chapter 4 network layer - instituto de computaçãonfonseca/arquivos/chapter_4_v6.0-2014… ·...

207
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these ppt slides: Were making these slides freely available to all (faculty, students, readers). Theyre in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) that you mention their source (after all, wed like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Network Layer 4-1

Upload: others

Post on 05-Jun-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Chapter 4Network Layer

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith RossAddison-WesleyMarch 2012

A note on the use of these ppt slides:We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following: If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2012J.F Kurose and K.W. Ross, All Rights Reserved

Network Layer 4-1

Page 2: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-2

Chapter 4: network layer

chapter goals: understand principles behind network layer

services: network layer service models

forwarding versus routing

how a router works

routing (path selection)

broadcast, multicast

instantiation, implementation in the Internet

Page 3: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-3

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 4: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

4

Interconexão de Redes

Page 5: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

5

A Internet

Page 6: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

6

A Internet

Page 7: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

7

Estatística de Usuários da Internet

Número de usuários mundiais ~ 2.400.000.000 (34% população do planeta)

Número de usuários no Brasil ~ 88.500.000 (45% da população)

fonte: http://www.internetworldstats.com/stats.htm

Page 8: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-8

Network layer

transport segment from sending to receiving host

on sending side encapsulates segments into datagrams

on receiving side, delivers segments to transport layer

network layer protocols in every host, router

router examines header fields in all IP datagrams passing through it

application

transport

network

data link

physical

application

transport

network

data link

physical

network

data link

physical network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physical

network

data link

physicalnetwork

data link

physical

Page 9: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-9

Two key network-layer

functions forwarding: move

packets from router’s input to appropriate router output

routing: determine route taken by packets from source to dest.

routing algorithms

analogy:

routing: process of planning trip from source to dest

forwarding: process of getting through single interchange

Page 10: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-10

1

23

0111

value in arriving

packet’s header

routing algorithm

local forwarding table

header value output link

0100

0101

0111

1001

3

2

2

1

Interplay between routing and forwarding

routing algorithm determines

end-end-path through network

forwarding table determines

local forwarding at this router

Page 11: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-11

Connection setup

3rd important function in some network architectures: ATM, frame relay, X.25

before datagrams flow, two end hosts andintervening routers establish virtual connection routers get involved

network vs transport layer connection service: network: between two hosts (may also involve

intervening routers in case of VCs)

transport: between two processes

Page 12: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-12

Network service model

Q: What service model for “channel”transporting datagrams from sender to

receiver?example services for

individual datagrams:

guaranteed delivery

guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

in-order datagram delivery

guaranteed minimum bandwidth to flow

restrictions on changes in inter-packet spacing

Page 13: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-13

Network layer service models:

Network

Architecture

Internet

ATM

ATM

ATM

ATM

Service

Model

best effort

CBR

VBR

ABR

UBR

Bandwidth

none

constant

rate

guaranteed

rate

guaranteed

minimum

none

Loss

no

yes

yes

no

no

Order

no

yes

yes

yes

yes

Timing

no

yes

yes

no

no

Congestion

feedback

no (inferred

via loss)

no

congestion

no

congestion

yes

no

Guarantees ?

Page 14: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-14

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 15: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-15

Connection, connection-less

service

datagram network provides network-layer connectionless service

virtual-circuit network provides network-layer connection service

analogous to TCP/UDP connecton-oriented / connectionless transport-layer services, but:

service: host-to-host

no choice: network provides one or the other

implementation: in network core

Page 16: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-16

Virtual circuits

call setup, teardown for each call before data can flow

each packet carries VC identifier (not destination host address)

every router on source-dest path maintains “state”for each passing connection

link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

“source-to-dest path behaves much like telephone circuit” performance-wise

network actions along source-to-dest path

Page 17: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-17

VC implementation

a VC consists of:1. path from source to destination

2. VC numbers, one number for each link along path

3. entries in forwarding tables in routers along path

packet belonging to VC carries VC number (rather than dest address)

VC number can be changed on each link. new VC number comes from forwarding table

Page 18: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-18

VC forwarding table

12 22 32

12

3

VC number

interfacenumber

Incoming interface Incoming VC # Outgoing interface Outgoing VC #

1 12 3 22

2 63 1 18

3 7 2 17

1 97 3 87

… … … …

forwarding table innorthwest router:

VC routers maintain connection state information!

Page 19: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-19

application

transport

network

data link

physical

Virtual circuits: signaling

protocols used to setup, maintain teardown VC

used in ATM, frame-relay, X.25

not used in today’s Internet

1. initiate call 2. incoming call

3. accept call4. call connected

5. data flow begins 6. receive dataapplication

transport

network

data link

physical

Page 20: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-20

Datagram networks

no call setup at network layer

routers: no state about end-to-end connections no network-level concept of “connection”

packets forwarded using destination host address

1. send datagrams

application

transport

network

data link

physical

application

transport

network

data link

physical

2. receive datagrams

Page 21: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-21

1

23

Datagram forwarding table

IP destination address in

arriving packet’s header

routing algorithm

local forwarding table

dest address output link

address-range 1

address-range 2

address-range 3

address-range 4

3

2

2

1

4 billion IP addresses, so rather than list individual destination addresslist range of addresses(aggregate table entries)

Page 22: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-22

Destination Address Range

11001000 00010111 00010000 00000000

through11001000 00010111 00010111 11111111

11001000 00010111 00011000 00000000

through11001000 00010111 00011000 11111111

11001000 00010111 00011001 00000000

through11001000 00010111 00011111 11111111

otherwise

Link Interface

0

1

2

3

Q: but what happens if ranges don’t divide up so nicely?

Datagram forwarding table

Page 23: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-23

Longest prefix matching

Destination Address Range

11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000 00010111 00011000 10101010

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

which interface?

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

longest prefix matching

Link interface

0

1

2

3

Page 24: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Consulta a Tabela no Linux

Curso de Especialização em Redes de

Computadores – INF502

24

ip_route_output()

ip_route_output_key()

return ip_route_output_slow() found? yes no

Page 25: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Cache para Acesso a Tabela

Curso de Especialização em Redes de

Computadores – INF502

25

rt_hash_table

chain

chain

chain

rtable u.rt_next

rtable

Page 26: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Estrutura da Tabela de

Roteamento

Curso de Especialização em Redes de

Computadores – INF502

26

fib_table

tb_data

fn_hash

fn_zones[32]

fn_zone_list

fn_zones[0]

fn_zones[1]

fn_zones[2]

fz_next

fz_hash[..]

fn_zone

fz_next

fz_hash[..]

fn_zone

fz_next

fz_hash[..]

fn_zone

fib_node

fn_next

fn_info

fib_node

fn_next

fn_info

fib_info

fib_nh

fib_nh

nh_gw

nh_dev

Page 27: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-27

Datagram or VC network: why?

Internet (datagram) data exchange among

computers “elastic” service, no strict

timing req.

many link types different characteristics

uniform service difficult

“smart” end systems (computers) can adapt, perform control,

error recovery

simple inside network, complexity at “edge”

ATM (VC) evolved from telephony human conversation:

strict timing, reliability requirements

need for guaranteed service

“dumb” end systems telephones complexity inside

network

Page 28: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-28

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 29: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-29

Router architecture overviewtwo key router functions: run routing algorithms/protocol (RIP, OSPF, BGP)

forwarding datagrams from incoming to outgoing link

high-seed switching

fabric

routing processor

router input ports router output ports

forwarding data

plane (hardware)

routing, management

control plane (software)

forwarding tables computed,

pushed to input ports

Page 30: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-30

line

termination

link layer

protocol(receive)

lookup,

forwarding

queueing

Input port functions

decentralized switching:

given datagram dest., lookup output port using forwarding table in input port memory (“match plus action”)

goal: complete input port processing at ‘line speed’

queuing: if datagrams arrive faster than forwarding rate into switch fabric

physical layer:

bit-level reception

data link layer:

e.g., Ethernet

see chapter 5

switchfabric

Page 31: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-31

Switching fabrics

transfer packet from input buffer to appropriate output buffer

switching rate: rate at which packets can be transfer from inputs to outputs often measured as multiple of input/output line rate

N inputs: switching rate N times line rate desirable

three types of switching fabrics

memory

memory

bus crossbar

Page 32: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-32

Switching via memory

first generation routers: traditional computers with switching under direct

control of CPU

packet copied to system’s memory

speed limited by memory bandwidth (2 bus crossings per datagram)

inputport

(e.g.,Ethernet)

memory

outputport

(e.g.,Ethernet)

system bus

Page 33: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-33

Switching via a bus

datagram from input port memory

to output port memory via a shared bus

bus contention: switching speed limited by bus bandwidth

32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Page 34: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-34

Switching via interconnection

network

overcome bus bandwidth limitations

banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor

advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.

Cisco 12000: switches 60 Gbps through the interconnection network

crossbar

Page 35: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-35

Output ports

buffering required when datagrams arrive from fabric faster than the transmission rate

scheduling discipline chooses among queued datagrams for transmission

line

termination

link layer

protocol(send)

switchfabric

datagram

buffer

queueing

Page 36: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-36

Output port queueing

buffering when arrival rate via switch exceeds output line speed

queueing (delay) and loss due to output port buffer overflow!

at t, packets more

from input to output

one packet time later

switch

fabric

switch

fabric

Page 37: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-37

How much buffering?

RFC 3439 rule of thumb: average buffering equal to “typical” RTT (say 250 msec) times link capacity C e.g., C = 10 Gpbs link: 2.5 Gbit buffer

recent recommendation: with N flows, buffering equal to

RTT C.

N

Page 38: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-38

Input port queuing

fabric slower than input ports combined -> queueing may occur at input queues

queueing delay and loss due to input buffer overflow!

Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:

only one red datagram can be

transferred.

lower red packet is blocked

switch

fabric

one packet time

later: green packet

experiences HOL

blocking

switch

fabric

Page 39: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-39

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 40: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-40

The Internet network layer

forwarding

table

host, router network layer functions:

routing protocols• path selection

• RIP, OSPF, BGP

IP protocol• addressing conventions

• datagram format

• packet handling conventions

ICMP protocol• error reporting

• router

“signaling”

transport layer: TCP, UDP

link layer

physical layer

network

layer

Page 41: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Implementação IP - Linux

Curso de Especialização em Redes de

Computadores – INF502

41

udp_v4_rcv

UDP

tcp_v4_rcv

TCP

raw_v4_input

Raw IP

Medium Access Control (MAC)

net_tx_action

dev_queue_xmit

ip_output

ip_finish_output

ip_finish_output2

ip_push_pending_frames

ip_append_data ip_append_page

TCP UDP Raw IP

dst_output

skb->dst->output

IP

Layer

Transport

Layer

ip_queue_xmit

ip_local_deliver_finish

ip_route_output_flow

__ip_route_output_key

ip_route_output_slow

ip_rcv

dst_input

ip_route__input

ip_local_deliver

skb->dst->input

ip_rcv_finish

netif_receive_skb

net_rx_action Data link

Layer

Page 42: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-42

ver length

32 bits

data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

checksum

time to

live

32 bit source IP address

head.

len

type of

service

flgsfragment

offsetupper

layer

32 bit destination IP address

options (if any)

IP datagram formatIP protocol version

number

header length

(bytes)

upper layer protocol

to deliver payload to

total datagram

length (bytes)

“type” of data for

fragmentation/

reassemblymax number

remaining hops

(decremented at

each router)

e.g. timestamp,

record route

taken, specify

list of routers

to visit.

how much overhead?

20 bytes of TCP

20 bytes of IP

= 40 bytes + app layer overhead

Page 43: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-43

IP fragmentation, reassembly

network links have MTU (max.transfer size) -largest possible link-level frame

different link types, different MTUs

large IP datagram divided (“fragmented”) within net

one datagram becomes several datagrams

“reassembled” only at final destination

IP header bits used to identify, order related fragments

fragmentation:

in: one large datagram

out: 3 smaller datagrams

reassembly

Page 44: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-44

ID

=xoffset

=0

fragflag

=0

length

=4000

ID

=xoffset

=0

fragflag

=1

length

=1500

ID

=xoffset

=185

fragflag

=1

length

=1500

ID

=xoffset

=370

fragflag

=0

length

=1040

one large datagram becomes

several smaller datagrams

example: 4000 byte datagram

MTU = 1500 bytes

1480 bytes in

data field

offset =

1480/8

IP fragmentation, reassembly

Page 45: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-45

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 46: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-46

IP addressing: introduction

IP address: 32-bit identifier for host, router interface

interface: connection between host/router and physical link router’s typically have

multiple interfaces

host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

IP addresses associated with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

Page 47: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-47

IP addressing: introduction

Q: how are interfaces actually connected?

A: we’ll learn about that in chapter 5, 6.

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A: wired Ethernet interfaces

connected by Ethernet switches

A: wireless WiFi interfaces

connected by WiFi base station

For now: don’t need to worry

about how one interface is

connected to another (with no

intervening router)

Page 48: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-48

Subnets

IP address:subnet part - high order bits

host part - low order bits

what’s a subnet ?device interfaces with same subnet part of IP address

can physically reach each other without intervening router network consisting of 3 subnets

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27223.1.2.2

223.1.2.1

Page 49: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-49

recipe

to determine the subnets, detach each interface from its host or router, creating islands of isolated networks

each isolated network is called a subnet

subnet mask: /24

Subnets223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

subnet

223.1.1.2

223.1.3.27223.1.2.2

223.1.2.1

Page 50: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-50

how many? 223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1

223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

Subnets

Page 51: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-51

IP addressing: CIDR

CIDR: Classless InterDomain Routing subnet portion of address of arbitrary length

address format: a.b.c.d/x, where x is # bits in subnet portion of address

11001000 00010111 00010000 00000000

subnet

part

host

part

200.23.16.0/23

Page 52: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-52

IP addresses: how to get one?

Q: How does a host get IP address?

hard-coded by system admin in a file Windows: control-panel->network->configuration-

>tcp/ip->properties

UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server

“plug-and-play”

Page 53: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-53

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

can renew its lease on address in use

allows reuse of addresses (only hold address while connected/“on”)

support for mobile users who want to join network (more shortly)

DHCP overview: host broadcasts “DHCP discover” msg [optional]

DHCP server responds with “DHCP offer” msg [optional]

host requests IP address: “DHCP request” msg

DHCP server sends address: “DHCP ack” msg

Page 54: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-54

DHCP client-server scenario

223.1.1.0/24

223.1.2.0/24

223.1.3.0/24

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2223.1.3.1

223.1.1.2

223.1.3.27223.1.2.2

223.1.2.1

DHCPserver

arriving DHCPclient needs address in thisnetwork

Page 55: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-55

DHCP server: 223.1.2.5 arrivingclient

DHCP discover

src : 0.0.0.0, 68

dest.: 255.255.255.255,67

yiaddr: 0.0.0.0

transaction ID: 654

DHCP offer

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 654

lifetime: 3600 secs

DHCP request

src: 0.0.0.0, 68

dest:: 255.255.255.255, 67

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67

dest: 255.255.255.255, 68

yiaddrr: 223.1.2.4

transaction ID: 655

lifetime: 3600 secs

DHCP client-server

scenario

Page 56: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-56

DHCP: more than IP

addressesDHCP can return more than just allocated IP

address on subnet: address of first-hop router for client

name and IP address of DNS sever

network mask (indicating network versus host portion of address)

Page 57: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-57

connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP

router with DHCP

server built into

router

DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server

Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

168.1.1.1

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP

DHCP: example

Page 58: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-58

DCP server formulates DHCP ACK containing client’s IP address, IP address of first-hop router for client, name & IP address of DNS server

encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client

DHCP: example

router with DHCP

server built into

router

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

Page 59: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-59

DHCP: Wireshark output (home LAN)

Message type: Boot Reply (2)Hardware type: EthernetHardware address length: 6Hops: 0Transaction ID: 0x6b3a11b7Seconds elapsed: 0Bootp flags: 0x0000 (Unicast)Client IP address: 192.168.1.101 (192.168.1.101)Your (client) IP address: 0.0.0.0 (0.0.0.0)Next server IP address: 192.168.1.1 (192.168.1.1)Relay agent IP address: 0.0.0.0 (0.0.0.0)Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)Server host name not givenBoot file name not givenMagic cookie: (OK)Option: (t=53,l=1) DHCP Message Type = DHCP ACKOption: (t=54,l=4) Server Identifier = 192.168.1.1Option: (t=1,l=4) Subnet Mask = 255.255.255.0Option: (t=3,l=4) Router = 192.168.1.1Option: (6) Domain Name Server

Length: 12; Value: 445747E2445749F244574092; IP Address: 68.87.71.226;IP Address: 68.87.73.242; IP Address: 68.87.64.146

Option: (t=15,l=20) Domain Name = "hsd1.ma.comcast.net."

reply

Message type: Boot Request (1)Hardware type: EthernetHardware address length: 6Hops: 0Transaction ID: 0x6b3a11b7Seconds elapsed: 0Bootp flags: 0x0000 (Unicast)Client IP address: 0.0.0.0 (0.0.0.0)Your (client) IP address: 0.0.0.0 (0.0.0.0)Next server IP address: 0.0.0.0 (0.0.0.0)Relay agent IP address: 0.0.0.0 (0.0.0.0)Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)Server host name not givenBoot file name not givenMagic cookie: (OK)Option: (t=53,l=1) DHCP Message Type = DHCP RequestOption: (61) Client identifier

Length: 7; Value: 010016D323688A; Hardware type: EthernetClient MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)

Option: (t=50,l=4) Requested IP Address = 192.168.1.101Option: (t=12,l=5) Host Name = "nomad"Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B1 = Subnet Mask; 15 = Domain Name3 = Router; 6 = Domain Name Server44 = NetBIOS over TCP/IP Name Server……

request

Page 60: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-60

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23

Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23

Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Page 61: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-61

Hierarchical addressing: route

aggregation

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7Internet

Organization 1

ISPs-R-Us“Send me anything

with addresses

beginning

199.31.0.0/16”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

hierarchical addressing allows efficient advertisement of routing

information:

Page 62: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-62

ISPs-R-Us has a more specific route to Organization 1

“Send me anything

with addresses

beginning

200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7Internet

Organization 1

ISPs-R-Us“Send me anything

with addresses

beginning 199.31.0.0/16

or 200.23.18.0/23”

200.23.20.0/23

Organization 2

.

.

.

.

.

.

Hierarchical addressing: more specific

routes

Page 63: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-63

IP addressing: the last word...

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

Names and Numbers http://www.icann.org/

allocates addresses

manages DNS

assigns domain names, resolves disputes

Page 64: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-64

NAT: network address

translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network

(e.g., home network)

10.0.0/24

rest of

Internet

datagrams with source or destination in this networkhave 10.0.0/24 address for source, destination (as usual)

all datagrams leavinglocal

network have samesingle source NAT IP

address: 138.76.29.7,different source port numbers

Page 65: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-65

motivation: local network uses just one IP address as far as outside world is concerned:

range of addresses not needed from ISP: just one IP address for all devices

can change addresses of devices in local network without notifying outside world

can change ISP without changing addresses of devices in local network

devices inside local net not explicitly addressable, visible by outside world (a security plus)

NAT: network address

translation

Page 66: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-66

implementation: NAT router must:

outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP address, new port #) as destination addr

remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: network address

translation

Page 67: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-67

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345

D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 sends datagram to 128.119.40.186, 80

NAT translation table

WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345

…… ……

S: 128.119.40.186, 80

D: 10.0.0.1, 33454

S: 138.76.29.7, 5001

D: 128.119.40.186, 802

2: NAT routerchanges datagramsource addr from10.0.0.1, 3345 to138.76.29.7, 5001,updates table

S: 128.119.40.186, 80

D: 138.76.29.7, 5001 3

3: reply arrivesdest. address:138.76.29.7, 5001

4: NAT routerchanges datagramdest addr from138.76.29.7, 5001 to 10.0.0.1, 3345

NAT: network address

translation

Page 68: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-68

16-bit port-number field:

60,000 simultaneous connections with a single LAN-side address!

NAT is controversial:

routers should only process up to layer 3

violates end-to-end argument

• NAT possibility must be taken into account by

app designers, e.g., P2P applications

address shortage should instead be solved by IPv6

NAT: network address

translation

Page 69: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-69

NAT traversal problem

client wants to connect to server with address 10.0.0.1 server address 10.0.0.1 local to

LAN (client can’t use it as destination addr)

only one externally visible NATed address: 138.76.29.7

solution1: statically configure NAT to forward incoming connection requests at given port to server e.g., (123.76.29.7, port 2500)

always forwarded to 10.0.0.1 port 25000

10.0.0.1

10.0.0.4

NAT router

138.76.29.7

client

?

Page 70: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-70

NAT traversal problem

solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to: learn public IP address

(138.76.29.7) add/remove port mappings

(with lease times)

i.e., automate static NAT port map configuration

10.0.0.1

NAT router

IGD

Page 71: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-71

NAT traversal problem

solution 3: relaying (used in Skype)

NATed client establishes connection to relay

external client connects to relay

relay bridges packets between to connections

138.76.29.7

client

1. connection torelay initiatedby NATed host

2. connection torelay initiatedby client

3. relaying established

NAT router

10.0.0.1

Page 72: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-72

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 73: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-73

ICMP: internet control message

protocol

used by hosts & routers to communicate network-level information error reporting:

unreachable host, network, port, protocol

echo request/reply (used by ping)

network-layer “above”IP: ICMP msgs carried in IP

datagrams

ICMP message: type, code plus first 8 bytes of IP datagram causing error

Type Code description

0 0 echo reply (ping)

3 0 dest. network unreachable

3 1 dest host unreachable

3 2 dest protocol unreachable

3 3 dest port unreachable

3 6 dest network unknown

3 7 dest host unknown

4 0 source quench (congestion

control - not used)

8 0 echo request (ping)

9 0 route advertisement

10 0 router discovery

11 0 TTL expired

12 0 bad IP header

Page 74: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-74

Traceroute and ICMP

source sends series of UDP segments to dest first set has TTL =1

second set has TTL=2, etc.

unlikely port number

when nth set of datagrams arrives to nth router: router discards datagrams

and sends source ICMP messages (type 11, code 0)

ICMP messages includes name of router & IP address

when ICMP messages arrives, source records RTTs

stopping criteria:

UDP segment eventually arrives at destination host

destination returns ICMP “port unreachable” message (type 3, code 3)

source stops

3 probes

3 probes

3 probes

Page 75: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-75

IPv6: motivation

initial motivation: 32-bit address space soon to be completely allocated.

additional motivation: header format helps speed processing/forwarding

header changes to facilitate QoS

IPv6 datagram format: fixed-length 40 byte header

no fragmentation allowed

Page 76: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-76

IPv6 datagram format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”(concept of“flow” not well defined).

next header: identify upper layer protocol for data

data

destination address(128 bits)

source address(128 bits)

payload len next hdr hop limit

flow labelpriver

32 bits

Page 77: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-77

Other changes from IPv4

checksum: removed entirely to reduce processing time at each hop

options: allowed, but outside of header, indicated by “Next Header” field

ICMPv6: new version of ICMP additional message types, e.g. “Packet Too Big” multicast group management functions

Page 78: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Comparação IPv4 and IPv6 IPv4 Header IPv6 Header

Field’s name kept from IPv4 to IPv6

Fields not kept in IPv6

Name and position changed in IPv6

New field in IPv6

Lege

nd

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Version IHLType of

ServiceTotal Length

Identification FlagsFragment

Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

Options Padding

Page 79: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

79

Extensão do cabeçalho –

Opções em IPv6

Next Header = TCP

IPv6 Header TCP Header Data

Next Header = TCP

Routing Header TCP Header Data

Next Header = Routing

IPv6 Header

Next Header = TCP

Fragment Header TCP Header Data

Next Header = Routing

IPv6 Header

Next Header = Frag.

Routing Header

(a) No extension header

(b) IPv6 header followed by a routing header

(c) IPv6 header followed by a routing header and a fragment header

Page 80: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

80

Ordem das extensões de

cabeçalho IPv6 (41)

Hop-By-Hop Options header (0)

Destination Options header (60)

Routing header (43)

Fragment header (44)

Authentication header (51)

Encapsulating Security Payload header (50)

Destination Options header (60)

Upper-layer header

• ICMPv6(58)

• TCP(6), UDP(17), RSVP(46), SCTP(132)

Page 81: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

81

Cabeçalho de fragmentação

A Fragmentação só é realizada na fonte e não nos roteadores intermediários

Campos semelhantes aos do

16 0 8 29 31

Next Header Reserved Fragment Offset R M

Identifier

Page 82: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

82

Exemplo de Fragmentação

IPv6 Header Fragment 1 Data

(a) Original packet

Fragment 2 Data Fragment 3 Data

IPv6 Header Fragment Header

(b) Fragments

Fragment 1 Data

IPv6 Header Fragment Header Fragment 2 Data

IPv6 Header Fragment Header Fragment 3 Data

Page 83: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Endereço IPv6

128 bits

Notação hexadecimal separada por “:”

3FFD:3600:0000:0000:0302:B3FF:FE3C: C0DB

Sequência de números de de 16 bits nulosseparados por “::”

3FFD:3600:0:0:0:0:1:A =>3FFD:3600::1:A

Curso de Especialização em Redes de

Computadores – INF502

83

Page 84: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Endereços reservados

Curso de Especialização em Redes de

Computadores – INF502

84

Prefix Address Type Portion

0000 0000 Reserved (IPv4 compatibility) 1/256

0000 0001 Unassigned 1/256

0000 001 Reserved for NSAP 1/128

0000 010 Reserved for IPX 1/128

0000 011 Unassigned 1/128

0000 1 Unassigned 1/32

0001 Unassigned 1/16

001 Aggregatable Global Unicast Address 1/8

010 Unassigned 1/8

011 Unassigned 1/8

100 Unassigned 1/8

101 Unassigned 1/8

110 Unassigned 1/8

1110 Unassigned 1/16

1111 0 Unassigned 1/32

1111 10 Unassigned 1/64

1111 110 Unassigned 1/128

1111 1110 0 Unassigned 1/512

1111 1110 10 Link Local Unicast Address 1/1024

1111 1110 11 Site Local Unicast Address 1/1024

1111 1111 Multicast Address 1/256

Page 85: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Endereço IPv6

Unicast IPv4 Compatible Adress

Global Unicast Adress

Link Local Unicast Adress

Multicast Começa com 11111111

Anycast Começa com prefixo de rede seguido de

sequência de zeros

Curso de Especialização em Redes de

Computadores – INF502

85

Page 86: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

86

Endereços IPv6 compatíveis

com IPv4

IPv4-compatible IPv6 Address:

00000000 IPv4 Address0000

32 32 bits

IPv4-Mapped IPv6 Address:

00000000 IPv4 AddressFFFF

32 32 bits

::FFFF:8C7B:65A0

::8C7B:65A0

Page 87: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de Computadores – INF502 87

Endereços IPv6 Unicast

Unicast Address without Internal Structure:

Node Address

Unicast Address with Subnet:

Subnet Prefix Interface ID

Unicast Unspecified Address:

00000000 0000

Unicast Loopback Address:

00000000 0001

Page 88: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de Computadores – INF502 88

ICMPv6

Versão do protocolo ICMP utilizada pelo protocolo Ipv6, basicamente as mesmas funcionalidades do ICMP

Realizar diagnósticos

Relatar erros de processamento de pacotes

Possui também funções adicionaisDescoberta de vizinhança (antes providas pelo protocolo ARP)

Gerenciamento de grupos Multicast (antes providas pelo protocolo IGMP).

Page 89: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Obtenção de endereço IPV6

Duas opções:

Stateless autoconfiguration

Stateful DHCP

Curso de Especialização em Redes de

Computadores – INF502

89

Page 90: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 Autoconfiguração

Pode-se obter endereços IPv6 automaticamente (substitui DHCP IPv4)

Endereços de enlace-local (link-local) são auto-configuráveis. Devem ser usados somente em enlaces locais (ex redes locais)

Roteadores e servidores devem ser configurados manualmete

Curso de Especialização em Redes de

Computadores – INF502

90

Page 91: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 Autoconfiguração

Interface pode ter mais de um endereço Ipv6: um link-local e outro Global

Endereço: identificador + token

Identificador obtido através de mensagens Router Advertisement

Curso de Especialização em Redes de

Computadores – INF502

91

Page 92: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 Auto-configuração

Token pode ser obtido endereço MAC EUI-64

Alternativa Randon Identifier (temporário)

Curso de Especialização em Redes de

Computadores – INF502

92

Page 93: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 Autoconfiguração

Após criar endereço em estado tentativa, verifica-se a unicidade do endereço através de envio de mensagem para outras interfaces no link (Dupliate Address Detection)

Após confirmação endereço usado como permanente, uso só após virar permanente

Curso de Especialização em Redes de

Computadores – INF502

93

Page 94: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 DHCPv6

Semelhante ao DHCP

Opera em modo cliente – servidor

Obtém endereço IPv6 e informações de configurações e segurança

Curso de Especialização em Redes de

Computadores – INF502

94

Page 95: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-95

Transition from IPv4 to IPv6

not all routers can be upgraded simultaneously no “flag days” how will network operate with mixed IPv4 and

IPv6 routers?

tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

IPv4 source, dest addr

IPv4 header fields

IPv4 datagram

IPv6 datagram

IPv4 payload

UDP/TCP payload

IPv6 source dest addr

IPv6 header fields

Page 96: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Pilhas Duais

Curso de Especialização em Redes de

Computadores – INF502

96

Page 97: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-97

Tunneling

physical view:

IPv4 IPv4

A B

IPv6 IPv6

E

IPv6 IPv6

FC D

logical view:

IPv4 tunnel connecting IPv6 routers

E

IPv6 IPv6

FA B

IPv6 IPv6

Page 98: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-98

flow: X

src: A

dest: F

data

A-to-B:IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C:IPv6 inside

IPv4

E-to-F:IPv6

flow: X

src: A

dest: F

data

B-to-C:IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

physical view:A B

IPv6 IPv6

E

IPv6 IPv6

FC D

logical view:

IPv4 tunnel connecting IPv6 routers

E

IPv6 IPv6

FA B

IPv6 IPv6

Tunneling

IPv4 IPv4

Page 99: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

6to4

Mecanismo de transição, não exige estabelecimento de túnel

Não é necessário que roteadores intermediários saibam 6to4

Procedimento: Atribui endereço IPv6 para host nativo IPv4

Encapsula pacote IPv6 em IPv4

Encaminha pacote entre roteadores 6to4

Curso de Especialização em Redes de

Computadores – INF502

99

Page 100: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

6to4

Endereço 6to4 começa com 2002, seguido do endereço IPv4 (32 bits), seguido 16 bits escolhidos arbitrariamente

Curso de Especialização em Redes de

Computadores – INF502

100

Page 101: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

6to4

Curso de Especialização em Redes de

Computadores – INF502

101

Page 102: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Teredo

6to4 exige que o endereço do destinatário tenha um endereço IPv4 válido, não permitindo que esteja atrás de NAT

Teredo encapsula Ipv4 em UDP/IPv4 – NAT não tem problema em encaminhar

Curso de Especialização em Redes de

Computadores – INF502

102

Page 103: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Tradutores

Soluções obsoletas tais como NAT-PT, NAPT-PT

SIIT (RFC 2765) - Stateless IP/ICMP Translation Algorithm (SIIT)

BIS (RFC 2767) e BIA (RFC 3338) – dual stack

Curso de Especialização em Redes de

Computadores – INF502

103

Page 104: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Estatística IPv6

Curso de Especialização em Redes de

Computadores – INF502

104

Page 105: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

IPv6 na América do Sul

Curso de Especialização em Redes de

Computadores – INF502

105

Page 106: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-106

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 107: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-107

1

23

IP destination address in

arriving packet’s header

routing algorithm

local forwarding table

dest address output link

address-range 1

address-range 2

address-range 3

address-range 4

3

2

2

1

Interplay between routing, forwarding

routing algorithm determines

end-end-path through network

forwarding table determines

local forwarding at this router

Page 108: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-108

u

yx

wv

z

2

2

13

1

1

2

53

5

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

aside: graph abstraction is useful in other network contexts, e.g.,

P2P, where N is set of peers and E is set of TCP connections

Page 109: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-109

Graph abstraction: costs

u

yx

wv

z

2

2

13

1

1

2

53

5c(x,x’) = cost of link (x,x’)

e.g., c(w,z) = 5

cost could always be 1, or

inversely related to bandwidth,

or inversely related to

congestion

cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

key question: what is the least-cost path between u and z ?

routing algorithm: algorithm that finds that least cost path

Page 110: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-110

Routing algorithm classification

Q: global or decentralized information?

global:

all routers have complete topology, link cost info

“link state” algorithms

decentralized:

router knows physically-connected neighbors, link costs to neighbors

iterative process of computation, exchange of info with neighbors

“distance vector”algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

routes change more quickly

periodic update

in response to link cost changes

Page 111: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-111

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 112: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-112

A Link-State Routing Algorithm

Dijkstra’s algorithm net topology, link costs

known to all nodes accomplished via “link

state broadcast” all nodes have same info

computes least cost paths from one node (‘source”) to all other nodes gives forwarding table for

that node

iterative: after k iterations, know least cost path to k dest.’s

notation: c(x,y): link cost from

node x to y; = ∞ if not direct neighbors

D(v): current value of cost of path from source to dest. v

p(v): predecessor node along path from source to v

N': set of nodes whose least cost path definitively known

Page 113: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-113

Dijsktra’s Algorithm

1 Initialization:

2 N' = {u}

3 for all nodes v

4 if v adjacent to u

5 then D(v) = c(u,v)

6 else D(v) = ∞

7

8 Loop

9 find w not in N' such that D(w) is a minimum

10 add w to N'

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min( D(v), D(w) + c(w,v) )

13 /* new cost to v is either old cost to v or known

14 shortest path cost to w plus cost from w to v */

15 until all nodes in N'

Page 114: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-114

w3

4

v

x

u

5

37 4

y

8

z2

7

9

Dijkstra’s algorithm: example

Step N'D(v)

p(v)

0

1

2

3

4

5

D(w)p(w)

D(x)p(x)

D(y)p(y)

D(z)p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes: construct shortest path tree

by tracing predecessor nodes

ties can exist (can be broken arbitrarily)

uwxvyz

Page 115: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-115

Dijkstra’s algorithm: another

example

Step

0

1

2

3

4

5

N'

u

ux

uxy

uxyv

uxyvw

uxyvwz

D(v),p(v)

2,u

2,u

2,u

D(w),p(w)

5,u

4,x

3,y

3,y

D(x),p(x)

1,u

D(y),p(y)

∞2,x

D(z),p(z)∞ ∞

4,y

4,y

4,y

u

yx

wv

z

2

2

13

1

1

2

53

5

Page 116: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-116

Dijkstra’s algorithm: example (2)

u

yx

wv

z

resulting shortest-path tree from u:

v

x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

resulting forwarding table in u:

Page 117: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-117

Dijkstra’s algorithm, discussion

algorithm complexity: n nodes each iteration: need to check all nodes, w, not in N

n(n+1)/2 comparisons: O(n2)

more efficient implementations possible: O(nlogn)

oscillations possible: e.g., support link cost equals amount of carried

traffic:

A

D

C

B

1 1+e

e0

e

1 1

0 0

initially

A

D

C

B

given these costs,find new routing….

resulting in new costs

2+e 0

00

1+e 1

A

D

C

B

given these costs,find new routing….

resulting in new costs

0 2+e

1+e1

0 0

A

D

C

B

given these costs,find new routing….

resulting in new costs

2+e 0

00

1+e 1

Page 118: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-118

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 119: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-119

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

dx(y) := cost of least-cost path from x to y

then

dx(y) = min {c(x,v) + dv(y) }v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Page 120: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-120

Bellman-Ford example

u

yx

wv

z

2

2

13

1

1

2

53

5

clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),

c(u,x) + dx(z),

c(u,w) + dw(z) }

= min {2 + 5,

1 + 3,

5 + 3} = 4

node achieving minimum is nexthop in shortest path, used in forwarding table

B-F equation says:

Page 121: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-121

Distance vector algorithm

Dx(y) = estimate of least cost from x to y x maintains distance vector Dx = [Dx(y): y є N ]

node x:

knows cost to each neighbor v: c(x,v)

maintains its neighbors’ distance vectors. For each neighbor v, x maintains Dv = [Dv(y): y є N ]

Page 122: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-122

key idea: from time-to-time, each node sends its own

distance vector estimate to neighbors

when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

under minor, natural conditions, the estimate Dx(y) converge to the actual least cost dx(y)

Distance vector algorithm

Page 123: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-123

iterative, asynchronous: each local iteration caused by:

local link cost change

DV update message from neighbor

distributed: each node notifies

neighbors only when its DV changes neighbors then notify

their neighbors if necessary

wait for (change in local link

cost or msg from neighbor)

recompute estimates

if DV to any dest has

changed, notify neighbors

each node:

Distance vector algorithm

Page 124: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-124

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fro

m

cost to

fro

mfr

om

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z∞ ∞ ∞

7 1 0

cost to

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z

12

7

y

node xtable

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

32

node ytable

node ztable

cost to

from

Page 125: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-125

x y z

x

y

z

0 2 3

fro

m

cost to

x y z

x

y

z

0 2 7

fro

mcost to

x y z

x

y

z

0 2 3

fro

m

cost to

x y z

x

y

z

0 2 3

fro

mcost to

x y z

x

y

z

0 2 7

fro

m

cost to

2 0 1

7 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x y z

x

y

z

0 2 7

∞ ∞ ∞

∞ ∞ ∞

fro

m

cost to

fro

mfr

om

x y z

x

y

z

0

x y z

x

y

z

∞ ∞

∞ ∞ ∞

cost to

x y z

x

y

z∞ ∞ ∞

7 1 0

cost to

2 0 1

∞ ∞ ∞

2 0 1

7 1 0

time

x z

12

7

y

node xtable

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}

= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +

Dy(z), c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

32

node ytable

node ztable

cost to

from

Page 126: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-126

Distance vector: link cost changes

link cost changes: node detects local link cost

change

updates routing info, recalculates distance vector

if DV changes, notify neighbors“goodnews travelsfast”

x z

14

50

y1

t0 : y detects link-cost change, updates its DV, informs its

neighbors.

t1 : z receives update from y, updates its table, computes new

least cost to x , sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table. y’s least costs

do not change, so y does not send a message to z.

Page 127: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-127

Distance vector: link cost changes

link cost changes: node detects local link cost

change

bad news travels slow - “count to infinity” problem!

44 iterations before algorithm stabilizes: see text

x z

14

50

y60

poisoned reverse: If Z routes through Y to get to X :

Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z)

will this completely solve count to infinity problem?

Page 128: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-128

Comparison of LS and DV algorithms

message complexity LS: with n nodes, E links,

O(nE) msgs sent

DV: exchange between neighbors only

convergence time varies

speed of convergence LS: O(n2) algorithm requires

O(nE) msgs

may have oscillations

DV: convergence time varies

may be routing loops

count-to-infinity problem

robustness: what happens if router malfunctions?

LS: node can advertise

incorrect link cost

each node computes only its own table

DV: DV node can advertise

incorrect path cost

each node’s table used by others

• error propagate thru network

Page 129: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-129

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 130: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-130

Hierarchical routing

scale: with 600 million destinations:

can’t store all dest’s in routing tables!

routing table exchange would swamp links!

administrative autonomy

internet = network of networks

each network admin may want to control routing in its own network

our routing study thus far - idealization

all routers identical

network “flat”

… not true in practice

Page 131: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-131

aggregate routers into regions,“autonomous systems” (AS)

routers in same AS run same routing protocol “intra-AS” routing

protocol

routers in different AS can run different intra-AS routing protocol

gateway router: at “edge” of its own AS

has link to router in another AS

Hierarchical routing

Page 132: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-132

3b

1d

3a

1c2a

AS3

AS1

AS21a

2c

2b

1b

Intra-AS

Routing

algorithm

Inter-AS

Routing

algorithm

Forwarding

table

3c

Interconnected ASes

forwarding table configured by both intra- and inter-AS routing algorithm

intra-AS sets entries for internal dests

inter-AS & intra-AS sets entries for external dests

Page 133: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-133

Inter-AS tasks

suppose router in AS1 receives datagram destined outside of AS1:

router should forward packet to gateway router, but which one?

AS1 must:

1. learn which dests are reachable through AS2, which through AS3

2. propagate this reachability info to all routers in AS1

job of inter-AS routing!

AS3

AS2

3b

3c

3a

AS1

1c

1a1d

1b

2a2c

2b

other

networksother

networks

Page 134: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-134

Example: setting forwarding table in router

1d

suppose AS1 learns (via inter-AS protocol) that subnet xreachable via AS3 (gateway 1c), but not via AS2

inter-AS protocol propagates reachability info to all internal routers

router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c

installs forwarding table entry (x,I)

AS3

AS2

3b

3c

3a

AS1

1c

1a1d

1b

2a2c

2b

other

networksother

networks

x

Page 135: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-135

Example: choosing among multiple ASes

now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.

to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x

this is also job of inter-AS routing protocol!

AS3

AS2

3b

3c

3a

AS1

1c

1a1d

1b

2a2c

2b

other

networksother

networks

x

?

Page 136: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-136

learn from inter-AS

protocol that subnet

x is reachable via

multiple gateways

use routing info

from intra-AS

protocol to determine

costs of least-cost

paths to each

of the gateways

hot potato routing:

choose the gateway

that has the

smallest least cost

determine from

forwarding table the

interface I that leads

to least-cost gateway.

Enter (x,I) in

forwarding table

Example: choosing among multiple ASes

now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.

to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x

this is also job of inter-AS routing protocol!

hot potato routing: send packet towards closest of two routers.

Page 137: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-137

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 138: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-138

Intra-AS Routing

also known as interior gateway protocols (IGP)

most common intra-AS routing protocols:

RIP: Routing Information Protocol

OSPF: Open Shortest Path First

IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Page 139: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-139

RIP ( Routing Information Protocol)

included in BSD-UNIX distribution in 1982

distance vector algorithm distance metric: # hops (max = 15 hops), each link has cost 1

DVs exchanged with neighbors every 30 sec in response message (aka advertisement)

each advertisement: list of up to 25 destination subnets (in IP addressing sense)

DC

BA

u v

w

x

yz

subnet hops

u 1

v 2

w 2

x 3

y 3

z 2

from router A to destination subnets:

Page 140: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-140

RIP: example

destination subnet next router # hops to dest

w A 2

y B 2

z B 7

x -- 1…. …. ....

routing table in router D

w x y

z

A

C

D B

Page 141: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-141

w x y

z

A

C

D B

destination subnet next router # hops to dest

w A 2

y B 2

z B 7

x -- 1…. …. ....

routing table in router D

A 5

dest next hopsw - 1x - 1z C 4…. … ...

A-to-D advertisement

RIP: example

Page 142: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-142

RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead routes via neighbor invalidated

new advertisements sent to neighbors

neighbors in turn send out new advertisements (if tables changed)

link failure info quickly (?) propagates to entire net

poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Page 143: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-143

RIP table processing

RIP routing tables managed by application-level process called route-d (daemon)

advertisements sent in UDP packets, periodically repeated

physical

link

network forwarding

(IP) table

transport

(UDP)

routed

physical

link

network

(IP)

transprt

(UDP)

routed

forwarding

table

Page 144: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

144

Formato Pacore RIP

RIP utiliza UDP

4 bytes de header + 20 bytes para cada bloco de endereço (rota)

Pacote UDP limitação de 512 bytes, pode carregar no máximo 25 rotas

Page 145: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

145

Formato Pacore RIPv1

Page 146: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502

146

IGRP (Interior Gateway Routing Protocol)

Proprietário da CISCO; sucessor do RIP (anos 80)

Vetor de Distâncias, como RIP

Diversas métricas de custo (retardo, largura de banda, confiabilidade, carga, etc)

usa TCP para trocar mudanças de rotas

Roteamento sem ciclos via Distributed Updating Algorithm (DUAL) baseado em computação difusa

Page 147: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

147

Métricas de Composta

(E) IGRP utiliza métrica composta com parcelas relativas a: atraso, banda passante, carga na rede e confiabilidade compesos diferentes

Page 148: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

148

Comparação Protocolos

Vetor Distância

Page 149: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-149

OSPF (Open Shortest Path First)

“open”: publicly available

uses link state algorithm LS packet dissemination

topology map at each node

route computation using Dijkstra’s algorithm

OSPF advertisement carries one entry per neighbor

advertisements flooded to entire AS carried in OSPF messages directly over IP (rather

than TCP or UDP

IS-IS routing protocol: nearly identical to OSPF

Page 150: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-150

OSPF “advanced” features (not in

RIP) security: all OSPF messages authenticated (to

prevent malicious intrusion)

multiple same-cost paths allowed (only one path in RIP)

for each link, multiple cost metrics for different TOS (e.g., satellite link cost set “low” for best effort ToS; high for real time ToS)

integrated uni- and multicast support:

Multicast OSPF (MOSPF) uses same topology data base as OSPF

hierarchical OSPF in large domains.

Page 151: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-151

Hierarchical OSPF

boundary router

backbone router

area 1

area 2

area 3

backbone

areaborderrouters

internalrouters

Page 152: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-152

two-level hierarchy: local area, backbone.

link-state advertisements only in area

each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.

area border routers: “summarize” distances to nets in own area, advertise to other Area Border routers.

backbone routers: run OSPF routing limited to backbone.

boundary routers: connect to other AS’s.

Hierarchical

OSPF

Page 153: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Chapter 4: Internet Protocol Layer 153

N1

N2

N3

N4

N8N6

N7

N11

N9

N10

N12

N15

N12

N13

N14

Internal

router

Area border

router

H1

RT1

RT2

RT4

RT3

RT5

RT6

RT10

RT11

RT9

RT12

RT7

RT8

3

3

1

1

1

1

1

1

1 1

1

4

2

2

2

2

8

8

8

66

7 6

6

88

8

9

1

10

3

7

5

Ia

Ib

Area 1

Area 2

Area 3

Stub

AS boundary

router

Page 154: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Chapter 4: Internet Protocol Layer 154

OSPF Example: Intra-area Informação sobre a área difundidada por RT3

and RT4 para o backbone.

Network Cost advertised by RT3 Cost advertised by RT4

N1 4 4

N2 4 4

N3 1 1

N4 2 3

N1

N2

N3

N4

RT1

RT2

RT4

RT3

3

3

1

1

1

1

2

Area 1

Page 155: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Chapter 4: Internet Protocol Layer 155

Tabela de roteamento - OSPF

Tabela do roteador RT4

Destination Path Type Cost Next Hop

N1 intra-area 4 RT1

N2 intra-area 4 RT2

N3 intra-area 1 direct

N4 intra-area 3 RT3

N6 Inter-area 15 RT5

N7 inter-area 19 RT5

N8 Inter-area 18 RT5

N9-N11 inter-area 36 RT5

N12 Type 1 external 16 RT5

N13 Type 1 external 16 RT5

N14 Type 1 external 16 RT5

N15 Type 1 external 23 RT5

Page 156: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Tipos de Mensagem OSPF

Curso de Especialização em Redes de

Computadores – INF502

156

Type Description

1 Hello

2 Database Description

3 Request

4 Update

5 Acknowledgment

Page 157: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Mensagens LS

Curso de Especialização em Redes de

Computadores – INF502

157

Page 158: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Comparativo Desempenho

Curso de Especialização em Redes de

Computadores – INF502

158

Page 159: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-159

Internet inter-AS routing: BGP

BGP (Border Gateway Protocol): the de facto inter-domain routing protocol “glue that holds the Internet together”

BGP provides each AS a means to:

eBGP: obtain subnet reachability information from neighboring ASs.

iBGP: propagate reachability information to all AS-internal routers.

determine “good” routes to other networks based on reachability information and policy.

allows subnet to advertise its existence to rest of Internet: “I am here”

Page 160: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-160

BGP basics

when AS3 advertises a prefix to AS1: AS3 promises it will forward datagrams towards that prefix

AS3 can aggregate prefixes in its advertisement

AS3

AS2

3b

3c

3a

AS1

1c

1a1d

1b

2a2c

2b

other

networksother

networks

BGP session: two BGP routers (“peers”) exchange BGP messages: advertising paths to different destination network prefixes (“path

vector” protocol)

exchanged over semi-permanent TCP connections

BGP message

Page 161: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

iBGP e eBGP

Curso de Especialização em Redes de

Computadores – INF502

161

Page 162: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-162

BGP basics: distributing path

information

AS3

AS2

3b3a

AS1

1c

1a1d

1b

2a2c

2b

other

networksother

networks

using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1. 1c can then use iBGP do distribute new prefix info to all

routers in AS1

1b can then re-advertise new reachability info to AS2 over 1b-to-2a eBGP session

when router learns of new prefix, it creates entry for prefix in its forwarding table.

eBGP session

iBGP session

Page 163: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-163

Path attributes and BGP

routes advertised prefix includes BGP attributes

prefix + attributes = “route”

two important attributes: AS-PATH: contains ASs through which prefix

advertisement has passed: e.g., AS 67, AS 17

NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)

gateway router receiving route advertisement uses import policy to accept/decline e.g., never route through AS x

policy-based routing

Page 164: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-164

BGP route selection

router may learn about more than 1 route to destination AS, selects route based on:

1. local preference value attribute: policy decision

2. shortest AS-PATH

3. closest NEXT-HOP router: hot potato routing

4. additional criteria

Page 165: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-165

BGP messages

BGP messages exchanged between peers over TCP connection

BGP messages:

OPEN: opens TCP connection to peer and authenticates sender

UPDATE: advertises new path (or withdraws old)

KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request

NOTIFICATION: reports errors in previous msg; also used to close connection

Page 166: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Atributo AS_PATH

166

Page 167: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Agregação de Rotas

167

Page 168: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Seleção de Rotas - BGP

Um roteador pode aprender mais do que 1 rota para o mesmo prefixo. O roteador deve selecionar uma rota

Regras de eliminação:

Atributo de valor de preferência local: decisão de política

AS-PATH (caminho) mais curto

Roteador do NEXT-HOP (próximo salto) maispróximo: roteamento da “batata quente”

Critérios adicionais

Curso de Especialização em Redes de

Computadores – INF502

168

Page 169: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Selação de Rotas

Curso de Especialização em Redes de

Computadores – INF502

169

Network Next Hop LOCAL_

PREF Weight Best? PATH Origin

139.175.56.165 0 N 4780,9739 IGP

140.123.231.103 0 N 9918,4780,9739 IGP 61.13.0.0/16

140.123.231.100 0 0 Y 9739 IGP

139.175.56.165 0 Y 4780,9277,17577 IGP 61.251.128.0/20

140.123.231.103 0 N 9918,4780,9277,17577 IGP

211.73.128.0/19 210.241.222.62 0 Y 9674 IGP

139.175.56.165 0 N 4780,9919 IGP

140.123.231.103 0 N 9918,4780,9919 IGP 218.32.0.0/17

140.123.231.106 0 Y 9919 IGP

139.175.56.165 0 N 4780,9919 IGP

140.123.231.103 0 N 9918,4780,9919 IGP 218.32.128.0/17

140.123.231.106 0 Y 9919 IGP

Page 170: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-170

BGP routing policy

A,B,C are provider networks

X,W,Y are customer (of provider networks)

X is dual-homed: attached to two networks

X does not want to route from B via X to C

.. so X will not advertise to B a route to C

A

B

C

WX

Y

legend:

customer network:

providernetwork

Page 171: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-171

BGP routing policy (2)

A advertises path AW to B

B advertises path BAW to X

Should B advertise path BAW to C? No way! B gets no “revenue” for routing CBAW since neither W

nor C are B’s customers

B wants to force C to route to w via A

B wants to route only to/from its customers!

A

B

C

WX

Y

legend:

customer network:

providernetwork

Page 172: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-172

Why different Intra-, Inter-AS routing

?policy: inter-AS: admin wants control over how its traffic

routed, who routes through its net.

intra-AS: single admin, so no policy decisions needed

scale: hierarchical routing saves table size, reduced

update traffic

performance:

intra-AS: can focus on performance

inter-AS: policy may dominate over performance

Page 173: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-173

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format

IPv4 addressing

ICMP

IPv6

4.5 routing algorithms link state

distance vector

hierarchical routing

4.6 routing in the Internet RIP

OSPF

BGP

4.7 broadcast and multicast routing

Chapter 4: outline

Page 174: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-174

R1

R2

R3 R4

source

duplication

R1

R2

R3 R4

in-network

duplication

duplicate

creation/transmissionduplicate

duplicate

Broadcast routing deliver packets from source to all other nodes

source duplication is inefficient:

source duplication: how does source determine recipient addresses?

Page 175: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-175

In-network duplication

flooding: when node receives broadcast packet, sends copy to all neighbors problems: cycles & broadcast storm

controlled flooding: node only broadcasts pkt if it hasn’t broadcast same packet before node keeps track of packet ids already

broadacsted

or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source

spanning tree: no redundant packets received by any node

Page 176: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-176

A

B

G

D

E

c

F

A

B

G

D

E

c

F

(a) broadcast initiated at A (b) broadcast initiated at D

Spanning tree

first construct a spanning tree

nodes then forward/make copies only along spanning tree

Page 177: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-177

A

B

G

D

E

c

F1

2

3

4

5

(a) stepwise construction of

spanning tree (center: E)

A

B

G

D

E

c

F

(b) constructed spanning

tree

Spanning tree: creation

center node

each node sends unicast join message to center node message forwarded until it arrives at a node

already belonging to spanning tree

Page 178: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-178

Multicast routing: problem statement

goal: find a tree (or trees) connecting routers having local mcast group members

tree: not all paths between routers used

shared-tree: same tree used by all group members

shared tree source-based trees

group member

not group member

routerwith agroup member

routerwithoutgroup member

legend

source-based: different tree from each sender to rcvrs

Page 179: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502179

Multicast: um emissor para vários receptoresMulticast: envia datagramas para múltiplos receptores com uma única operação de transmissão

analogia: um professor para vários estudantes, alimentação de dados: cotações da bolsa de valores;

atualização de cache WWW;

ambientes virtuais interativos distribuídos, etc.

Questão: como garantir multicast?

Multicast via unicastFonte envia N datagrams unicast, um para cada um dos N receptores

Receptores multicast (vermelho)

Não é um receptor multicast

Roteadoresencaminham datagramas unicast

Page 180: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502180

Desafios do Suporte a Multicast na Camada de Rede

Como identificar os receptores de um datagrama multicast?

Como endereçar um datagrama a ser enviado para estes receptores.

Não dá para incluir o endereço IP de cada um dos destinos no cabeçalho do datagrama!

Não funciona para um grande número de receptores;

requer que o transmissor conheça a identidade e endereços de cada um dos destinatários.

Endereço indireto: é usado um identificador único para um grupo de usuários.

Grupo Multicast associado a um endereço classe D.

Page 181: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502181

Modelo de Serviço Multicast da Internet

Conceito de grupo Multicast: uso de indireção

Hosts endereçam os datagramas IP para o grupo multicast

Roteadores encaminham os datagramas multicast para os hosts que se “juntaram” ao grupo multicast

Page 182: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502182

Grupos Multicast

Endereços classe D na Internet são reservados para multicast:

Semântica de grupo de hosts:

qualquer um pode se “juntar” (receber) a um grupo multicast

qualquer um pode enviar para um grupo multicast

nenhuma identificação na camada de rede para os hosts membros

necessário: infraestrutura para enviar datagramas multicast para todos os hosts que se juntaram ao grupo

Page 183: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502183

Grupos Multicast: questões

Como um grupo é iniciado e como ele é encerrado?

Como é escolhido o endereço do grupo?

Como são adicionados novos hosts ao grupo?

Qualquer um pode fazer parte (ativa) do grupo ou a participação é restrita?

Caso seja restrita, quem determina a restrição?

Os membros do grupo têm conhecimento das identidades dos demais membros do grupo na camada de rede?

Como os roteadores interoperam para entregar um datagrama multicast a todos os membros do grupo?

Page 184: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502184

Juntando-se a um grupo Multicast: processo em dois passos

Rede local: host informa ao roteador multicast local que deseja fazer parte do grupo: IGMP (Internet Group Management Protocol)

Rede metropolitanta: roteador local interage com outros roteadores para receber os fluxos multicast

Vários protocolos (e.g., DVMRP, MOSPF, PIM)

IGMPIGMP

IGMP

Roteamento multicast em

redes metropolitanas

Page 185: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502185

IGMP: Internet Group Management Protocol – RFC 2236

Opera entre o host e o roteador ao qual ele está conectado diretamente:

host: envia notificação IGMP quando a aplicação se junta a um grupo multicast

IP_ADD_MEMBERSHIP opção de socket

host não necessita fazer uma notificação quando sai de um grupo

roteador: envia requisição IGMP a intervalos regulares

host pertencente a um grupo multicast deve responder a requisição

query report

Page 186: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502186

O Protocolo IGMP

O IGMP fornece meios para que o host informe ao roteador ao qual está conectado que uma aplicação deseja ser incluída em um grupo multicast.

Apesar do nome ele não é um protocolo que opera entre todos os hosts que tenham formado um grupo multicast.

É necessário um outro protocolo para coordenar os roteadores multicast, de modo que os datagramas multicast sejam roteados até seus destinos: algoritmos de roteamento multicast da camada de rede. Ex: PIM, DVMRP e MOSPF.

Page 187: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502187

Tipos de Mensagens IGMP v2

Tipos das Mensagens IGMP

Enviada por

Finalidade

Consulta sobre participação em grupos:geral

Roteador Consultar quais os grupos multicast em que os hosts associados estão incluídos.

Consulta sobre participação em grupos:específica

Roteador Consultar se os hosts associados estão incluídos em um grupos multicast específico.

Relato de participação

Host Relatar que o host quer ser ou já está incluído num dado grupo multicast.

Saída de grupo Host Relata que está saindo de um determinado grupo multicast.

Page 188: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502188

Consulta sobre participação e

resposta

As mensagens de relato também podem ser enviadas por iniciativa do host quando uma aplicação deseja ser incluída num grupo multicast.

Para o roteador não importa quais nem quantos hosts fazem parte do mesmo grupo multicast.

Page 189: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502189

Formato das Mensagens

IGMPUsado para suprimir relatos duplicados: cada host espera um tempoaleatório entre 0 e este valor máximo antes de enviar o seu relato. Se antes disto este host escutar o relato de algum outro host, ele descarta a sua mensagem.

Encapsuladas em datagramas IP com número de protocolo 2.

Page 190: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Curso de Especialização em Redes de

Computadores – INF502190

Modelo do Serviço Multicast

da Internet Qualquer host pode ser incluído no grupo

multicast na camada de rede. O host simplesmente envia uma mensagem IGMP

de relato de participação para o roteador ao qual está conectado.

Em pouco tempo o roteador agindo em conjunto com os demais roteadores começará a entregar datagramas multicast para este host.

Portanto, a adesão a um grupo é uma iniciativa do receptor.

Page 191: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-191

Approaches for building mcast

treesapproaches:

source-based tree: one tree per source shortest path trees

reverse path forwarding

group-shared tree: group uses one tree minimal spanning (Steiner)

center-based trees

…we first look at basic approaches, then specific protocols

adopting these approaches

Page 192: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-192

Shortest path tree

mcast forwarding tree: tree of shortest path routes from source to all receivers Dijkstra’s algorithm

i

router with attached

group member

router with no attached

group member

link used for forwarding,

i indicates order link

added by algorithm

LEGEND

R1

R2

R3

R4

R5

R6 R7

2

1

6

3 4

5

s: source

Page 193: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-193

Reverse path forwarding

if (mcast datagram received on incoming link on shortest path back to center)

then flood datagram onto all outgoing links

else ignore datagram

rely on router’s knowledge of unicast shortest

path from it to sender

each router has simple forwarding behavior:

Page 194: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-194

Reverse path forwarding:

example

result is a source-specific reverse SPT

may be a bad choice with asymmetric links

router with attached

group member

router with no attached

group member

datagram will be forwarded

LEGENDR1

R2

R3

R4

R5

R6 R7

s: source

datagram will not be

forwarded

Page 195: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-195

Reverse path forwarding:

pruning forwarding tree contains subtrees with no mcast group

members

no need to forward datagrams down subtree

“prune” msgs sent upstream by router with no downstream group members

router with attached

group member

router with no attached

group member

prune message

LEGEND

links with multicast

forwarding

P

R1

R2

R3

R4

R5

R6

R7

s: source

P

P

Page 196: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-196

Shared-tree: steiner tree

steiner tree: minimum cost tree connecting all routers with attached group members

problem is NP-complete

excellent heuristics exists

not used in practice: computational complexity

information about entire network needed

monolithic: rerun whenever a router needs to join/leave

Page 197: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-197

Center-based trees

single delivery tree shared by all

one router identified as “center” of tree

to join: edge router sends unicast join-msg addressed to

center router

join-msg “processed” by intermediate routers and forwarded towards center

join-msg either hits existing tree branch for this center, or arrives at center

path taken by join-msg becomes new branch of tree for this router

Page 198: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-198

Center-based trees: example

suppose R6 chosen as center:

router with attached

group member

router with no attached

group member

path order in which join

messages generated

LEGEND

21

3

1

R1

R2

R3

R4

R5

R6

R7

Page 199: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-199

Internet Multicasting Routing: DVMRP

DVMRP: distance vector multicast routing protocol, RFC1075

flood and prune: reverse path forwarding, source-based tree RPF tree based on DVMRP’s own routing tables

constructed by communicating DVMRP routers

no assumptions about underlying unicast

initial datagram to mcast group flooded everywhere via RPF

routers not wanting group: send upstream prune msgs

Page 200: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-200

DVMRP: continued…

soft state: DVMRP router periodically (1 min.) “forgets” branches are pruned: mcast data again flows down unpruned branch

downstream router: reprune or else continue to receive data

routers can quickly regraft to tree following IGMP join at leaf

odds and ends commonly implemented in commercial router

Page 201: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-201

Tunneling

Q: how to connect “islands” of multicast routers in a “sea” of unicast routers?

mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram

normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router (recall IPv6 inside IPv4 tunneling)

receiving mcast router unencapsulates to get mcast datagram

physical topology logical topology

Page 202: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-202

PIM: Protocol Independent Multicast

not dependent on any specific underlying unicast routing algorithm (works with all)

two different multicast distribution scenarios :

dense:

group members

densely packed, in

“close” proximity.

bandwidth more

plentiful

sparse:

# networks with group

members small wrt #

interconnected networks

group members “widely

dispersed”

bandwidth not plentiful

Page 203: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-203

Consequences of sparse-dense

dichotomy:

dense group membership by

routers assumed until routers explicitly prune

data-driven construction on mcast tree (e.g., RPF)

bandwidth and non-group-router processing profligate

sparse:

no membership until routers explicitly join

receiver- drivenconstruction of mcast tree (e.g., center-based)

bandwidth and non-group-router processing conservative

Page 204: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-204

PIM- dense mode

flood-and-prune RPF: similar to DVMRP but…

underlying unicast protocol provides RPF info for incoming datagram

less complicated (less efficient) downstream flood than DVMRP reduces reliance on underlying routing algorithm

has protocol mechanism for router to detect it is a leaf-node router

Page 205: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-205

PIM - sparse

mode center-based approach

router sends join msg to rendezvous point (RP)

intermediate routers update state and forward join

after joining via RP, router can switch to source-specific tree

increased performance: less concentration, shorter paths

all data multicast

from rendezvous

point

rendezvous

point

join

join

join

R1

R2

R3

R4

R5

R6

R7

Page 206: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-206

sender(s): unicast data to RP,

which distributes down RP-rooted tree

RP can extend mcast tree upstream to source

RP can send stopmsg if no attached receivers “no one is listening!”

all data multicast

from rendezvous

point

rendezvous

point

join

join

join

R1

R2

R3

R4

R5

R6

R7

PIM - sparse

mode

Page 207: Chapter 4 Network Layer - Instituto de Computaçãonfonseca/arquivos/Chapter_4_V6.0-2014… · Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose,

Network Layer 4-207

4.1 introduction

4.2 virtual circuit and datagram networks

4.3 what’s inside a router

4.4 IP: Internet Protocol datagram format, IPv4

addressing, ICMP, IPv6

4.5 routing algorithms link state, distance

vector, hierarchical routing

4.6 routing in the Internet RIP, OSPF, BGP

4.7 broadcast and multicast routing

Chapter 4: done!

understand principles behind network layer services:

network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast

instantiation, implementation in the Internet