chapter 3 integral of complex function §3.1 definition and properties §3.2 cauchy integral theorem...

45
hapter 3 Integral of Complex Funct §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic Functions

Upload: jeremy-johns

Post on 01-Jan-2016

241 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Chapter 3 Integral of Complex Function

§3.1 Definition and Properties

§3.2 Cauchy Integral Theorem

§3.3 Cauchy’s Integral Formula

§3.4 Analytic and Harmonic Functions

Page 2: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Review

1

( ) lim ( )nb

i ia ni

f x dx f x

1

( , ) lim ( , )n

i i in

iD

f x y d f

1

( , , ) lim ( , , )n

i i i ini

f x y z dV f V

1 1

( , ) ( , ) lim[ ( , ) ( , ) ]n n

i i i i i iL ni i

P x y dx Q x y dy P x Q y

n

iiiii

nSfdSzyxf

1

),,(lim),,(

1

( , ) lim ( , )n

i i iL ni

f x y ds f s

Page 3: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

§3.1 Definition and Properties

0 1 2 1, , , , , , ,k k nz z z z z z

1 ( 1, 2, , )k k kz z k n

11 1

( )( ) ( ) , n n

n k k k k kk k

S f z z f z

1where k k kz z z

11

Let be the length of arc , max{ }k k k kk n

S z z S

( 0)

when & 0, lim exist.nn

n S

1. Def. C smooth (or piecewise smooth)

f : C→C.

Page 4: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

( ) integrable on , the limit is called the integral

of ( ) along .

f z C

f z C

C1( 0)

Denote ( )d lim ( ) (3.1.1)n

k kn

k

f z z f z

C —— path of integral f —— integrandZ —— integration variable

the limit is called the integral of f along C,

denoted by .

If C is closed, we can write .

C( )df z z

C( )df z z

Page 5: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

2. EvaluationLet i , ( ) ( , ) i ( , ), =1,2,k k k k k k k ky f u y v y k n

1 1 1i ( i )k k k k k k kz z z x y x y

1 1( ) i( ) ik k k k k kx x y y x y

1 1

( ) [ ( , ) i ( , )]( i )n n

k k k k k k k kk k

f z u v x y

1 1

[ ( , ) ( , ) ] i [ ( , ) ( , ) ]n n

k k k k k k k k k k k kk k

u x v y v x u y

1

d d lim [ ( , ) ( , ) ]n

k k k k k kC nk

u x v y u x v y

1

d d lim [ ( , ) ( , ) ]n

k k k k k kC nk

u x v y u x v y

Page 6: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

TH 3.1.1 ( ) ( , ) i ( , ) integral on Cf z u x y v x y ( )d d d i d d

C C Cf z z u x v y v x u y (3.1.2

)Corollary: ( )is integral on C if ( ) is continuous on smooth or piecewise smooth arc C.

f z f z

( ) ( ) i ( ) [3.1.3], :z z t x t y t t

( )d ( ), ( ) '( ) ( ), ( ) '( ) dC

f z z u x t y t x t v x t y t y t t

i ( ), ( ) '( ) ( ), ( ) '( ) dv x t y t x t u x t y t y t t

( ), ( ) i ( ), ( ) ( '( ) i '( ))du x t y t v x t y t x t y t t

( ( ) '( )df z t z t t

(3.1.4)

Page 7: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.1 010

d, C: ( 0), ,

( )nC

zz z r r n N

z z

C is counterwise clock.

010

2 , if 0d is independent of , .

0, if 0( )nC

i nzz r

nz z

center of a circle

radius

0

2

1 1100

2 2

0 0

parameter equation of is: ,0 2 ,i

i

n i nnc

inn in n

C z z re

dz ired

r ez z

i id e d

r e r

Page 8: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

3. Properties

① ( )d ( )dC C

f z z f z z

② ( )d ( )d

C Ckf z z k f z z

③ ( ) ( ) d ( )d ( )dC C C

f z g z z f z z g z z ④

1 2 1 2

( )d ( )d ( )dC C C C

f z z f z z f z z

⑤ ( )d ( ) ds ML, ( ) M on C

C Cf z z f z f z

the length of C(Pf. P38)

⑥ ( )d independent of parametric representation of CC

f z z

Page 9: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

①2

C : , [0,1]x t

ty t

1 20

2 11iI [2 i ] (2 i)d

3t t t

② C : , [0,2]2

x ttty

2 20

1 2 11iI [ i ] (1 i)d

2 2 3

tt t

2I dC

z zEx.

Page 10: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

③ 1 2 1C=C C C : , [0, 2], 0 i0

x xx z x

y

2

2C : , [0,1], 2 i

xy z y

y y

1 20

2 11iI [2 i ] (2 i)d

3t t t

2 2 1 20 0

8 11i 2 11id (2 i) id 2

3 3 3x x y y

Note: I independent of integration path.

Page 11: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.1.21 2

1Evaluate

1z

zI dz

z

On circle 1 2,

1 1 2 1( 1 2) 2.

1 2 2

the length of circle 1 2 is 4 ,

8 .

z

z zz

z

z L

I LM

Page 12: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.1.32

2

Evaluate ( ) , :

(1). (0,1) (1,2) along 1;

(2). (0,1) (1,1) (1,2), .

Cz dz C

A B y x

A N B ANB

2

2 2

1 22 2

0

1 14 2 5 3

0 0

(1).The parametric equation of 1is:

( 1), : 0 1, ( 1), (1 2 ) ,

( ) ( 1) (1 2 )

(3 3 1) ( 2 4 4 )

3 10.

5 3

C

y x

z x i x x z x i x dz xi dx

z dz x i x xi dx

x x dx i x x x dx

i

Page 13: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

1 2

12 2 2 2

0

2 2

1

2 .The parametric equation of is: , : 0 1,

the parametric equation of is: 1 , :1 2,

( ) ( ) ( ) ( 1 2 )

7 7[2 (1 ) ] .

3 3

C C C

AN z x i x

NB z iy y

z dz z dz z dz x xi dx

y y i dy i

Note: integration of f(z) dependent on integration path.

Page 14: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

§3.2 Cauchy Integral Theorem

d d indepentent of integration pathC

P x Q yP Q

y x

—— continuous

( )d d d i d dC C C

f z z u x v y v x u y v u

y x

v u

x y

C-R equation

TH.3.2.1(Cauchy TH)

( )analytic on (simply connected domain)

( ) 0, .C

f z D

f z dz whereC D

Page 15: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

TH 3.2.2 P42

1

1 2 0

( )d ( )d ( )dz

C C zf z z f z z f z z

upper limit

lower limit

0

( ) ( )d -primitive function antiderivativez

zF z f z z

( )analytic on (simply connected domain)

( ) along on is independent of integral path,

and it is only determined by starting point and end point.

then:

C

f z D

f z dz C D

Page 16: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

TH 3.2.3 P45

0

( ) analytic on (simply connected domain)

( ) ( )d is analytic function in ,and '( ) ( ).z

z

f z u iv D

F z f z z D F z f z

0 0 0 0 0

0 0 0 0

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

Pf: ( ) ( )d

( , ) ( , ),

where ( , ) , ( , ) .

integration of ( )is independent of integration path,

so ar

z x y x y

z x y x y

x y x y

x y x y

F z f z z udx vdy i vdx udy

P x y iQ x y

P x y udx vdy Q x y vdx udy

f z

e ( , ) ( , ),

, , , , , .

( ) ( , ) ( , )is analytic function,

and '( ) ( ).

x y x y x y y x

x x

P x y and Q x y

P u P v Q v Q u P Q P Q

F z P x y iQ x y

F z P iQ u iv f z

Page 17: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Def.3.2.1

Properties

① G anti derivative of f on D G analytic on D

② G1and G2 anti derivative of f on D

G1=G2 +constant on D.

TH 3.2.5 (Fundamental Theorem of Contour Integral)

( ) is anti derivative of ( ) on , if '( ) ( ) on .G z f z D G z f z D

0 1

( )analytic on (simply connected domain),

'( ) ( ) on , , ,

f z D

G z f z D z z 0

1 0( )d ( ) ( )z

zf z z G z G z

Page 18: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.2.15sin( 2 1)

23 1

.1

z z

z

eI dz

z

5sin( 2 1)

2

The singular points are outside 3 1,

so is analytic on and in 3 1,1

.3.2.1 0.

z z

z i z

ez

zTH I

Page 19: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.2.22 2 2

1

1(1). ; (2). along the right curve.

i i

i iz dz dz

z

3

2 2 2 2 2 3 311

1 14(1). | [(2 2 ) (1 ) ] ( 1 ).

3 3 3

i iii

zz dz i i i

(2).Log function is multivalued,analytic on except , 0.

1( )

1| (ln arg 2 ) |

[arg( ) arg( )] .

k

i i ii ii

z x x

dLnz

dz z

dz Lnz z i z k iz

i i i i

C

Page 20: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Generalized Cauchy theorem in multi-connected domains

1 2 nT C C C C

TH 3.2.5 D multi connected with multi closed contours

Γ,f(z) analytic in D and on Γ.

1 2

( )d ( )d 0nC C C C

f z z f z z

1

or ( )d ( )dk

n

C Ck

f z z f z z

Page 21: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

1

n=1, ( )d ( )dC C

f z z f z z -Deformation Theorem

Page 22: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

2

1(1)

1C C C

dz dzdz

z z z z

2 11C C

dz dz

z z

2 2

0

i i

Closed Deformation Theorem

Ex.3.2.3

2

1 1 1( )

1z z z z

2

1, is positive oriented simple closed curve,

and 1 is in curve .

Cdz C

z zz C

Solutions:

Page 23: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

C

1C2C

0 1

(2) .3.2.5TH

1 22 2 2

1C C C

dz dzdz

z z z z z z

1 1 2 21 1C C C C

dz dz dz dz

z z z z

0 2 2 0i i

0

Page 24: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Homework:

P59-60: A1-A7

Page 25: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

00 0

( ) ( )Closed Deformation Theorem

C z z

f z f zdz dz

z z z z

0 0f z f z ��������������

0

0 00

1( ) d 2 π ( ).

z z

f z z if zz z

DC

0z

§3.3 Cauchy’s Integral Formula & High Order Derivative

0 , and ( ) is analytic on D,then:z D f z

Analysis:

Page 26: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

1. Cauchy’s Integral Formula: (TH 3.3.1)

0( ) analytic on C and on C, inside f z z C

00

1 ( )( ) d

2 i C

f zf z z

z z

Pf. ∵f(z) continuous at z0,

00, 0, z z

0

0

( ) ( ) ,

Let , :

f z f z

R k z z R C

Page 27: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

0 0

( ) ( )d d

C K

f z f zz z

z z z z

0 0

0 0

( ) ( ) ( )d d ( 0)

K K

f z f z f zz z

z z z z

00

0 0

( ) ( )( ) ( )d d d 2

K K K

f z f zf z f zz s s

z z z z R

00

( )d 2 i ( )

C

f zz f z

z z

1 ( )

( ) d , : inside points of C2 i C

ff z z z

z

Page 28: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Note 1. f(z) on D depend on f(z) on C

D: domain

2. f =g analytic on C f =g on D

3. f: → C analytic.

00

1 ( )( ) d

2 i C

f zf z z

z z

2 i

00

1( e )dt

2tf z r

average of over [0,2 ]f

Page 29: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

dzz

dzz zz

44 3

12

1

1

.62.21.2 iii

4

1 2

1 3zdz

z z

4

1 2,along the positive oriented

1 3

circle 4.

zdz

z z

z

Ex:

Page 30: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex: : ( 1, 2)

( 1)( 2)

z

C

edz C z r r

z z z

0 1,when r

C

z

dzz

zz

e

)2)(1(

izz

ei

z

z

0

)2)(1(2

Solution:

Page 31: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

0

21 CC

2 1

)2(C

z

dzz

zz

e

i

3C

2

2C1

1C

1 2,when r

ie

i3

2

1)2(

2

z

z

zz

eii

Page 32: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

3 2)1(

3

2C

z

dzzzz

e

ie

i

2)1(

23

2

z

z

zz

eii

ei

ie

ie

i33

2 2

2,when r

321 CCC

Page 33: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

2. Existence of higher derivative

TH 3.3.2. f analytic on C & on D,

0 z D

0 10

! ( )( ) d , 1, 2,

2 i ( )n

nC

n f zf z z n

z z

Pf. n=1

0 00 0

1 ( ) 1 ( )( ) d , ( ) d

2 i 2 iC C

f z f zf z z f z z z

z z z z z

0 0

0 0

( ) ( ) 1 ( ) ( )d d

2 i C C

f z z f z f z f zz z

z z z z z z z

Page 34: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

0 0

1 ( )d

2 i ( )( )C

f zz

z z z z z

2 20 0 0

1 ( ) 1 ( )d d

2 i ( ) 2 i ( ) ( )C C

f z zf zz z

z z z z z z z

I

3

ML0, ( 0)z z

d

20 0

1 ( )I d

2 ( ) ( )C

zf zz

z z z z z

2

0 0

( )1ds

2 C

z f z

z z z z z

Page 35: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

0 20

1 ( )'( ) d

2 i ( )C

f zf z z

z z

Note. f(z) analytic on D

f (n)(z) exist on D & analytic on D. n=1,2,

-the difference with real function

Page 36: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

5

cos(1). not analytic on 1in .

( 1)

but cos analytic in .

zz C

z

z C

.12

)(cos)!15(

2d

)1(

cos 5

1

)4(5 | i

zi

zz

zz

C

5 2 2

cos e(1) d ; ( 2) d ; | | 1,

( 1) ( 1)

C:positive oriented circle.

z

C C

zz z z r

z z

Ex:

Page 37: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

2 2(2)

( 1)

z

C

edz

z

1 22 2 2 2( 1) ( 1)

z z

C C

e edz dz

z z

21

2

2

2

2

)(

)(

)(

)(C

z

C

z

dziz

iz

e

dziz

iz

e

2 22

( ) ( )

z z

z i z i

e ei

z i z i

)4

1sin(2 i

1 2C C C

2C

1C

Page 38: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

§3.4 Analytic and Harmonic Function

continuous on D), and

Def. real

harmonic

on D, if

D is domain, : D , C R ( , )x y2( , ) C (D) ( , , , exist and x y xx yyx y

=0, xx yy Laplace Equation

is called harmonic function on D.

Def. u, v harmonic on D, v is harmonic conjugate of u

if ' ' , ' ' on D. (C-R equation)x y y xu v u v

( , )x y

Page 39: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Note. v harmonic conjugate of u u harmonic conjugate of v

i.e. u+iv analytic on D v+iu analytic on D

2 2 2

2 2Ex. ( ) i 2 analytic on 2 +i ( ) is not analytic on

f z z x y xyxy x y

CC

Properties:

(1). , , .?

u iv analytic on D u vharmonic on D

(2). i , analytic on D

  , harmonic on D & harmonic conjugate of .

f u v

u v v u

TH.3.4.2

Page 40: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

(3). v harmonic conjugate of u -u harmonic conjugate of v

i.e. u+iv analytic on D v-iu analytic on D

(4). v harmonic conjugate of u on D u harmonic conjugate of v on D

u, v constants on D.

(5). v1,v2 harmonic conjugate of u on D v1=v2 + constant on D.

Pf. u+iv1 analytic on D, u+iv2 analytic on D i(v1-v2) analytic on D v1-v2 analytic on D (real)

v1-v2 =constant.

Page 41: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Question:

Does u have a harmonic conjugate (ux=vy , uy=-vx) on

D?

Does there exist an analytic f :D →C, u=Re f ?

(v=Im f )Ans. No in general .yes if D is simply connected.

Page 42: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

D simply connected domain, u harmonic on D,

find , ( ) i analytic.v f z u v

d d d d dv v u u

v x y x yx y y x

0 0

( , )

( , )( , ) d d independent of integral path

x y

x y

u uv x y x y

y x

0 00( , ) '( , )d '( , )dy C

x y

y xx yv x y u x y x u x y

'( ) ' - ' '( ) ' - 'x y y xf z u iu or f z v iv integration of '( ).f z

Similarly,

0 00( , ) '( , )d '( , )dy C

x y

y xx yu x y v x y x v x y

Page 43: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.4.2Prove 2 aharmonic function

and ( ) satisfying ( ) -1.

v xy

f z u iv f i

2 2

2 2

2 2

2 2

2

2

2 2

2 2 2 2

2 , 0; 2 , 0.

0 2 is a harmonic function.

2 2 ( ).

2 ' ( ) .

2 .

( ) 2 ( ) ,

( ) -1

v v v vy x

x x y y

v vv xy

x y

u vx u xdx x g y

x y

v uy g y g y y C

x y

u xdx x y C

f z x y C i xy x iy C z C

f i C

20. ( ) .f z z

Solution:

Page 44: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Ex.3.4.3 2 2is a harmonic function on Re( ) 0,

xu z

x y

1( ) satisfying (1 ) .

2

if z u iv f i

' '

1 0

2 2

2 2 2 2 2 2 20 0

2 2

(1). ( , ) ( ,0) ( , )

( ) .( )

1( ) .

1 1(1 ) 0 ( ) .

2

x y

y x

y y

v x y u x dx u x y dy C

y x y ydy C dy C C

x y y x y x y

x iyf z Ci iC

x y z

if i C f z

z

2 2 2 2

' '2 2 2 2 2 2 2 2 2 2

21

2 2 1(2). '( ) ,

( ) ( ) ( )

1 1( ) 1 .

1 1 1(1 ) ( ) .

2

x y

z

y x xyi y x xyif z u iu

x y x y x y z

f z dz iC iCz z

if i C f z

i z

method2

method1

Page 45: Chapter 3 Integral of Complex Function §3.1 Definition and Properties §3.2 Cauchy Integral Theorem §3.3 Cauchy’s Integral Formula §3.4 Analytic and Harmonic

Homework:

P60-61: A8-A17