chapter 20 quasi-resonant converters

31
Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters Chapter 20 Quasi-Resonant Converters Introduction 20.1 The zero-current-switching quasi-resonant switch cell 20.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell 20.1.2 The average terminal waveforms 20.1.3 The full-wave ZCS quasi-resonant switch cell 20.2 Resonant switch topologies 20.2.1 The zero-voltage-switching quasi-resonant switch 20.2.2 The zero-voltage-switching multiresonant switch 20.2.3 Quasi-square-wave resonant switches 20.3 Ac modeling of quasi-resonant converters 20.4 Summary of key points

Upload: pia

Post on 06-Jan-2016

76 views

Category:

Documents


3 download

DESCRIPTION

Chapter 20 Quasi-Resonant Converters. Introduction 20.1The zero-current-switching quasi-resonant switch cell 20.1.1Waveforms of the half-wave ZCS quasi-resonant switch cell 20.1.2The average terminal waveforms 20.1.3The full-wave ZCS quasi-resonant switch cell - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 1 Chapter 20: Quasi-Resonant Converters

Chapter 20

Quasi-Resonant Converters

Introduction

20.1 The zero-current-switching quasi-resonant switch cell20.1.1 Waveforms of the half-wave ZCS quasi-resonant switch cell

20.1.2 The average terminal waveforms

20.1.3 The full-wave ZCS quasi-resonant switch cell

20.2 Resonant switch topologies20.2.1 The zero-voltage-switching quasi-resonant switch

20.2.2 The zero-voltage-switching multiresonant switch

20.2.3 Quasi-square-wave resonant switches

20.3 Ac modeling of quasi-resonant converters

20.4 Summary of key points

Page 2: Chapter 20 Quasi-Resonant Converters
Page 3: Chapter 20 Quasi-Resonant Converters
Page 4: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 4 Chapter 20: Quasi-Resonant Converters

The resonant switch concept

A quite general idea:

1. PWM switch network is replaced by a resonant switch network

2. This leads to a quasi-resonant version of the original PWM converter

Example: realization of the switch cell in the buck converter

+–

L

C R

+

v(t)

vg(t)

i(t)

+

v2(t)

i1(t) i2(t)

Switchcell

+

v1(t)

+

v2(t)

i1(t) i2(t)

+

v1(t)

PWM switch cell

Page 5: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 5 Chapter 20: Quasi-Resonant Converters

20.1 The zero-current-switchingquasi-resonant switch cell

+

v2(t)

i1(t) i2(t)

+

v1(t)

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

+

v2(t)

i1(t) i2(t)

+

v1(t)

Lr

Cr

Full-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)

D1

D2

Q1

Tank inductor Lr in series with transistor: transistor switches at zero crossings of inductor current waveform

Tank capacitor Cr in parallel with diode D2 : diode switches at zero crossings of capacitor voltage waveform

Two-quadrant switch is required:

Half-wave: Q1 and D1 in series, transistor turns off at first zero crossing of current waveform

Full-wave: Q1 and D1 in parallel, transistor turns off at second zero crossing of current waveform

Performances of half-wave and full-wave cells differ significantly.

Page 6: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 6 Chapter 20: Quasi-Resonant Converters

The switch conversion ratio µ

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

In steady state:

A generalization of the duty cycle d(t)

The switch conversion ratio µ is the ratio of the average terminal voltages of the switch network. It can be applied to non-PWM switch networks. For the CCM PWM case, µ = d.

If V/Vg = M(d) for a PWM CCM converter, then V/Vg = M(µ) for the same converter with a switch network having conversion ratio µ.

Generalized switch averaging, and µ, are defined and discussed in Section 10.3.

Page 7: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 7 Chapter 20: Quasi-Resonant Converters

Averaged switch modeling of ZCS cells

It is assumed that the converter filter elements are large, such that their switching ripples are small. Hence, we can make the small ripple approximation as usual, for these elements:

In steady state, we can further approximate these quantities by their dc values:

Modeling objective: find the average values of the terminal waveforms

v2(t) Ts and i1(t) Ts

Page 8: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 8 Chapter 20: Quasi-Resonant Converters

20.1.1 Waveforms of the half-wave ZCSquasi-resonant switch cell

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

The half-wave ZCS quasi-resonant switch cell, driven by the terminal quantities v1(t)Ts and i2(t)Ts.

= 0t

i1(t)

I2

v2(t)

0Ts

Vc1

Subinterval: 1 2 3 4

Conductingdevices:

Q1

D2

D1

Q1

D1

D2X

Waveforms:

Each switching period contains four subintervals

Page 9: Chapter 20 Quasi-Resonant Converters

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

Page 10: Chapter 20 Quasi-Resonant Converters

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

Page 11: Chapter 20 Quasi-Resonant Converters

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

Page 12: Chapter 20 Quasi-Resonant Converters

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

Page 13: Chapter 20 Quasi-Resonant Converters

+–

+

v2(t)

i1(t)

v1(t)Ts

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

i2(t)Ts

Page 14: Chapter 20 Quasi-Resonant Converters
Page 15: Chapter 20 Quasi-Resonant Converters
Page 16: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 16 Chapter 20: Quasi-Resonant Converters

Page 17: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 17 Chapter 20: Quasi-Resonant Converters

Page 18: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 18 Chapter 20: Quasi-Resonant Converters

Page 19: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 19 Chapter 20: Quasi-Resonant Converters

Page 20: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 20 Chapter 20: Quasi-Resonant Converters

Analysis result: switch conversion ratio µ

Switch conversion ratio:

with

This is of the form

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

Js

Page 21: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 21 Chapter 20: Quasi-Resonant Converters

Characteristics of the half-wave ZCS resonant switch

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Js

ZCS boundary

F = 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Js ≤ 1

Switch characteristics:

Mode boundary:

Page 22: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 22 Chapter 20: Quasi-Resonant Converters

Buck converter containing half-wave ZCS quasi-resonant switch

Conversion ratio of the buck converter is (from inductor volt-second balance):

For the buck converter,

ZCS occurs when

Output voltage varies over the range

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Js

ZCS boundary

F = 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Page 23: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 23 Chapter 20: Quasi-Resonant Converters

Boost converter example

+–

Q1

L

C R

+

V

D1Vg

i2(t)

D2

Lr

CrIg

+

v1(t)

i1(t)

– v2(t) +For the boost converter,

Half-wave ZCS equations:

Page 24: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 24 Chapter 20: Quasi-Resonant Converters

Page 25: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 25 Chapter 20: Quasi-Resonant Converters

20.1.3 The full-wave ZCS quasi-resonant switch cell

= 0t

i1(t)

I2

v2(t)

0Ts

Vc1

Subinterval: 1 2 3 4

Conductingdevices:

Q1

D2

Q1 D1 D2X

= 0t

i1(t)

I2

v2(t)

0Ts

Vc1

Subinterval: 1 2 3 4

Conductingdevices:

Q1

D2

D1

Q1

D1

D2X

+

v2(t)

i1(t) i2(t)

+

v1(t)

Lr

Cr

Half-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)D1

D2

Q1

+

v2(t)

i1(t) i2(t)

+

v1(t)

Lr

Cr

Full-wave ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)

D1

D2

Q1

Half wave

Full wave

Page 26: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 26 Chapter 20: Quasi-Resonant Converters

Page 27: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 27 Chapter 20: Quasi-Resonant Converters

Analysis: full-wave ZCS

Analysis in the full-wave case is nearly the same as in the half-wave case. The second subinterval ends at the second zero crossing of the tank inductor current waveform. The following quantities differ:

In either case, µ is given by

Page 28: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 28 Chapter 20: Quasi-Resonant Converters

Full-wave cell: switch conversion ratio µ

Full-wave case: P1 can be approximated as

so

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Js

ZCS boundary

F = 0.2 0.4 0.6 0.8

Page 29: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 29 Chapter 20: Quasi-Resonant Converters

20.2 Resonant switch topologies

Basic ZCS switch cell:

+

v2(t)

i1(t) i2(t)

+

v1(t)

Lr

Cr

ZCS quasi-resonant switch cell

Switch network

+

v1r(t)

i2r(t)

D2

SW

SPST switch SW:

• Voltage-bidirectional two-quadrant switch for half-wave cell

• Current-bidirectional two-quadrant switch for full-wave cell

Connection of resonant elements:

Can be connected in other ways that preserve high-frequency components of tank waveforms

Page 30: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 30 Chapter 20: Quasi-Resonant Converters

Connection of tank capacitor

+

v2(t)

i1(t) i2(t)

Vg

Lr

Cr

ZCS quasi-resonant switch

D2

SW

+–

L

C R

+

V

+

v2(t)

i1(t) i2(t)

Vg

Lr

Cr

ZCS quasi-resonant switch

D2

SW

+–

L

C R

+

V

Connection of tank capacitor to two other points at ac ground.

This simply changes the dc component of tank capacitor voltage.

The ac high-frequency components of the tank waveforms are unchanged.

Page 31: Chapter 20 Quasi-Resonant Converters

Fundamentals of Power Electronics 31 Chapter 20: Quasi-Resonant Converters

A test to determine the topologyof a resonant switch network

+

v2(t)

i1(t)

Lr

CrD2

SW

Replace converter elements by their high-frequency equivalents:

• Independent voltage source Vg: short circuit

• Filter capacitors: short circuits

• Filter inductors: open circuits

The resonant switch network remains.

If the converter contains a ZCS quasi-resonant switch, then the result of these operations is