chapter 2: kinematics - saint mary's university | astronomy &...

79
SMU PHYS1100.1, fall 2008, Prof. Clarke 1 Chapter 2: Kinematics 2.1 Motion in 1-D Kinematics: the study of motion without regard to its cause. - a car along a straight road - a brick tossed vertically in the air - a ball rolling down a hill Recall the five representations: verbal, pictorial, physical, graphical, mathematical Here we introduce graphical representations, and converting from physical representations (motion diagrams) to graphical representations (graphs, plots).

Upload: ngokhanh

Post on 29-Mar-2018

226 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 1

Chapter 2: Kinematics

2.1 Motion in 1-D

Kinematics: the study of motion without regard to its cause.

- a car along a straight road

- a brick tossed vertically in the air

- a ball rolling down a hill

Recall the five representations:

verbal, pictorial, physical, graphical, mathematical

Here we introduce graphical representations, and converting from physical representations (motion diagrams) to graphicalrepresentations (graphs, plots).

Page 2: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 2

Chapter 2: Kinematics

1. Uniform motion: straight-line motion in which equal displacements occur during any successive equal time interval.

- velocity remains constant (magnitude and direction)- no curvature in particle path

We wish to represent uniform motion both as a motion diagram and as a position vs. time graph.

position can be represented by x, y, z, or generically, s.

First thing we need to create a graph is a coordinate system.

e.g., origin at front, left, bottom corner of room, +x point to your right along floor, +y points up.

Page 3: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 3

Chapter 2: Kinematics

Example 1: me walking across room from left to right at a constant speed.

a) draw the motion diagram.

Page 4: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 4

Chapter 2: Kinematics

Example 1: me walking across room from left to right at a constant speed.

a) draw the motion diagram.

b) draw the x vs. t graph.

Page 5: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 5

Chapter 2: Kinematics

Example 1: me walking across room from left to right at a constant speed.

a) draw the motion diagram.

b) draw the x vs. t graph.

c) draw the v vs. t graph.

Page 6: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 6

Chapter 2: Kinematics

Example 1: me walking across room from left to right at a constant speed.

a) draw the motion diagram.

b) draw the x vs. t graph.

c) draw the v vs. t graph.

v

t

Horizontal line

velocity is constant

Page 7: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 7

Chapter 2: Kinematics

Uniform motion is:

- equal spaced dots on a motion diagram;

- straight line on an x (or y or s) vs. t graph;

- horizontal line on a v vs. t graph.

The slope on a position vs. time graph is the velocity.

Slope is always the rise (∆∆∆∆s) over the run (∆∆∆∆t).

sf = si + vs∆∆∆∆t (uniform motion)

∆∆∆∆t∆∆∆∆s

∆∆∆∆tsf −−−− sivs = =

Page 8: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 8

Chapter 2: Kinematics

Clicker question 2.1

Which position-versus-time graph represents the motion shown in the motion diagram?

Page 9: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 9

Chapter 2: Kinematics

Clicker question 2.1

v points to left v negative x vs. t graph slopes down to the right (negative slope); and

x > 0 at t = 0.

Page 10: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 10

Chapter 2: Kinematics

2. Non-Uniform Motion: on a motion diagram, path needs not be straight, and displacements need not be equal between successive equal time intervals.

- expect varying slope on a position vs. time graph

- expect varying velocity on a v vs. t graph.

With non-uniform velocity, we need the concept of an instantaneous velocity: the rate at which position changes with respect to time at a particular moment in time.

Page 11: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 11

Chapter 2: Kinematics

a) draw the motion diagram.

Example 2: Suppose as I walk across the room from left to right, I speed up.

Page 12: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 12

Chapter 2: Kinematics

a) draw the motion diagram.

b) draw the x vs. t graph.

Example 2: Suppose as I walk across the room from left to right, I speed up.

Page 13: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 13

Chapter 2: Kinematics

a) draw the motion diagram.

b) draw the x vs. t graph.

c) draw the v vs. t graph.

Example 2: Suppose as I walk across the room from left to right, I speed up.

Page 14: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 14

Chapter 2: Kinematics

a) draw the motion diagram.

b) draw the x vs. t graph.

c) draw the v vs. t graph.

Example 2: Suppose as I walk across the room from left to right, I speed up.

v

t

Line with positive slope

velocity is increasing

Page 15: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 15

Chapter 2: Kinematics

Instantaneous velocities and motion diagrams.

Motion diagrams give only average velocities. How do we measure the instantaneous velocity at x ?

As we “magnify” the region around x the time interval gets smaller and smaller and the velocity vectors become more and more “constant”.

This “constant” velocity is the instantaneous velocity we seek.

Page 16: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 16

Chapter 2: Kinematics

If we could magnify the motion diagram indefinitely so that ∆∆∆∆t 0, then the velocity vectors at x would truly be constant.

We write: (instantaneous velocity).vs = lim∆∆∆∆s

∆∆∆∆t

ds

dt∆∆∆∆t 0

=

ds/dt is the derivative of s(t)

with respect to t.

The average velocity is the slope of the secant that passes through points 2 and 3

instantaneous velocity is the slope of the tangent that “kisses” the graph at x.

Page 17: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 17

Chapter 2: Kinematics

So now for a little calculus…

Page 18: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 18

Chapter 2: Kinematics

So now for a little calculus…

Page 19: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 19

Chapter 2: Kinematics

So now for a little calculus…

…Don’t worry, Mr. Bill, it’s not that bad!

Page 20: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 20

Chapter 2: Kinematics

If s(t) = atn,

Until November, there’s only one derivative we’ll need:

ds(t)

dt

e.g., x = t2 (= 1t2): a = 1, n = 2, n−1 = 1; dx/dt = (1)(2)t1 = 2t

e.g., x = −3t4 : a = −3, n = 4, n−1 = 3; dx/dt = (−3)(4)t3 = −12t3

e.g., y = 3/t2 = 3t−2: a = 3, n = −2, n−1 = −3; dy/dt = (3)(−2)t−3 = −6t−3

e.g., s = 4t (= 4t1): a = 4, n = 1, n−1 = 0; ds/dt = (4)(1)t0 = 4

e.g., s = c (= ct0): a = c, n = 0, n−1 = −1; ds/dt = (0)(c)t−1 = 0

then = antn−−−−1 is its derivative.

ended here, 11/9/08

notes 2.1

Page 21: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 21

Chapter 2: Kinematics

s(t) = 2 t2 mRelating velocity and position graphs.

Position, s, as a function of time: s(t) = 2 t2 metres.

Slope of tangent to graph is the

derivative, and is also the

instantaneous velocity.

Page 22: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 22

Chapter 2: Kinematics

Relating velocity and position graphs.

Position, s, as a function of time: s(t) = 2 t2 metres.

Slope of tangent to graph is the

derivative, and is also the

instantaneous velocity.

ds/dt = vs = 4 t m/s (units!)

We say that the position increases quadratically in time, whereas the velocity increases linearly in time.

s(t) = 2 t2 m

vs(t) = 4 t m/s

Page 23: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 23

Chapter 2: Kinematics

a) No, A and B never have the same speed.

b) Yes, at t = 0 s.c) Yes, at t = 2 s.d) Yes, when 0 s < t < 2 s.e) Yes, when 2 s < t < 4 s.

Clicker question 2.2

Page 24: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 24

Chapter 2: Kinematics

a) No, A and B never have the same speed.

b) Yes, at t = 0 s.c) Yes, at t = 2 s.d) Yes, when 0 s < t < 2 s.e) Yes, when 2 s < t < 4 s.

Clicker question 2.2

A and B have the same position at t=2, but since their position graphs have different constant slopes, their speeds are always different.

Page 25: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 25

Chapter 2: Kinematics

Clicker question 2.3

a) No, A and B never have the same speed.

b) Yes, at t = 1 s and 3 s.c) Yes, at t = 2 s.d) Yes, when 0 s < t < 1 s.e) Yes, when 1 s < t < 3 s.

Page 26: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 26

Chapter 2: Kinematics

Clicker question 2.3

a) No, A and B never have the same speed.

b) Yes, at t = 1 s and 3 s.c) Yes, at t = 2 s.d) Yes, when 0 s < t < 1 s.e) Yes, when 1 s < t < 3 s.

A’s position graph has a varying slope, and only at t = 2 does its slope match the constant slope of B’s position graph. The instantaneous speeds are the same only where the slopes of the position graphs are the same.

Page 27: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 27

Chapter 2: Kinematics

To see this, let’s step back a bit to the average velocity before we let ∆∆∆∆t 0:

2.4 Finding position from velocity

vs = lim∆∆∆∆s

∆∆∆∆t

ds

dt∆∆∆∆t 0

= tells us how to find velocity from position. How do we do the reverse?

vavg = = ∆∆∆∆s

∆∆∆∆t

sf −−−− si

∆∆∆∆t

sf = si + vavg∆∆∆∆t = si + vavg(tf – ti)vavg

tfti

t

v

∆∆∆∆t

vavg

This is an “area”* on a v vs. t graph!

Solving for sf, we get:

*with units (m/s) s = m

Page 28: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 28

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

let ti = 0 and tf = t

Page 29: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 29

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

(helpful hint: area of a triangle is ½ base x height)

let ti = 0 and tf = t

Page 30: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 30

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

½ (1 s)(4 ms−1) = 2 m

let ti = 0 and tf = t

Page 31: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 31

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

½ (1 s)(4 ms−1) = 2 m

What is ∆s at t = 3 s?

let ti = 0 and tf = t

Page 32: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 32

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

½ (1 s)(4 ms−1) = 2 m

What is ∆s at t = 3 s?

½ (3 s)(12 ms−1) = 18 m

let ti = 0 and tf = t

Page 33: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 33

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

½ (1 s)(4 ms-1) = 2 m

What is ∆s at t = 3 s?

½ (3 s)(12 ms-1) = 18 m

What is ∆s at any time t?

let ti = 0 and tf = t

Page 34: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 34

Chapter 2: Kinematics

We generalise this by saying:

∆s = sf – si is the area under the v vs. t graph.

What is ∆s at t = 1 s?

½ (1 s)(4 ms-1) = 2 m

What is ∆s at t = 3 s?

½ (3 s)(12 ms-1) = 18 m

What is ∆s at any time t?

½ (t)(4t) = 2t2 mlet ti = 0 and tf = t

Page 35: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 35

Chapter 2: Kinematics

We do what any good physicist would do: We approximate!

We replace the curve with an “equivalent” set of rectangles, then add up the areas of the rectangles.

But this could mean lots of adding, especially if we use lots of rectangles to make our approximation a good one.

Straight-line v vs. t graphs are easy, so I’ll throw you a “curve”…

What about a curved v vs. t graph? Then what?

Page 36: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 36

Chapter 2: Kinematics

And so….more calculus!!!

Page 37: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 37

Chapter 2: Kinematics

And so….more calculus!!!

Page 38: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 38

Chapter 2: Kinematics

And so….more calculus!!!

Page 39: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 39

Chapter 2: Kinematics

And so….more calculus!!!

Page 40: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 40

Chapter 2: Kinematics

And so….more calculus!!!

Page 41: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 41

Chapter 2: Kinematics

And so….more calculus!!!

Page 42: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 42

Chapter 2: Kinematics

And so….more calculus!!!

Page 43: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 43

Chapter 2: Kinematics

And so….more calculus!!!

Page 44: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 44

Chapter 2: Kinematics

We want to sum the areas of the

rectangles:

Calm down, Mr. Bill. It’s still not that bad!.

Page 45: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 45

Chapter 2: Kinematics

We want to sum the areas of the

rectangles:

and, we want lots of rectangles to make our approximation a good one.

Calm down, Mr. Bill. It’s still not that bad!.

Page 46: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 46

Chapter 2: Kinematics

We want to sum the areas of the

rectangles:

and, we want lots of rectangles to make our approximation a good one.

Then sf is just si plus this area:

Calm down, Mr. Bill. It’s still not that bad!.

Page 47: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 47

Chapter 2: Kinematics

We want to sum the areas of the

rectangles:

and, we want lots of rectangles to make our approximation a good one.

Then sf is just si plus this area:

Calm down, Mr. Bill. It’s still not that bad!.

Trouble is, as ∆∆∆∆t 0, N , and none of us will live long enough to do all that adding! Now that is worth crying OHH NOOO!

88 88

Page 48: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 48

Chapter 2: Kinematics

And so thank goodness for Newton and Leibniz who taught us a very quick way to add an infinity of numbers: integrals!

Capital Greek letter “sigma”

(their S) which stands for “sum”.

The integral sign is a stretched Roman

letter “S” which also stands for “sum”.

∆∆∆∆t is a finite quantity, whereas dt is an infinitesimal. But vsdt is still an “area” (of an

infinitely thin rectangle), and the integral sign is still telling us to add them up!

And the fundamental theorem of the calculus gives us the power…

If vs(t) = a tn

vs(t) dt = a tn dt = a tn+1 = a (tfn+1 – ti

n+1) (n = −1)tf

ti

tf

ti

1n +1

tf

ti

1n +1

Page 49: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 49

Chapter 2: Kinematics

A worked example (2.10)

Suppose the particle starts at x = 30 m at t = 0 s.

a) Draw a motion diagram from the v vs. t graph.

Page 50: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 50

Chapter 2: Kinematics

A worked example (2.10)

Suppose the particle starts at x = 30 m at t = 0 s.

a) Draw a motion diagram from the v vs. t graph.

40 (m)3020100

each rectangle has an “area” of (5 ms−−−−1)(1 s) = 5 m

each triangle is half a rectangle = 2.5 m

7.5m

Page 51: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 51

Chapter 2: Kinematics

A worked example (2.10)

Suppose the particle starts at x = 30 m at t = 0 s.

a) Draw a motion diagram from the v vs. t graph.

40 (m)3020100

each rectangle has an “area” of (5 ms−−−−1)(1 s) = 5 m

each triangle is half a rectangle = 2.5 m

7.5m

2.5m

“turning point”

Page 52: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 52

Chapter 2: Kinematics

A worked example (2.10)

Suppose the particle starts at x = 30 m at t = 0 s.

a) Draw a motion diagram from the v vs. t graph.

40 (m)3020100

each rectangle has an “area” of (5 ms−−−−1)(1 s) = 5 m

each triangle is half a rectangle = 2.5 m

7.5m

2.5m

“turning point”

−−−−2.5m

−−−−7.5m

Page 53: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 53

Chapter 2: Kinematics

A worked example (2.10)

Suppose the particle starts at x = 30 m at t = 0 s.

a) Draw a motion diagram from the v vs. t graph.

40 (m)3020100

each rectangle has an “area” of (5 ms−−−−1)(1 s) = 5 m

each triangle is half a rectangle = 2.5 m

7.5m

2.5m

−−−−2.5m

−−−−7.5m

−12.5m −17.5m

“turning point”vx

Page 54: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 54

Chapter 2: Kinematics

A worked example (2.10)

Alternative way to compute distances: use the integral formula.

First need vx(t), a straight line

∆∆∆∆t = 2 s

∆∆∆∆vx = −10 m/s

vx(t) = m t + b = −5 t + 10

slope m = ∆∆∆∆vx/ ∆∆∆∆t = −−−−5 ms−−−−2

Page 55: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 55

Chapter 2: Kinematics

A worked example (2.10)

Alternative way to compute distances: use the integral formula.

First need vx(t), a straight line

∆∆∆∆t = 2 s

intercept b = 10 ms−−−−1

vx(t) = m t + b = −5 t + 10

∆∆∆∆vx = −10 m/s

slope m = ∆∆∆∆vx/ ∆∆∆∆t = −−−−5 ms−−−−2

Page 56: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 56

Chapter 2: Kinematics

A worked example (2.10)

Alternative way to compute distances: use the integral formula.

First need vx(t), a straight line

∆∆∆∆t = 2 s

intercept b = 10 ms−−−−1

slope m = ∆∆∆∆vx/ ∆∆∆∆t = −−−−5ms−−−−2

∆∆∆∆vx = −10 m/s

vx(t) = m t + b = −5 t + 10

xf = xi + vx(t) dt = 30 + −5t dt + 10 dtt

0

5

2= 30 − t2 + 10 t

t

0

tf

ti

Page 57: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 57

Chapter 2: Kinematics

A worked example (2.10)

Alternative way to compute distances: use the integral formula.

First need vx(t), a straight line

∆∆∆∆t = 2 s

intercept b = 10 ms−−−−1

t 0 1 2 3 4 5 6

xf 30.0 37.5 40.0 37.5 30.0 17.5 0.0vx 10.0 5.0 0.0 −5.0 −10.0 −15.0 −20.0

“turning point”

slope m = ∆∆∆∆vx/ ∆∆∆∆t = −−−−5ms−−−−2

∆∆∆∆vx = −10 m/s

vx(t) = m t + b = −5 t + 10

xf = xi + vx(t) dt = 30 + −5t dt + 10 dtt

0

5

2= 30 − t2 + 10 t

t

0

tf

ti

Page 58: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 58

Chapter 2: Kinematics

Which of the blue x vs. tgraphs goes with the green v vs. t graph?

Clicker question 2.4 Let the particle’s position at ti = 0 s be xi = –10 m .

Page 59: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 59

Chapter 2: Kinematics

Clicker question 2.4 Let the particle’s position at ti = 0 s be xi = –10 m .

Which of the blue x vs. tgraphs goes with the green v vs. t graph?

Page 60: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 60

Chapter 2: Kinematics

vfs = vis + as∆∆∆∆t

as = =∆∆∆∆t∆∆∆∆vs

∆∆∆∆tvfs−−−− vis

2.5 Motion with constant acceleration

If a particle is undergoing constant acceleration, its v vs. tgraph is a straight line. Then, we can write:

sf = si + vis∆∆∆∆t + ½ as ∆∆∆∆t2

and since displacement is the area under the v vs. t

graph, we have:

(m/s2)

Page 61: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 61

Chapter 2: Kinematics

Three kinematical equations for constant acceleration

vfs = vis + as∆∆∆∆t

sf = si + vis∆∆∆∆t + ½ as∆∆∆∆t2

vfs2 = vis

2 + 2as∆∆∆∆s (derive on board)

∆∆∆∆s = sf −−−− s

i

For “free-fall”problems, as = −g, where g = +9.80 m/s2

vfy = viy −−−− g∆∆∆∆t

yf = yi + viy∆∆∆∆t − ½ g∆∆∆∆t2

vfy2 = viy

2 −−−− 2g∆∆∆∆y

g is never negative; it is the magnitude of the acceleration vector. The direction is given by the negative sign: −.

is the acceleration of gravity

Page 62: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 62

Chapter 2: Kinematics

Examples for the board…

1. A rocket sled accelerates at 50 ms−2 for 5.0 s, coasts for 3.0 s, then deploys a parachute and accelerates at −2.5 ms−2 until stopping.

a) What is the maximum speed of the rocket sled?

b) What is the total distance traveled?

out of fuel deploy parachute

notes 2.2

ended here, 16/9/08

Page 63: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 63

Chapter 2: Kinematics

Examples for the board…

2. A cannon ball is shot straight up with an initial speed of 100 ms-1.

a) How high does it go?

b) How long does it take to reach its maximum height?

notes 2.3

Page 64: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 64

Chapter 2: Kinematics

Examples for the board…

3. A ball falling by a window 2 m high can be seen from inside the room for 0.25 s. From what height above the window sill was the ball dropped if it was dropped from rest?

We break this problem into two parts. First we deal with the window, then with the fall before the window.

v1i v2f

v2i = 0

∆∆∆∆s2

∆∆∆∆s1∆∆∆∆t

−−−−g

−−−−g

notes 2.4

Page 65: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 65

Chapter 2: Kinematics

2.10 Motion down an inclined plane

Consider an object sliding freely (no friction) down an inclined plane. The object cannot pass through the plane, and so the object must accelerate only with the component of the free fall acceleration parallel to the plane. Thus,

as = a|| = ± g sinθ

where the sign will depend on which way the plane is inclined.

Page 66: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 66

Chapter 2: Kinematics

Examples for the board…

A horse pulls a sleigh along the snowy street at a constant speed of 2.0 m/s.

A kid on a toy sleigh at the top of a 10.0 m long frictionless ramp inclined at 10° with the horizontal starts sliding down the ramp the instant the horse passes him by.

H

Will the kid overtake the horse and, if so, how far along the ramp?k

10°10 m

notes 2.5

Page 67: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 67

Chapter 2: Kinematics

The ball rolls up the ramp, then back down.

Which is the correct acceleration graph?

Clicker question 2.5

Page 68: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 68

Chapter 2: Kinematics

The ball rolls up the ramp, then back down.

Which is the correct acceleration graph?

Clicker question 2.5

Page 69: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 69

Chapter 2: Kinematics

Which of the green v vs. tgraphs goes with the orange a vs. t graph?

Clicker question 2.6

vx

t0

(a)

vx

t0

(b)

vx

t0

(c)

vx

t0

(d)

Page 70: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 70

Chapter 2: Kinematics

Which of the green v vs. tgraphs goes with the orange a vs. t graph?

Clicker question 2.6

vx

t0

(a)

vx

t0

(b)

vx

t0

(c)

vx

t0

(d)

Page 71: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 71

Chapter 2: Kinematics

If the v vs. t graph is not a straight line, the acceleration is not constant, and we must define an instantaneous acceleration, as.

as = lim =∆∆∆∆vs

∆∆∆∆t

dvs

dt∆∆∆∆t 0

(c) example of non-uniform acceleration

as

t0

vs

tvis

t

s

si

cubic

parabola

Page 72: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 72

Chapter 2: Kinematics

Determining v from an a vs. t graph

Just like ∆∆∆∆s is the area under a v vs. t graph, ∆∆∆∆v is the area under the a vs. t graph:

vfs = vis + lim (as)k ∆∆∆∆t = vis + as dtΣΣΣΣk=1

N

∆∆∆∆t 0

tf

ti

tfti

t (s)

as (ms−2)

The area of a rectangle on an as vs. t graph has units ms−2

(height) x s (width) = ms−1

(units of velocity). The sum of the areas of all the green rectangles is the net change in velocity from ti to tf.

0

Page 73: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 73

Chapter 2: Kinematics

Examples for the board…

Suppose a(t) = 6t − 12 (ms−2).

a) If v(0) = 9, find v(t).

b) If x(0) = 0, find x(t).

c) What are the position, velocity, and acceleration at t = 2? What can you say about the velocity at this time?

d) When is (are) the turning point(s), and what is the acceleration and position there?

e) Graph a(t), v(t), and x(t).

notes 2.6

ended here, 18/9/08

Page 74: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 74

Chapter 2: Kinematics

Examples for the board…

A sprinter accelerates at 2.5 m/s2 until reaching her top speed of 10 m/s. She then continues to run at top speed. How long does it take her to run the 100 m dash?

(answer: 12 s)

v(t)

ttfti tm

10

0

∆∆∆∆t

∆∆∆∆v

notes 2.7

Page 75: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 75

Chapter 2: Kinematics

Examples for the board…

(EOC 31) Three particles, A, B, and C, move along the x-axis each with vx(0) = 10 ms−1. Using the graphs only (and not the kinematical equations), find the velocity of each at t = 7 s.

(answers: vA(7) = −10 ms−1; vB(7) = −20 ms−1; vC(7) = 75 ms−1.)

notes 2.8

Page 76: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 76

Chapter 2: Kinematics

A) If the particle starts from rest at t = 0 s, what is the particle’s speed at t = 1 s?

a) 2 ms-1 b) 5 m/sc) 6 m/s d) 8 ms-1

Clicker question 2.6

0 1 2 3 40

2

4

6

8

t (s)

a (ms-2)

Page 77: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 77

Chapter 2: Kinematics

A) If the particle starts from rest at t = 0 s, what is the particle’s speed at t = 1 s?

a) 2 ms-1 b) 5 m/sc) 6 m/s d) 8 ms-1

Clicker question 2.6

0 1 2 3 40

2

4

6

8

t (s)

a (ms-2)

Page 78: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 78

Chapter 2: Kinematics

A) If the particle starts from rest at t = 0 s, what is the particle’s speed at t = 1 s?

a) 2 ms-1 b) 5 m/sc) 6 m/s d) 8 ms-1

Clicker question 2.6

0 1 2 3 40

2

4

6

8

t (s)

a (ms-2)

B) At what time does the particle first reach its maximum speed?

a) 1 s b) 2 s c) 3 s d) 4 s

Page 79: Chapter 2: Kinematics - Saint Mary's University | Astronomy & Physicsap.smu.ca/~dclarke/PHYS1100/documents/chapter2.pdf ·  · 2008-09-23SMU PHYS1100.1, fall 2008, Prof. Clarke 15

SMU PHYS1100.1, fall 2008, Prof. Clarke 79

Chapter 2: Kinematics

A) If the particle starts from rest at t = 0 s, what is the particle’s speed at t = 1 s?

a) 2 ms-1 b) 5 m/sc) 6 m/s d) 8 ms-1

Clicker question 2.6

0 1 2 3 40

2

4

6

8

t (s)

a (ms-2)

B) At what time does the particle first reach its maximum speed?

a) 1 s b) 2 s c) 3 s d) 4 s