chapter 18 - 1

34
Chapter 18 - 1

Upload: others

Post on 08-May-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 18 - 1

Chapter 18 - 1

Page 2: Chapter 18 - 1

Chapter 18 - 2

Page 3: Chapter 18 - 1

Chapter 18 - 3

We will cover 18.1 – 18.13 and 18.15 – 18.23

TODAY• How are electrical conductance and resistance

characterized?

• What are the physical phenomena that distinguishconductors, semiconductors, and insulators?

• For metals, how is conductivity affected byimperfections, T, and deformation?

• For semiconductors, how is conductivity affectedby impurities (doping) and T?

Chapter 18: Electrical Properties

Page 4: Chapter 18 - 1

Chapter 18 - 4

• Scanning electron microscope images of an IC:

• A dot map showing location of Si (a semiconductor):-- Si shows up as light regions.

• A dot map showing location of Al (a conductor):-- Al shows up as light regions.

Fig. (a), (b), (c) from Fig. 18.0, Callister 7e.

Fig. (d) from Fig. 18.27 (a), Callister 7e. (Fig. 18.27 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

(b)

(c)

View of an Integrated Circuit

0.5mm

(a)(d)

45μm

Al

Si (doped)

(d)

Page 5: Chapter 18 - 1

Chapter 18 - 5

Electrical Conduction

• Resistivity, ρ and Conductivity, σ:-- geometry-independent forms of Ohm's Law

E: electricfieldintensity

resistivity(Ohm-m)

J: current density

conductivity

-- Resistivity is a material property & is independent of sample

ρ=Δ

AI

LV

σ =

• Resistance:

σ=

ρ=

AL

ALR

• Ohm's Law:ΔV = I R

voltage drop (volts = J/C)C = Coulomb

resistance (Ohms)current (amps = C/s)

Ie-A

(cross sect. area) ΔV

L

Page 6: Chapter 18 - 1

Chapter 18 - 6

Electrical Properties• Which will conduct more electricity?

• Analogous to flow of water in a pipe• So resistance depends on sample

geometry, etc.

D

2D IVARA ==ρ

Page 7: Chapter 18 - 1

Chapter 18 - 7

DefinitionsFurther definitions

J = σ ε <= another way to state Ohm’s law

J ≡ current density

ε ≡ electric field potential = V/ or (ΔV/Δ )

flux a like area surface

currentAI

==

Current carriers• electrons in most solids • ions can also carry (particularly in liquid solutions)

Electron flux conductivity voltage gradient

J = σ (ΔV/Δ )

Page 8: Chapter 18 - 1

Chapter 18 - 8

• Room T values (Ohm-m)-1

Selected values from Tables 18.1, 18.3, and 18.4, Callister 7e.

Conductivity: Comparison

Silver 6.8 x 10 7

Copper 6.0 x 10 7

Iron 1.0 x 10 7

METALS conductors

Silicon 4 x 10-4

Germanium 2 x 10 0

GaAs 10-6

SEMICONDUCTORS

semiconductors

= (Ω - m)-1

Polystyrene <10-14

Polyethylene 10-15-10-17

Soda-lime glass 10Concrete 10-9

Aluminum oxide <10-13

CERAMICS

POLYMERS

insulators

-10-10-11

Page 9: Chapter 18 - 1

Chapter 18 - 9

What is the minimum diameter (D) of a Cu wire so that ΔV < 1.5 V?

Example: Conductivity Problem

100mCu wire I = 2.5A- +e-

ΔV

Solve to get D > 1.87 mm

< 1.5V

2.5A

6.07 x 10 (Ohm-m)7 -1

100m

IV

ALR Δ

=

4

2Dπ

Page 10: Chapter 18 - 1

Chapter 18 -10

Callister 18.17

• A cylindrical metal wire 3 mm in diameter is required to carry a current of 12 A with a minimum of 0.01 V drop per foot (300 mm) of wire. Which of the metals and alloys listed in Table 18.1 are possible candidates?

Page 11: Chapter 18 - 1

Chapter 18 -11

Page 12: Chapter 18 - 1

Chapter 18 -12

Page 13: Chapter 18 - 1

Chapter 18 -13

Electronic Band Structures

Adapted from Fig. 18.2, Callister 7e.

Page 14: Chapter 18 - 1

Chapter 18 -14

Band Structure• Valence band – filled – highest occupied energy levels• Conduction band – empty – lowest unoccupied energy levels

valence band

Conductionband

Adapted from Fig. 18.3, Callister 7e.

Page 15: Chapter 18 - 1

Chapter 18 -15

Page 16: Chapter 18 - 1

Chapter 18 -16

Page 17: Chapter 18 - 1

Chapter 18 -17

Conduction & Electron Transport• Metals (Conductors):-- Thermal energy puts

many electrons intoa higher energy state.

• Energy States:-- for metals nearby

energy statesare accessibleby thermalfluctuations.

+-

-

filled band

Energy

partly filled valence band

empty band

GAP

fille

d st

ates

Energy

filled band

filled valence band

empty band

fille

d st

ates

Page 18: Chapter 18 - 1

Chapter 18 -18

Energy States: Insulators & Semiconductors

• Insulators:-- Higher energy states not

accessible due to gap (> 2 eV).

Energy

filled band

filled valence band

empty band

fille

d st

ates

GAP

• Semiconductors:-- Higher energy states separated

by smaller gap (< 2 eV).

Energy

filled band

filled valence band

empty band

fille

d st

ates

GAP?

Page 19: Chapter 18 - 1

Chapter 18 -19

Charge Carriers

Two charge carrying mechanisms

Electron – negative chargeHole – equal & opposite

positive charge

Move at different speeds - drift velocity

Higher temp. promotes more electrons into the conduction band

∴ σ as T

Electrons scattered by impurities, grain boundaries, etc.

Adapted from Fig. 18.6 (b), Callister 7e.

Page 20: Chapter 18 - 1

Chapter 18 -20

Page 21: Chapter 18 - 1

Chapter 18 -21

Metals: Resistivity vs T, Impurities• Imperfections increase resistivity

-- grain boundaries-- dislocations-- impurity atoms-- vacancies

These act to scatterelectrons so that theytake a less direct path.

• Resistivityincreases with:-- temperature-- wt% impurity-- %CW

Adapted from Fig. 18.8, Callister 7e. (Fig. 18.8 adapted from J.O. Linde, Ann. Physik 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

ρ = ρthermal

+ ρimpurity

+ ρdeformation

T (°C)-200 -100 0

deformed Cu + 1.12 at%NiCu + 3.32 at%Ni

Cu + 2.16 at%Ni

1

2

3

4

5

6

Res

istiv

ity,

ρ

(10

-8O

hm-m

)

0

Cu + 1.12 at%Ni

“Pure” Cu

Page 22: Chapter 18 - 1

Chapter 18 -22

Estimating Conductivity

Adapted from Fig. 7.16(b), Callister 7e.

• Question:-- Estimate the electrical conductivity σ of a Cu-Ni alloy

that has a yield strength of 125 MPa.

mmOh10x30 8 −=ρ −

16 )mmOh(10x3.31 −−=ρ

Yie

ld s

treng

th (M

Pa)

wt. %Ni, (Concentration C)0 10 20 30 40 5060

80100120140160180

21 wt%Ni

Adapted from Fig. 18.9, Callister 7e.

wt. %Ni, (Concentration C)R

esis

tivity

, ρ

(10-

8O

hm-m

)

10 20 30 40 500

1020304050

0

125

CNi = 21 wt%Ni

From step 1:

30

Page 23: Chapter 18 - 1

Chapter 18 -23

Pure Semiconductors: Conductivity vs T

• Data for Pure Silicon:-- σ increases with T-- opposite to metals

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

electrical conductivity, σ(Ohm-m)-1

50 100 100010-210-1100101102103104

pure (undoped)

T(K)

electronscan crossgap athigher T

materialSiGeGaPCdS

band gap (eV)1.110.672.252.40

Selected values from Table 18.3, Callister 7e.

kT/Egap−∝σ eundoped

Energy

filled band

filled valence band

empty band

fille

d st

ates

GAP?

Page 24: Chapter 18 - 1

Chapter 18 -24

Intrinsic Semiconductors• Pure material semiconductors: e.g., silicon &

germanium– Group IVA materials

• Compound semiconductors – III-V compounds

• Ex: GaAs & InSb

– II-VI compounds• Ex: CdS & ZnTe

– The wider the electronegativity difference between the elements the wider the energy gap.

Page 25: Chapter 18 - 1

Chapter 18 -25

Conduction in Terms of Electron and Hole Migration

Adapted from Fig. 18.11, Callister 7e.• Electrical Conductivity given by:

# electrons/m3 electron mobility

# holes/m 3

hole mobilityhe epen μ+μ=σ

• Concept of electrons and holes:

electric fieldno applied

valence electron Si atom

electric field

+-

electron holepair creation

applied electric field

+-

applied

electron holepair migration

Page 26: Chapter 18 - 1

Chapter 18 -26

Number of Charge CarriersIntrinsic Conductivity

σ = n|e|μe + p|e|μe

n =

σe μe +μn( )

=10−6(Ω⋅m)−1

(1.6x10−19C)(0.85+ 0.45 m2/V ⋅ s)

For GaAs n = 4.8 x 1024 m-3

For Si n = 1.3 x 1016 m-3

• for intrinsic semiconductor n = p∴ σ = n|e|(μe + μn)

• Ex: GaAs

Page 27: Chapter 18 - 1

Chapter 18 -27

• Intrinsic:# electrons = # holes (n = p)--case for pure Si

• Extrinsic:--n ≠ p--occurs when impurities are added with a different

# valence electrons than the host (e.g., Si atoms)

Intrinsic vs Extrinsic Conduction

• n-type Extrinsic: (n >> p)

no applied electric field

5+

4+ 4+ 4+ 4+

4+

4+4+4+4+

4+ 4+

Phosphorus atom

valence electron

Si atom

conductionelectron

hole

een μ≈σ

• p-type Extrinsic: (p >> n)

no applied electric field

Boron atom

3+

4+ 4+ 4+ 4+

4+

4+4+4+4+

4+ 4+ hep μ≈σ

Adapted from Figs. 18.12(a) & 18.14(a), Callister 7e.

Page 28: Chapter 18 - 1

Chapter 18 -28

Doped Semiconductor: Conductivity vs. T• Data for Doped Silicon:

-- σ increases doping-- reason: imperfection sites

lower the activation energy toproduce mobile electrons.

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

doped 0.0013at%B

0.0052at%B

elec

trica

l con

duct

ivity

, σ

(Ohm

-m)-

1

50 100 100010-210-1100101102103104

pure (undoped)

T(K)

• Comparison: intrinsic vsextrinsic conduction...

-- extrinsic doping level:1021/m3 of a n-type donorimpurity (such as P).

-- for T < 100 K: "freeze-out“,thermal energy insufficient toexcite electrons.

-- for 150 K < T < 450 K: "extrinsic"-- for T >> 450 K: "intrinsic"

Adapted from Fig. 18.17, Callister 7e. (Fig. 18.17 from S.M. Sze, Semiconductor Devices, Physics, and Technology, Bell Telephone Laboratories, Inc., 1985.)

cond

uctio

n el

ectro

n co

ncen

tratio

n (1

021/m

3 )

T(K)60040020000

1

2

3

freez

e-ou

t

extri

nsic

intri

nsic

dopedundoped

Page 29: Chapter 18 - 1

Chapter 18 -29

• Allows flow of electrons in one direction only (e.g., usefulto convert alternating current to direct current.

• Processing: diffuse P into one side of a B-doped crystal.• Results:--No applied potential:

no net current flow.--Forward bias: carrier

flow through p-type andn-type regions; holes andelectrons recombine atp-n junction; current flows.

--Reverse bias: carrierflow away from p-n junction;carrier conc. greatly reducedat junction; little current flow.

p-n Rectifying Junction

++

+ ++

- ---

-p-type n-type

+ -

++ +

++

--

--

-

p-type n-typeAdapted from Fig. 18.21, Callister 7e.

+++

+

+

---

--

p-type n-type- +

Page 30: Chapter 18 - 1

Chapter 18 -30

Properties of Rectifying Junction

Fig. 18.22, Callister 7e. Fig. 18.23, Callister 7e.

Page 31: Chapter 18 - 1

Chapter 18 -31

Junction Transistor

Fig. 18.24, Callister 7e.

Page 32: Chapter 18 - 1

Chapter 18 -32

Integrated Circuit Devices

• Integrated circuits - state of the art ca. 50 nm line width– 1 Mbyte cache on board– > 100,000,000 components on chip– chip formed layer by layer

• Al is the “wire”

Fig. 18.26, Callister 6e.

• MOSFET (metal oxide semiconductor field effect transistor)

Page 33: Chapter 18 - 1

Chapter 18 -33

• Electrical conductivity and resistivity are:-- material parameters.-- geometry independent.

• Electrical resistance is:-- a geometry and material dependent parameter.

• Conductors, semiconductors, and insulators...-- differ in accessibility of energy states for

conductance electrons.• For metals, conductivity is increased by

-- reducing deformation-- reducing imperfections-- decreasing temperature.

• For pure semiconductors, conductivity is increased by-- increasing temperature-- doping (e.g., adding B to Si (p-type) or P to Si (n-type).

Summary

Page 34: Chapter 18 - 1

Chapter 18 -34

Next time, Insulators (traditionally)

• Ceramics– Some structure– Capacitance, Dielectric properties– Ionic conduction

• Polymers– A bit on structure– Conducting polymers