chapter 3a-c discussion - biochem i f2019

34
Announcements Chapter 2 post‐lab write‐ups due on Chapter 3 week 2 lab B1‐B3: Wednesday, October 2 nd B4: Thursday, October 3 rd B8: Friday, October 4 th B9: Monday, October 7 th BA: Tuesday, October 8 th You are getting your Chapter 1 post‐lab back this week You have exactly 7 days to return them to your TFs or Jose for a regrade Blackboard announcement to follow on the official regrade policy and guidelines for the BI421 lab

Upload: others

Post on 27-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 3A-C Discussion - Biochem I F2019

Announcements• Chapter 2 post‐lab write‐ups due on Chapter 3 week 2 lab

• B1‐B3: Wednesday, October 2nd• B4: Thursday, October 3rd• B8: Friday, October 4th• B9: Monday, October 7th• BA: Tuesday, October 8th

• You are getting your Chapter 1 post‐lab back this week• You have exactly 7 days to return them to your TFs or Jose for a regrade• Blackboard announcement to follow on the official regrade policy and guidelines for the BI421 lab

Page 2: Chapter 3A-C Discussion - Biochem I F2019

Chapter 3: Purification of an Enzyme

Biochemical Isolation of Lactate Dehydrogenase (LDH)

from bovine tissue

Overall goals of this chapter:

Learn the step‐wise purification techniques for isolating an enzyme

Analysis of enzyme activity & yield

Page 3: Chapter 3A-C Discussion - Biochem I F2019

Lactate Dehydrogenase (LDH)● LDH catalyzes the last step of anaerobic glycolysis

● Multiple forms of LDH found in different tissues – Isozymes 

● Each isozyme has slightly different kinetic and structural properties, but same function and overall structure

Page 4: Chapter 3A-C Discussion - Biochem I F2019

Ch. 3 Protein Purification Process• Homogenization achieved by blendingminced tissue +  buffer

Disruption of tissue (Cell lysis) 

• Separation via centrifugation• Pellet – Cell Debris• Supernatant – Cell Extract (lysate)

Clearing the cell lysate

• Protein precipitation via Removal of additional 

contaminants

• Further separation by affinity chromatography 

Isolation of LDH

Purified Protein*See detailed

flowchart on page 75

Page 5: Chapter 3A-C Discussion - Biochem I F2019

The TWO MOST IMPORTANT FACTORS for Chapter 3 success:

1) Maintaining HIGH ENZYME ACTIVITY

*Keep your enzyme COLD& AVOID BUBBLES!!!

2) Maximum recovery of protein (HIGH YIELD)*Don’t be sloppy… Do the procedures correctly.*PAY ATTENTION to what needs to be saved eachweek!!!  

Comportment grade penalties for throwing out critical fractions!

Page 6: Chapter 3A-C Discussion - Biochem I F2019

Why is Chapter 3 such a big deal??

Top 5 reasons:

5) Notebook write‐up is worth A LOT… 3x CH1 pts

4) The notebook write‐up will take FOREVER.

3) Enzyme purification is DIFFICULT.[effort + attention = insanely critical]

2) Will need your purified LDH for Ch 4 & 5 too.

1) Increasing SPECIFIC ACTIVITY is your main focus.  *Should go up with each purification step.Low/no activity = sad/useless enzyme 

Page 7: Chapter 3A-C Discussion - Biochem I F2019

Objectives for Chapter 3 Week 1:

A)  Prepare a crude enzyme extract from bovine heart or skeletal muscle*Note: You will be assigned heart ormuscle by your TFs! 

B)  Obtain spectra of NAD+ and NADH to determine εapp of NADH

C)  Assay for LDH activity of crude extract*Mastery of enzyme activity assay is critical for Chapters #3‐5!!!

Page 8: Chapter 3A-C Discussion - Biochem I F2019

Part A: Preparation of Crude ExtractSteps:1)  Homogenize beef sample2)  Centrifuge to clear lysate3)  Collect crude extract

+ +K/PO4 buffer

1)  Homogenize beef sample

Page 9: Chapter 3A-C Discussion - Biochem I F2019

Part A: Preparation of Crude ExtractSteps:1)  Homogenize beef sample2)  Centrifuge to clear lysate3)  Collect crude extract

Page 10: Chapter 3A-C Discussion - Biochem I F2019

Purpose of Centrifugation Uses centrifugal force to separate sample components

Separates lysate from cell debris

Cell debris, organelles

Carbohydrates and other small molecules

LDH

Extraneous proteins and other macromolecules

High speed

centrifugation

(“Meat smoothie”)

Collect cell lysate

Discard pellet

1S crude extractCentrifuged sampleHomogenate

Page 11: Chapter 3A-C Discussion - Biochem I F2019

Part A: Preparation of Crude ExtractSteps:1)  Homogenize beef sample2)  Centrifuge to clear lysate3)  Collect crude extract (contains fat deposits)

1P Pellet (discarded)

1S supernatant (collected)

Centrifugetubes:

Page 12: Chapter 3A-C Discussion - Biochem I F2019

After Step 2 centrifugation…

‐ Pour centrifuged 1S sample through cheesecloth‐ Collect filtered 1S sample

Your TFs may advise you to skip the cheesecloth step if your centrifuged 1S sample is clean and free of fat

Page 13: Chapter 3A-C Discussion - Biochem I F2019

Tips: Preparation of Crude Extract• Before blending, weigh & recordmassof initial beef sample*TFs will have already pre‐weighed & mincedapproximate amounts for you 

• After blending, record total volume of homogenate

• After cheesecloth, record volume of filtered crude 1S sample

=  ? g

=  ? mL

=  ? mL

Page 14: Chapter 3A-C Discussion - Biochem I F2019

Tips: Preparation of Crude Extract (cont’d)• Before centrifugation, balance tubes & record total volume that went into the tubes

**DO NOT OVERFILL centrifuge tubes! (*only allowed two)You will need to discard some of the volume. Always note 

any discarded volumes for correct back calculations.

• Record volume of 1S crude extract (supernatant) fraction• Collect in 50 mL conical tubes

*Leave some room for freezing!• Take 1 mL 1S aliquot to use for activity & dye‐binding assays

Label all tubes before turning in to TFs!Always keep samples & aliquots on ice!

Page 15: Chapter 3A-C Discussion - Biochem I F2019

Part B: NAD+ & NADH spectraSteps:1)  Obtain spectra from 250 to 400 nm for NAD+ & 

solutions on Cary‐60 UV/Vis stations*Use UV plastic cuvettes

2)  Record NAD+ and  absorbance readings on benchtop specs at 340 nm*Use glass test tubes and the same samples you 

used from the Cary‐60

Use the dilution scheme in Chapter 3 part B

Page 16: Chapter 3A-C Discussion - Biochem I F2019

Cofactors of LDH● LDH uses pyridine nucleotide coenzymes as cofactors to transfer 

reducing equivalents

● H+ and a pair of electrons

● NAD+ – Nicotinamide adenine dinucleotide  Oxidized form

Reduced form

● Pyridine nucleotides have characteristic absorbance spectra 

● NAD+: No absorbance at 340 nm

: λmax = 340 nm, ε = 6210 M‐1cm‐1

Page 17: Chapter 3A-C Discussion - Biochem I F2019

● To calculate εapp for benchtop spectrophotometer  since using these specs to measure enzyme activity

– Given ε340 for NADH (6210 M‐1 cm‐1) is for rectangular cuvettes with 1 cm path length

– When test tube is used, light path length (l) may differ Recall Beer’s Law! A = ε l c

• Measure A340 of NADH on both benchtop spec & UV‐Vis spec, then calculate:

ε340(apparent) = [ε340(UV)] x [A340(test tube)/A340(UV cuvette)] 

Purpose of NAD+ & NADH spectra

Page 18: Chapter 3A-C Discussion - Biochem I F2019

How to Measure Activity of LDH● Enzymes are catalysts – speed up the rate of the reactions

● Activity assay measures:● Rate of consumption of reactant (NADH)

● NADH has a visible absorbance at 340 nm – can follow its rate of oxidation as reaction progresses

ΔA340/min

Page 19: Chapter 3A-C Discussion - Biochem I F2019

Part C: The LDH activity assaySteps:1)  Make cocktail (*enough for 10 assays to start)

2)  Aliquot into test tubes3)  Add diluted enzyme to one test tube at a time 

& run assay

Reagent Volume 1 M KPO4, pH 7.4 200 μl

6 mM Sodium pyruvate 300 μl1 mM NADH 300 μlDI Water 2.15 ml

Diluted Enzyme Solution* 50 μlTotal Volume 3.00 ml

“The Cocktail”(page 78)

(*Enzyme is added to test tube just before running the assay)

Page 20: Chapter 3A-C Discussion - Biochem I F2019

Activity Assay Procedure (Week 1)● To run activity assay: 

– Use LDH Kinetics program– Blank spectrophotometer – Add cocktail to test tube– Adjust volume with water– Add diluted enzyme, mix, and start run

● Obtain rate from linear portion of graph● ΔA340/min readout rate will be a negative value‐Why??

•Need at least 4 volumes in range ΔA340/min = ‐0.05 to ‐0.25•Need to record table of time vs. A340 for ONE run only

Page 21: Chapter 3A-C Discussion - Biochem I F2019

A340

time

0.65

0.33

0.01150 s

What is wrong with this activity assay graph?!

The absorbance hasn’t changed from its initial value - Enzyme was too diluted; go back to a previous dilution- Enzyme is dead; did you dilute with water and not EDB?

Page 22: Chapter 3A-C Discussion - Biochem I F2019

A340

time

0.65

0.33

0.01150 s

What is wrong with this activity assay graph?!

Absorbance started off and stayed at a low value - Your NADH is dead, check with cocktail + water – enzyme tube- Your enzyme is too concentrated and you caught the end of rxn

Page 23: Chapter 3A-C Discussion - Biochem I F2019

A340

time

0.65

0.33

0.01150 s

What is wrong with this activity assay graph?!

Visible nose-dive with a sharp plateau - Enzyme is too concentrated but you are close; try an additional

1:10 dilution

Page 24: Chapter 3A-C Discussion - Biochem I F2019

A340

time

0.65

0.33

0.01150 s

What is wrong with this activity assay graph?!

Jagged yet steadily decreasing trend - Tube has active enzyme, but tube was not vortexed properly

before reading; heterogeneous pockets of activity are diffused through solution

Page 25: Chapter 3A-C Discussion - Biochem I F2019

A340

time

0.65

0.33

0.01150 s

What is wrong with this activity assay graph?!

Nothing, perfect trendline- This has a change in abs of -0.32 over 2.5 minutes, therefore the

ΔA/min = -0.128

Page 26: Chapter 3A-C Discussion - Biochem I F2019

Tips: LDH activity assay• DO NOT put *cold* cocktail in the spec! Condensation will skew reading!*Cocktail can be kept at RT for ~1 hour (after too long, NADH oxidizes)

• Will need to dilute enzyme substantially before starting assays*Typically 1:200 or 1:400 dilutions of enzyme are required;TFs will give you a starting point

• Dilute enzyme with ENZYME DILUTION BUFFER (EDB)• Blank the spec with EDB or water (Why not cocktail??)

• WORK FAST! Addition of enzyme starts the reaction, so get tube in spec & start run ASAP to obtain most accurate rate!

• Ask TFs how to adjust plot on spec to get slope from linear portion only (if needed)

Page 27: Chapter 3A-C Discussion - Biochem I F2019

Tips: LDH activity assayMaster performing dilutions and serial dilutions

Know exactly how much volume you need from a dilution and always make a little more than what you need.(e.g., if you need 50 μL of a 1:10 dilution, then make two additional volumes just in case = 150 μL of diluted enzyme [15 μL of enzyme + 135 μL of EDB])

Common dilutions Serial dilution strategies (enzyme + EDB)

1:100 1:10 x 1:10 = (20 + 180) x (100 + 900)1:200 1:20 x 1:10 = (10 + 190) x (10 + 90)1:300 1:30 x 1:10 = (10 + 290) x (10 + 90)1:400 1:20 x 1:20 = (10 + 190) x (10 + 190)1:500 1:100 x 1:5 = 1:100 x (30 + 120)1:600 1:300 x 1:2 = 1:300 x (75 + 75)

Page 28: Chapter 3A-C Discussion - Biochem I F2019

Activity = Units = μmol of Substrate Consumed or Product Formed / minActivity concentration (ΔC) = [Activity] = μmol/min*mL = Units/mL

From Beer’s Law: A = (ε)(l)(C) ‐> We are looking at Kinetic Rates: ΔA = (ε)(l)(ΔC)Apparent extinction coefficient, εapp, in mM‐1  combines ε and l

IF     ΔA340/min = (εapp in mM‐1) (ΔC)THEN     [Activity] = ΔC = ΔA340/min / εapp in mM‐1

For Example: [Activity] = (0.05/min)/(6.21 mM‐1) = 0.0081 mM/min = 0.0081 µmol/min*mL =  0.0081 Units/mL

= [Activity] in the glass Assay tubeYou must account for the dilutions of your protein!

[ActivityUndiluted] = (ΔC)(Total Volume of Assay)(Dilution Factor)

(Volume of enzyme used in assay)

[ActivityUndiluted]=  (0.0081 units/mL)(3.0 mL)(400)  =  193 Units/mL

(0.05 mL)

Enzyme Activity Calculations

Page 29: Chapter 3A-C Discussion - Biochem I F2019

Enzyme Activity Calculations (cont’d)

The equation you should write down/memorize is on page 81:

undiluted340nm

app1

Concentration of enzyme activity from different fractions (1S, 2S, 2P, etc.)

Value from your benchtop spec from activity assay

Volume in activity assay

The dilution factor of the enzyme that went into the assay

Volume of enzyme that went into the activity assay, if this is different from 50 μL, then take this into consideration for the calculations

This is your own custom apparent extinction coefficient you calculate for the whole year. Pay attention to units!

This is how activity per volume is expressed

Page 30: Chapter 3A-C Discussion - Biochem I F2019

● Total Activity = (Activity)(Total Volume) = Units/ml* ml = Units

● [Protein] = (Protein Mass)/(Sample Volume) = mg/ml

● Total Protein = ([Protein])(Total Volume) = mg/ml* ml = mg

● Specific Activity = Total Activity/Total Protein = Units/mg

● % Yield =  Total Activity in Given Step

Remember to account for the dilutions of your protein!

Do not procrastinate! Start on calculations ASAP! See purification table on pg. 99

Calculation of Specific Activity

Total Activity in Crude Extractx 100

Page 31: Chapter 3A-C Discussion - Biochem I F2019

Week 1: Protein Determination● Protein Concentration – Bradford (Dye‐binding) Assay

● Assay protein concentration for 1S fraction

• Dilute your protein with dH2O, NOT EDB!!!(Do you know why?)

• What will you use to blank spec?● Do Bradford only if time allows, otherwise save for Week 2

● Always prioritize enzyme activity assays first & do same week(Why is this important?)

● CANNOT reuse old standard curves!● Doesn’t matter how “good” curve was; NEW standard curve must be made for each week dye‐binding assay is performed

Page 32: Chapter 3A-C Discussion - Biochem I F2019

Standard curves for the semester1 mg/mL BSA di‐water Dye‐binding reagent

0 μL 0.5 mL 4.5 mL10 μL 0.49 mL 4.5 mL20 μL  0.48 mL 4.5 mL30 μL  0.47 mL 4.5 mL40 μL  0.46 mL 4.5 mL50 μL  0.45 mL 4.5 mL60 μL  0.44 mL 4.5 mL

• Set-up your other experimental readings at the same time (protein sample volume, adjust to 500 μL with di-water, add 4.5 mL of dye-binding reagent)

• Let tubes sit for 5 minutes at room temperature then read at 595 nm• Redo any experiments that are outside of standard curve interpolation

region (10 μg – 60 μg of BSA)• DO NOT PLOT the 0 μg of BSA on standard curve, this tube was used

to blank the spec and is not a real data measurement

Page 33: Chapter 3A-C Discussion - Biochem I F2019

Chapter 3, Week 1 Pre‐lab Checklist:For your part 2 data collection sheets:

Purification flowchart for all of Chapter 3 – don’t need to do it again for subsequent weeks

Tissue assignment and original mass of tissue sample

All volume recordings at different steps – you will discard sample at the centrifugation step

A table for your activity assays – trial number, amount of enzyme added, dilution factor, resulting ΔA/min

A table for a tabulation of one of your activity assays (time and corresponding absorbance at 340 nm).

A table for your dye‐binding standard curve and assay (if time permits, but have it ready just in case, never hurts).

Page 34: Chapter 3A-C Discussion - Biochem I F2019

Chapter 3, Week 1 Checklist:

At the end of lab, you should have:Obtained UV‐vis spectra printout for NAD+ & NADH (micro‐UV plastic cuvettes)

Recorded A340 for NADH and NAD+ on benchtop spec (glass test tube)

Performed enzyme activity assays using 1S crude extract fractiono Recorded rates for 4 different dilutions within ΔA340/min = ‐0.05‐0.25 rangeo Recorded tabular data (time vs. A340) for ONE of the dilutions

(If time permitted) made a new standard curve & performed Bradford (dye‐binding) assay for 1S crude extract fraction

Labeled & turned in 1S crude extract fractions & 1S aliquot to your TFs