chapter 3.9: break forming

Upload: dan-wolf

Post on 30-May-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Chapter 3.9: Break Forming

    1/16

    Chapter 3.9: Break Forming

    3.9 Break Forming

    Summary 2

    Chapter Overview 3

    Detailed Session Description of Break Forming 4

    Run Job and View Results 9

    Discussion 13

    Modeling Tips 14

    Input Files 15

    Animation 16

  • 8/14/2019 Chapter 3.9: Break Forming

    2/16

    Marc Users GuideSummary

    3.9-2

    Summary

    Title Break forming of a metal bracket

    Problem features Contact and metal forming - clickhere for interactive preview

    Geometry

    Material properties E = 30x106 Psi, = 0.3,

    Analysis type Static with elastic plastic material behavior

    Boundary conditions Ux = 0 at center nodes, cylindrical rigid body bends metal sheet

    Element type Plane strain element type 11

    FE results Punch load verses stroke

    u=1

    v=0.4Grid Spacing 0.1 in

    X

    Y

    Z

    5x104 1 p0.6

    + =

    job1

    70696867666564636261

    Pos Y cbody2 (x.1)

    Force Y cbody2 (x1000)

    -3 060

    1.289

    0 5957

    4039

    383736

    35343332

    3130

    4142

    4344

    5655545352 5851

    49

    48

    4746

    45

    50

    292826

    9

    8

    7654321

    0

    10111213

    25

    2423222120181716151419

    27

    http://www.mscsoftware.com/product_demos/Marc_Nonlinear_Analysis/player.htmlhttp://www.mscsoftware.com/product_demos/Marc_Nonlinear_Analysis/player.html
  • 8/14/2019 Chapter 3.9: Break Forming

    3/16

    3.9-3CHAPTER 3.9Break Forming

    Chapter Overview

    A flat sheet is formed into an angled bracket by punching it though a hole in a table using thecontact option.

    Figure 3.9-1 Punching Examples

    The cylindrical punch drives the sheet down into the hole of the table to a total stroke of 0.3. The punch

    then returns to its original position. The material is elastic plastic with workhardening.

    Figure 3.9-2 (A) Vertical Punch Load versus Stroke (B) Stress versus Plastic Strain

    At the bottom of the stroke, the total plastic strain is nearly 45%. The vertical punch force is plotted

    versus its vertical position. This force rises quickly, hardens though about half of the stroke, then softens

    near the end of the stroke. Upon lifting the punch, the punch force drops rapidly and the sheet has very

    little springback.

    The stress-plastic strain response of a point in the sheet under the punch is plotted and shown to overlay

    the material data. This workshop problem exemplifies how every point in the sheet must follow the

    materials constitutive behavior as well as being in equilibrium throughout the deformation. The vertical

    line in the history plot to the right is the elastic unloading of this point in the sheet.

    This is a break forming problem where a punch indents a sheet over a table to make an bracket.

    The problem geometry is shown below:

    X

    Y

    Z-2.149e-004

    4.581e-002

    9.184e-002

    1.379e-001

    1.839e-001

    2.299e-001

    2.759e-001

    3.220e-001

    3.680e-001

    4.140e-001

    4.600e-001

    lcase1

    Total Equivalent Plastic Strain

    Inc: 50Time: 5.000e-001

    X

    Y

    Z

    1

    -2.149e-004

    4.581e-002

    9.184e-002

    1.379e-001

    1.839e-001

    2.299e-001

    2.759e-001

    3.220e-001

    3.680e-001

    4.140e-001

    4.600e-001

    lcase2

    Total Equivalent Plastic Strain

    Inc: 70Time: 1.000e+000

    X

    Y

    Z

    1

    job1

    70696867666564636261

    Pos Y cbody2 (x.1)

    Force Y cbody2 (x1000)

    -3 060

    1.289

    0 5957

    4039

    383736

    35343332

    3130

    4142

    4344

    5655545352 5851

    49

    48

    4746

    45

    50

    292826

    9

    8

    7654321

    0

    10111213

    25

    2423222120181716151419

    27

    10.0 0.2 0.4 0.6 0.8 1.0

    0

    20000

    40000

    60000

    80000

    100000

    Strength

    Equivalent Von Mises Stress Node 63

    Total Equivalent Plastic Strain

    Elastic Unload

    A B

  • 8/14/2019 Chapter 3.9: Break Forming

    4/16

    Marc Users GuideDetailed Session Description of Break Forming

    3.9-4

    Figure 3.9-3 Break Forming Geometry Problem

    Detailed Session Description of Break FormingMESH GENERATION

    COORDINATE SYSTEM SET: GRID ON

    V DOMAIN

    -.7 .4

    FILLRETURN

    CURVES ADD (pick indicated points on grid)POINT (1,0,0), POINT(.3,0,0)

    POINT(.3,0,0), POINT(.3,-.6,0)

    POINT(.3,-.6,0), POINT(-.3,-.6,0)

    POINT(-.3,-.6,0), POINT(-.3,0,0)

    POINT(-.3,0,0), POINT(-1,0,0)

    CURVE TYPE

    FILLET

    RETURN

    CURVES ADDradius (right horizontal curve, right vertical curve)

    0.1

    radius (left vertical curve, left horizontal curve)

    0.1

    CURVE TYPE

    CIRCLES: CENTER/RADIUSRETURN

    CURVES ADD

    0 .2 0

    .1

    ELEMENTS ADD (pick points on grid)

    Grid spacing 0.1" X 0.1"

    u=1

    v=0.4Grid Spacing 0.1 in

    Y

    Z

  • 8/14/2019 Chapter 3.9: Break Forming

    5/16

    3.9-5CHAPTER 3.9Break Forming

    NODE (-.9,0,0), NODE(.9,0,0)NODE(.9,.1,0), NODE(-.9,.1.0)

    SUBDIVIDEDIVISIONS

    30, 3, 1

    ELEMENTS

    ALL:EXISTING

    RETURN

    SWEEPALL

    RETURN

    RENUMBERALL

    RETURN

    COORDINATE SYS: SET GRID OFF

    RETURN (twice)

    BOUNDARY CONDITIONSMECHANICAL

    FIXED DISP

    X=0

    OK

    NODES:ADD (pick nodes along x=0,)

    MAIN

    MATERIAL PROPERTIES

    MATERIAL PROPERTIESNEW

    STANDARD

    STRUCTURAL

    E = 3E7= .3

    OKELEMENTS ADD

    ALL: EXISTING

    TABLES

    NEW

    1 IND. VARIABLE

    TABLE TYPE

  • 8/14/2019 Chapter 3.9: Break Forming

    6/16

    Marc Users GuideDetailed Session Description of Break Forming

    3.9-6

    Figure 3.9-4 Flow Stress

    eq_plastic_strainOK

    FORMULAENTER

    5E4*(1+V1^.6) The equation describing the flow

    FIT stress isNEW

    1 IND. VARIABLE

    TABLE TYPE time

    OK

    ADD POINT

    0, 0, .5, -.3, 1, 0FIT

    SHOW MODEL

    RETURN

    6

    5

    4

    3

    2

    1

    1

    0.510

    F (x1e5)

    V1

    table1

    7

    8

    9

    1011

    y 5x104

    1. p.6

    + =

  • 8/14/2019 Chapter 3.9: Break Forming

    7/16

    3.9-7CHAPTER 3.9Break Forming

    Figure 3.9-5 Punch Position

    STRUCTURAL

    PLASTICITY (twice)INITIAL YIELD STRESS

    1

    TABLE1

    table1 (eq_plastic_strain)

    OK (twice),MAIN

    CONTACTCONTACT BODIES

    DEFORMABLE

    OK

    ELEMENTS ADD

    ALL:EXISTING

    NEW

    RIGIDPOSITION PARAMS

    Y=1

    TABLEtable2 (time),

    OK (twice)

    table2

    V1

    F (x.1)

    -3

    0 1

    2

    3

  • 8/14/2019 Chapter 3.9: Break Forming

    8/16

    Marc Users GuideDetailed Session Description of Break Forming

    3.9-8

    CURVE ADD (pick cylinder)

    END LIST

    ID CONTACT

    NEWCONTACT BODY TYPE RIGID

    OK

    CURVES ADD (pick all remaining curves)

    END LIST

    MAIN

    Figure 3.9-6 Identify Contact Bodies

    LOADCASES

    MECHANICAL

    STATICLOADCASE TIME

    .5

    # OF STEPS

    50

    CONVERGENCE TESTINGDISPLACEMENTS

    RELATIVE DISPLACEMETN TOLERANCE

    0.001

    OK (twice)COPY

    STATICLOADCASE TIME

    .5

    # OF STEPS

    20

    OK

    MAINJOBS

    NEW

    MECHANICAL

    PROPERTIES

    ANALYSIS OPTIONSLARGE STRAIN

    OK

    lcase1

    cbody1

    cbody2

    cbody3

    X

    Y

    Z

  • 8/14/2019 Chapter 3.9: Break Forming

    9/16

    3.9-9CHAPTER 3.9Break Forming

    lcase2

    ANALYSIS DIMENSION: PLANE STRAIN

    JOB RESULTSEQUIVALENT VON MISES STRESS

    TOTAL EQUIVALENT PLASTIC STRAIN

    OK

    CONTACT CONTROL

    ADVANCED CONTACT CONTROL

    SEPARATION FORCE

    .1

    OK

    OK (thrice)SAVE

    Run Job and View ResultsRUN

    SUBMIT

    MONITOR

    Figure 3.9-7 Run Job Menu

    OPEN POST FILE (RESUTLS MENU)

    DEF ONLY

    SCALARTOTAL EQUIVALENT PLASTIC STRAIN

    CONTOUR BANDSSKIP TO INCREMENT 50

  • 8/14/2019 Chapter 3.9: Break Forming

    10/16

    Marc Users GuideRun Job and View Results

    3.9-10

    Figure 3.9-8 Plastic Strain Plot at Increment 50

    RESULTSSKIP TO INCREMENT 70

    Figure 3.9-9 Plastic Strain Plot at Increment 70

    -2.149e-004

    4.581e-002

    9.184e-002

    1.379e-001

    1.839e-001

    2.299e-001

    2.759e-001

    3.220e-001

    3.680e-001

    4.140e-001

    4.600e-001

    lcase1

    Total Equivalent Plastic Strain

    Inc: 50Time: 5.000e-001

    X

    Y

    Z

    1

    -2.149e-004

    4.581e-002

    9.184e-002

    1.379e-001

    1.839e-001

    2.299e-001

    2.759e-001

    3.220e-001

    3.680e-001

    4.140e-001

    4.600e-001

    lcase2

    Total Equivalent Plastic Strain

    Inc: 70Time: 1.000e+000

    X

    Y

    Z

    1

  • 8/14/2019 Chapter 3.9: Break Forming

    11/16

    3.9-11CHAPTER 3.9Break Forming

    RESULTSHISTORY PLOT

    SET LOCATIONSn:63 # (pick bottom middle node n:63)

    ALL INCS

    ADD CURVES

    GLOBAL

    Pos Y cbody2

    Force Y cbody2FIT

    Figure 3.9-10 History Plot of Punch Force versus Stroke

    job1

    70696867666564636261

    Pos Y cbody2 (x.1)

    Force Y cbody2 (x1000)

    -3 0

    60

    1.289

    0 5957

    4039

    383736

    35343332

    3130

    4142

    4344

    5655545352 5851

    49

    48

    4746

    45

    50

    292826

    9

    8

    7654321

    0

    10111213

    25

    2423222120181716151419

    27

    M U G id3 9 12

  • 8/14/2019 Chapter 3.9: Break Forming

    12/16

    Marc Users GuideRun Job and View Results

    3.9-12

    RESULTS

    HISTORY PLOT

    CLEAR CURVES

    ALL INCSADD CURVES

    ALL LOCATIONS

    Total Equivalent Plastic Strain

    Equivalent Von Mises Stress

    FIT

    Figure 3.9-11 Stress versus Plastic Strain Node 63

    0.0 0.2 0.4 0.6 0.8 1.00

    20000

    40000

    60000

    80000

    100000

    Strength

    Equivalent Von Mises Stress Node 63

    Total Equivalent Plastic Strain

    Elastic Unload

    3 9 13CHAPTER 3 9

  • 8/14/2019 Chapter 3.9: Break Forming

    13/16

    3.9-13CHAPTER 3.9Break Forming

    Discussion

    Since the sheet will completely wrap around the rigid cylinder an the end of the bending, we can estimatethe strain assuming that the sheet completely surrounds the cylinder, and by knowing the strain, the stress

    can also be estimated as shown in Figure 3.9-12.

    Figure 3.9-12 Estimating the bending strain and stress in the center of the sheet

    With the stresses estimated we can assume that a fully plastic hinge forms in the center of the sheet and

    estimate the punch load as shown in Figure 3.9-13.

    Figure 3.9-13 Estimating the bending moment and maximum punch load

    The estimate for the maximum punch load, 1250 lbf, is very close to that found by the analysis as shown

    in Figure 3.9-10 of 1289 lbf. Finally, although the final angle after spring back appears close to 90o, its

    actual value is 84o, and the punch stroke should be slightly reduced to form a right angle after springback.

    A B

    C D

    A B

    O

    C D

    ( )= =

    ( )( ) = 75 Ksi

    CD

    C D C D

    CD---------------------------=

    C D A B=

    A B AB=

    CD

    CD AB

    AB-----------------------

    rOC rOA

    rOA ---------------------------------

    rOC r OA

    rOA

    -------------------------=

    CD

    0.20 0.15

    0.15---------------------------

    0.05

    0.15----------

    1

    3---= = =

    CD 5x10

    31 1 3

    0.6+ /

    r = 0.1

    t = 0.1

    0.3

    M

    M

    P/2P/2

    (y)

    y

    y

    x

    x

    Marc Users Guide3 9-14

  • 8/14/2019 Chapter 3.9: Break Forming

    14/16

    Marc User s GuideModeling Tips

    3.9 14

    Modeling Tips

    The punch force in Figure 3.9-10 has an abrupt jump at increment 50 which is caused by a new node

    entering contact between the sheet and the rigid table. This can be improved by using segment to

    segment contact and entered in the modeling under contact control; the comparison between node to

    segment and segment to segment contact is shown in Figure 3.9-14.

    JOBS

    NEW

    MECHANICALPROPERTIES

    CONTACT CONTROLMETHOD: SEGMENT TO SEGMENT

    OK (twice)

    RUN, SUBMIT....

    Figure 3.9-14 Comparison of Node to Segment versus Segment to Segment Contact

    5554535251

    50

    49

    48

    4746

    454443

    4241

    56 57 58 59

    1.289

    00-3

    Y (x1000)

    Pos Y cbody2 (x.1)

    70

    40

    6967666463626160 68

    Force Y cbody2

    3937 16151413121110

    9

    8

    765432

    17181920363534

    33323130

    38

    29272625

    24232221

    28

    1

    06565 68

    4948

    4746

    4544

    50

    43

    4140

    39383736

    4235

    51 53 676664636252 61595857565554 60 69

    3432 13

    12111098

    14

    7

    5432

    1

    0

    6

    33

    1517313029

    282726 162523222120191824

    Segment to Segment Contact

    Segment to Segment Contact

    Node to Segment Contact

    Node to Segment Contact

    0.000e+000

    8.587e+001

    1.717e+002

    2.576e+002

    3.435e+002

    4.293e+002

    5.152e+002

    6.011e+002

    6.869e+002

    7.728e+002

    8.587e+002

    Contact Normal Force

    Inc: 50

    Time: 5.000e-001

    X

    Y

    Z

    3.9-15CHAPTER 3 9

  • 8/14/2019 Chapter 3.9: Break Forming

    15/16

    3.9 15CHAPTER 3.9Break Forming

    Input Files

    The files below are on your deliverymedia or they can be downloaded by your web browser by clickingthe links (file names) below.

    Also this problem can be automatically run from the HELP menu under DEMONSTRATIONS > RUN

    A DEMO PROBLEM > CONTACT as shown below.

    File Description

    s4.proc Mentat procedure file to run the above example

    Marc Users Guide3.9-16

    http://../chapt_1/ug_ch1_01.pdfhttp://www.mscsoftware.com/doc/mentat/examples/marc_ug/s3/c3.9/s4.prochttp://www.mscsoftware.com/doc/mentat/examples/marc_ug/s3/c3.9/s4.prochttp://../chapt_1/ug_ch1_01.pdf
  • 8/14/2019 Chapter 3.9: Break Forming

    16/16

    Animation

    AnimationClick on the figure below to activate the video; it lasts about 10

    minutes and explains how the steps above are done. Once the video isactivated, a right click of the mouse will open the menu shown at the

    right; you can switch to various screen sizes or stop the video by

    disabling the content.

    Full Screen MultimediaClose Floating Window

    Disable Content

    Properties...