: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 33: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 34: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

The curious case of the Drosophila Dscam gene: Mutually exclusive splicing on a grand scale

Page 35: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

DscamDown syndrome cell-adhesion molecule

Page 36: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 37: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 38: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Alternative splicing is regulated by activators and repressors

Fig 13-22 Regulated alternative splicing

• Proteins that regulate splicing bind to specific sites called exonic (intronic) splicing enhancers (ESE/ISE) or silencers (ESS/ISS)

Page 39: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-23 mammalian splicing repressor hnRNPI

Page 40: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 41: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 42: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA
Page 43: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-25 a cascade of alternative splicing events determines the sex of a fly.

Sxl: splicing repressor

Tra: splicing activator

Page 44: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Exon Shuffling

• Exons are shuffled by recombination to produce genes encoding new proteins

• Why introns are present in all organisms except bacteria??? Introns early model: due to selection pressure to speed

chromosome replication and cell divisionIntrons late model: due to a transposome like mechanism

Why have the introns been retained in (higher) eukaryotes??

The advantages of exon shuffling

Page 45: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-26 Exons encode protein domains.

Page 46: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-27 Genes made up of parts of other genes.

Page 47: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-28 Accumulation, loss, and reshuffling of domains during the evolution of the family of chromatin modifying enzymes.

Page 48: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Evidences of exon shuffling

1. The boundaries between exons/introns often coincide with boundaries between domains.

2. Some proteins (eg. immunoglobulin) have repeating units, which might be due to gene duplications.

3. Related exons are sometimes found in unrelated genes.

Page 49: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

RNA Editing

1. Site-specific deamination

2. Guide RNA-directed uridine insertion or deletion (often in trypanosomes and mitochondria).

Page 50: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-29 RNA editing by deamination:

Human apolipoprotein gene

Page 51: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

ADAR: adenosine deaminase acting on RNA

Page 52: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-26 RNA-mediated editing by guide RNA mediated U insertion in trypanosome coxII gene.

Page 53: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

mRNA Transport

• Once processed (capped, spliced, polyadenylated), mRNA is packaged and exported from the nucleus into the cytoplasm for translation

• How are RNA selection and transport achieved?

Page 54: Chapter 13 RNA splicing The chemistry of RNA splicing The spliceosome machinery Splicing pathways Alternative splicing Exon shuffling RNA editing mRNA

Fig 13-27 Transport of mRNAs out of the nucleus is an active process

(export is though nuclear pore complex with the size exclusion of 50kd)

SR protein or proteins that recognize exon-exon boundaries indicate a mature mRNA.

Proteins that binds to introns (eg hnRNPs) indicate a RNA that needs to to retained.